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ABSTRACT 

The removal of noise from signals obtained through the 

health monitoring systems in gas turbines is an important 

consideration for accurate prognostics.  Several filters have 

been designed and tested for this purpose, and their 

performance analysis has been conducted. Linear filters are 

inefficient in the removal of outliers and noise because they 

cause smoothening of the sharp features in the signal which 

can indicate the onset of a fault event. On the other hand, non-

linear filters based on image processing methods can provide 

more precise results for gas turbine health signals. Among 

others, the weighted recursive median (WRM) filter has been 

shown to provide greater accuracy due to its weight 

adaptability depending on the signal type. However, 

sampling data at high rates is possible which needs hardware 

implementation of the filter. In this paper, the design, 

simulation and implementation of WRM filters on the FPGA 

(Field Programmable Gate Arrays) platforms Vivado Design 

Suite by Xilinx and Quartus Pro Lite Edition 19.3 has been 

performed. The architectural detail and performance result 

with the FPGA filters when subjected to abrupt and gradual 

fault signal is presented. 

1. INTRODUCTION 

A gas turbine engine forms the core propulsion system of 

most aircraft, supplying it with power to maintain its flight. 

Therefore, it becomes essential to undertake steps so as to 

ensure their healthy working condition. Over the course of its 

constant usage and because of the strenuous conditions under 

which it operates, the engine may undergo faults. These faults 

include foreign/domestic object damage, corrosion, erosion 

and/or fouling. Health monitoring methods to track and 

prevent these faults, predict remaining life and suggest future 

actions has become a widely researched domain, and the 

technology is constantly developing (Volponi, 2014; 

Borguet, Henriksson, McKelvey and Léonard, 2011). Several 

investigations have been carried out to review the 

developments in this area (Zhao, Wen and Li, 2016; Fentaye, 

Baheta, Gilani and Kyprianidis, 2019). 

The basic parameters that are used to determine the health of 

engines, namely, exhaust gas temperature (EGT), low rotor 

speed (N1), high rotor speed (N2), and fuel flow (WF), are 

susceptible to deviations and noise contaminations, due to a 

variety of factors which may involve channel noise or 

measurement errors at the source itself. Methods to check and 

inhibit the noise have inspired numerous researchers, which 

can be broadly classified under filtering, neural networks, 

least-square estimation and probabilistic approaches. High 

quality measurement data is the key to accurate prognostics. 

The use of linear filters, such as the FIR (finite impulse 

response) filter in smoothing out deviations of data from a 

baseline case caused due to the existence of noise, their 

advantages and disadvantages has been discussed in detail in 

by Ganguli (2012). Ganguli (2012) demonstrated the 

superiority of non-linear filters such as median filter in 

removing the outliers in gas path measurement data, and 

successfully simulated a non-linear idempotent median filter 

which preserved the sharp changes in the signal which herald 

a fault event. The Kalman filter, which determines an 

estimate of unknowns whose measurements are taken over 

time, also finds widespread use in gas turbine prognostics. A 

Kalman filter-based algorithm for the estimation of engine 

performance with proof pertaining to flight simulation and 

actual data was presented (Luppold, Roman, Gallops and 

Kerr, 1989). This finds application in flight maintenance and 

aircraft performance diagnostics. Pourbabaee, Meskin and 

Khorasani (2016) proposed a multiple-model scheme based 

on a hybrid Kalman filter to track fault detection, isolation 

and identification (FDII), and compared the soundness of 

their model over various other multiple model schemes which 

make use of Kalman filters. A hybrid Kalman filter 
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architecture consisting of linearized KF (LKF) and Extended 

KF (EKF), master filters and federated filtering structure was 

demonstrated and its robustness in sensing faults was 

established by Lu, HuangY., Huang J., and Qiu (2018). Its 

performance was noted to be better than other centralized 

KFs, due to the combination of linear and non-linear KFs 

which provides an optimum state estimate.  In another work, 

Lu et al developed a novel Extended Kalman Filter (EKF) 

algorithm approach for estimation of the deterministic state 

of gas turbine engines (Lu, Ju and Huang, 2016). 

A hybrid structure was proposed which consisted of the 

particle filtering technique to determine the state of the 

parameters which define the health of the system 

(Daroogheh, Baniamerian, Meskin and Khorasani, 2015). 

The observations were fed into an artificial neural network 

that provides predictions for future state of the parameters 

when the cause of damage to the turbine is known. The study 

was conducted on performance degradation caused by 

fouling and the resultant hybrid network proved to be better 

than typical neural networks. Another feasible technique for 

fault detection in the Exhaust Gas Temperature (EGT) is 

based on applying a convolutional neural network to obtain 

the value difference between two consecutive observations in 

EGT profile, which improves the sensitivity of anomaly 

detection (Liu, Liu, Yu, Kang, Yan, Wang, and Pecht, 2018). 

A methodology based on dynamic neural network has been 

verified and its advantages have been studied in recognizing 

faults in a turbofan engine (Tayarani-Bathaie, Vanini, and 

Khorasani, 2012). 

Several genetic algorithm-based methods have been 

suggested for the improvement in the accuracy of prediction 

in faults of gas turbine engines. For example, a genetic 

algorithm based multi-point performance technique has been 

studied, which carries out calibration of the simulated data 

and the actual engine performance at different off-design 

settings, wherein the algorithm is employed to find optimum 

scaling factor functions (Li, Ghafir, Wang, Singh, Huang and 

Feng, 2011). The algorithm was tested on a single spool 

turboshaft gas turbine and showed significant improvement 

in performance. However, its credibility is challenged by 

drawbacks such as excessive time consumption and search 

for an appropriate range of scaling factor coefficients to 

obtain optimum scaling factor functions. To overcome this, 

another method based on the least square method has been 

proposed, which provides a more deterministic alternative to 

find this range (Li, Ghafir, Wang, Singh, Huang and Feng, 

2012).   

All prognostic methods depend on high quality data for their 

successful performance. However, filters and other 

algorithms used for prognostics can be expensive in terms of 

computation time and may not have real time capability. A 

hardware implementation of the filters used for gas turbine 

prognostics is therefore attractive. The growth of FPGA 

(Field Programmable Gated Array) usage in the consumer 

domain has seen a rapid increase over the past years, making 

its way into a variety of industrial applications such as that of 

automation, computation, networking and communication, 

aerospace etc. Particularly in communication, the wireless 

sensor networks deployed for radio interfaces for aerospace 

systems has been explored, by means of prototyping a Single 

Carrier Frequency Division Multiple Access (SC-FDMA) on 

models such as the Virtex 2,4,5 and Stratix 3 (Henaut, 

Dragomirescu and Plana, 2009). FPGAs provide 

performance that is comparable to that of custom-made chips 

at a reasonable cost and proves to be a more viable 

alternative. However, FPGA are prone to soft errors (Fay, 

Campbell, Miller and Connors, 2007) that due to which their 

usage in the aerospace industry has been limited. But with 

technological advancement in the design techniques of 

FPGAs their potential is being progressively exploited. The 

autonomous systems that are deployed on rovers for 

planetary exploration require the capability to learn so as to 

deal with unexpected circumstances when in flight. For this 

purpose as well, the implementation of neural network on 

FPGA has been studied (Gankidi and Thangavelautham, 

2017). In the domain of aircraft, the use of filters for fault 

detection in gas turbines is being researched consistently. It 

is of interest, thus, to view the performance of these filters 

when implemented on FPGAs, so as to verify their potential 

use in the measurement of deviation from ideal behaviour of 

gas turbine engines that serves the purpose of health 

monitoring. This prognostics filter problem is useful to 

further the spread of FPGA technology in the prognostics 

community. This paper presents the simulation results of the 

averaging, median, recursive median as well as the weighted 

recursive median on the Xilinx Vivado Design Suite as well 

as the Intel Quartus Development Suite and presents the 

results of the comparative study performed when test data is 

fed into these filters. 

Another commonly used processor is the GPU which stands 

for Graphical Processing Unit. GPUs and FPGA are popular 

competitors for various applications such as robotics, image 

processing, computer vision, machine learning, deep learning 

etc. In principle, all the complex calculations could be done 

using CPUs but for certain applications, the other processors 

make it more energy-efficient and process the heavy 

calculations faster. There are a few reasons for the selection 

of FPGA as a processor above GPU for this application. 

 

The first advantage for FPGA is software portability. 

Programs for GPU are written using high-level languages and 

so it is faster and easier to debug codes. The FPGA can be 

programmed using hardware description languages such as 

VHDL or Verilog which take longer to debug, thereby 

increasing the development time. But, when there is a need to 

switch or upgrade to a hardware of the latest generation, the 

process of transferring the program in case of GPU might be 

challenging if the program is written considering certain 

architectural specification. In the case of FPGAs, the transfer 
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of codes among Xilinx FPGA and Altera FPGA is not 

straightforward. But transferring codes from low to high-

performance FPGA of the same family of Xilinx or Altera 

FPGA is comparatively simpler. Moreover, once the design 

is ready with an efficient program, the design can be used to 

design ASICs (Application Specific Integrated Circuits). The 

new generation Hardware description languages such as 

Chisel and Bluespec System Verilog(BSV) have also 

emerged to reduce the development time in FPGA. 

 

Hardware advantage is the second attractive aspect of FPGA. 

FPGA are independent and can perform without the need of 

a CPU whereas GPUs can only be used as co-processors 

which means it is not PC-independent. Hence, it can be said 

that the FPGAs are more portable when it comes to the size 

of the hardware required for a similar task. GPUs were 

designed to achieve high operational parallelism but when 

there is no requirement for high parallel computations, a 

significant drop in the performance of the GPU is observed. 

On the other hand, FPGAs provide high flexibility which 

improves performance significantly in case of lesser data. 

The flow of data in an FPGA is from the input, through the 

designed circuit to the output. In the GPU, the flow of data 

happens back and forth between the CPU and the GPU due 

to which there is a higher consumption of energy. Therefore, 

FPGA turns out to be a better hardware choice which can be 

incorporated with the engine of the aircraft as it is both 

portable and energy-efficient (HajiRassouliha,, Taberner, 

Nash and Nielsen, 2018). 

 

Health monitoring of aircraft can also be done using 

emerging technologies such as neural networks as discussed 

by Volponi, DePold, Ganguli and Daguang, (2000). Here 

they designed a health monitoring model using a neural 

network taking inputs from all the different modules of the 

gas turbine. For implementing such neural network-based 

models on the hardware it would become imperative to look 

into the advancements in GPUs and FPGAs which take place 

in the near future. GPUs are naturally better for 

implementation of emerging machine learning and deep 

learning algorithms. For example, the convolutional neural 

network models which involve calculations with matrices 

and GPU were made for such parallel matrix computation to 

enhance graphics (Krizhevsky, Sutskever and Hinton, 2012). 

However, the advancements in FPGA technology with the 

inclusion of CPUs also known as SoC (System on chip) has 

made them a formidable competitor of GPUs in this domain 

as well. FPGA-CPU SoCs were used to design their cloud-

scale which is indicative of the future possibilities and trends 

(Caulfield, Chung, Putnam, Angepat, Fowers, Haselman, 

Heil, Humphrey, Kaur, Kim, Lo, Massengill, Ovtcharov, 

Papamichael, Woods, Lanka, Chiou and Burger, 2016). 

2. BACKGROUND ON FILTERS 

2.1. Averaging Filter 

An average filter, also known as the mean filter, belongs to 

the category of linear filters. The primary action performed 

by this one-dimensional windowed filter is smoothing of a 

signal. Given a filter of length N, it traverses across the signal 

and computes the average of the data points that is contained 

within the window length, according to the formula: 

 

𝑌 =  ∑
𝑥𝑖

𝑁

𝑁

𝑖=1

 

 

(1) 

where xi represents the ith data point, and Y is the output. One 

of the drawbacks of the use of averaging filter for noise 

removal is that it smoothens out the steep changes in the 

signal which can precede a fault event, and does not provide 

good results in the removal of outliers. However, the moving 

average filter remains popular in industry. A low window 

length filter keeps unwanted smoothing low. In this paper, we 

have implemented a 4 point averaging filter on both the 

Xilinx and Intel platforms. 

2.2. Median Filter 

The median filter belongs to the class of non-linear filters, 

wherein the window length, N, may contain even or odd 

sample values. In the case where N is odd, the sample values 

within the window is arranged in ascending order, and the 

middle value of the window is the output of the filter. In the 

case of N is even, the average of N/2 and N/2+1 is taken as 

the output. Thus, an element of averaging is introduced in the 

even length median filter. While an odd size median filter 

must return one of the input data points as the output, the even 

length filter typically returns a different value. An even 

length median filter can be considered as a hybrid of a median 

and mean filter. A median filter can be formulated as: 

 𝑌 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥𝑘−𝑛, 𝑥𝑘−𝑛+1, … , 𝑥𝑘+𝑛) 

 

(2) 

Here xk represents the data points. The median filter has been 

found to be very efficient in the removal of non-Gaussian 

noise. Unlike the averaging filter, the median does not 

smooth out sharp changes in the trend of data samples and is 

suitable for detecting outliers in the gas turbine signals. In the 

case of data with Gaussian noise, however, it takes numerous 

iterations for the filter output to converge to an optimum 

value. Our design comprises of a median filter with N=5. The 

data point at N=3, after sorting, is taken as the median in a 

given window. 

2.3. Recursive Median Filter 

The recursive median filter, or the RM filter, advances the 

simple median (SM) filter. For the purpose of calculating the 
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output, the RM filter considers data outputs from previous 

iterations as well. It can be mathematically expressed as: 

 𝑌 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑦𝑘−𝑛, 𝑦𝑘−𝑛+1, … , 𝑥𝑘 , … , 𝑥𝑘+𝑛) (3) 

 

Here yk is the output of the preceding iteration and xk are the 

current data points. The recursive median filter is known to 

provide much better performance than the median filter in the 

removal of outliers in the fault signal. The blurring caused in 

the output signal when an RM filter is passed over it, remains 

one of its main disadvantages. In this paper, an RM filter with 

a window length of N=5 is implemented. 

2.4. Weighted Recursive Median Filter 

The primary difference between the Weighted Recursive 

Median filter (WRM filter) and the Recursive Median Filter 

(RM filter) is that the data samples used in the RM filter are 

assigned certain pre-determined weight values to obtain the 

output of the WRM filter. These weights are assigned 

depending on the application. The WRM filter overcomes the 

disadvantages that are noted in RM filters such as blurring 

and produces better performance in terms of the rate at which 

the output is obtained (Verma and Ganguli, 2005; Payuna and 

Ganguli, 2010). The WRM filter can be expressed as: 

 𝑌 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑚𝑘−𝑛 ∗ 𝑦𝑘−𝑛, 𝑚𝑘−𝑛+1  ∗ 𝑦𝑘−𝑛+1 

… 𝑚𝑘 ∗ 𝑥𝑘 , … , 𝑚𝑘+𝑛 ∗ 𝑥𝑘+𝑛) 

(3) 

 

Where yk are the output of preceding iterations, xk are the 

current data points and mk are the weights associated with 

them. The optimal weights chosen for obtaining the best 

filtered output was determined using the algorithm that 

tackles the optimization problem given as (Payuna and 

Ganguli, 2010): 

 𝐹(𝑤−2, 𝑤−1, 𝑤0, 𝑤1 , 𝑤2)

=
1

𝑀
∑

1

𝑁
∑ |𝑧�̂� − 𝑧𝑗

𝑜|

𝑁

𝑗=1

𝑀

𝑖=1

 

 

(4) 

3. TEST SIGNALS 

A typical basic jet engine essentially has sensors for low rotor 

speed depicted as N1, high rotor speed as N2, fuel flow 

measurement as WF, and the exhaust gas temperature as EGT 

as shown in Fig 1. While modern engines have more sensors 

for pressure and temperature measurements, these four 

sensors are ubiquitous in operational jet engines, including 

older models. The data values provided by these sensors are 

utilized for determining the conditions of five different 

modules of the jet engine namely: fan denoted as FAN, low-

pressure compressor as LPC, high-pressure compressor as 

HPC, the low-pressure turbine and the high-pressure turbines 

as LPT and HPT respectively. The data generated from the 

sensors help in the detection of any deviations in the behavior 

of the modules compared to the expected behavior. The 

deviations in the modules are realized by observing the 

deviations in the sensor values represented as ΔN1, ΔN2, 

ΔWF and ΔEGF (Turner and Bajwa,1999). 

 

Fig 1: Representation of Basic Measurements in Gas       

Turbine 

The output signals of any sensor are not ideal signals that can 

be analyzed or used directly. The presence of noise in any 

output signal from the sensor is inevitable. But the presence 

of noise is not supposed to govern the judgement made on the 

condition and functioning of the engine. In order to detect 

these gas turbine faults, the signal needs to be pre-processed. 

For this, the performance of the filter needs to be verified. To 

represent this in mathematical form, the signals with noise 

can be described using the equations below: 

 X = Xo + α (5) 

 

Where the Xo represents the ideal signal, i.e. the signal 

without noise, α represents the noise component, which is the 

reason for the deviation or the deltas in the signals. X is the 

complete output signal from the sensor. For the purpose of 

decision making and analysis it is necessary to have a signal 

with noise component being as small as possible else it could 

give erroneous prognostic results. Therefore, for noise 

reduction the sensors’ output is to be passed through a 

function.  Let that function be represented by F(.). This 

function could be any filter, linear or non-linear, operating on 

the sensor output signal X. The filter is given as: 

 𝑋 ̂ = 𝐹(𝑋) = 𝐹(𝑋𝑜 +  𝛼) (6) 

Where X̂ is the signal obtained after filtering. 

For better understanding and visualization, in this paper three 

signals are considered: 

1. Step signal 

2. Ramp signal 

3. Combination of step and ramp signal 

The unit step response in Fig 2 is considered as it mimics 

abrupt faults. The ramp is considered to represent the gradual 
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faults as shown in Fig 3. Fig 4 represents a combination of 

both the step signal and the ramp signal, which demonstrates 

an abrupt fault followed by a gradual fault. These signals are 

considered as the jet engine is susceptible to these three kinds 

of faults in real world scenarios. To make these signals more 

practical, the ideal signal is generated and white Gaussian 

noise is added to it. The standard deviation of the Gaussian 

noise generated is σ =3.6262, σ =3.0541 and σ =3.2210 for 

step signal, ramp signal and combination signal respectively. 

The signal thus generated occurs between 0 sec ≤ t ≤ 50 sec, 

with 250 data points. The signals simulated on MATLAB 

were sampled at every 0.2 sec. The resulting 250 samples 

were fed into the VERILOG simulation at 5 nsec interval, and 

the obtained outputs were plotted against the original 

samples, on MATLAB. As the signal along with the noise 

after sampling has values with non-integer decimal precision 

as well, so for the purpose of simplicity in implementation on 

FPGA, the sampled points with decimal values are 

approximated to their nearest integer. In a window length of 

N=5, each point being 4bit in length, the maximum height of 

the signal (along with the noise) needs to be below the 

magnitude of 15 considering only integer values. With a 

similar approach, these points can have more bits which will, 

in turn, increase the magnitude that can be considered for a 

signal. For example, considering 5-bit numbers will increase 

the magnitude limit to 32. In case of requirement of better 

precision, the method of mapping can be used. Consider the 

situation where we have a 5-bit number, therefore, we can 

have 32 digital levels. Let us say we require a maximum 

magnitude of 8; then we can divide 8 into 32 levels, every 

level representing 0.25. Similarly, this can be done for any 

number of bits. 

Fig 2: Step Signal Representing HPC Fault and its repair. 

 

 

Fig 3: Ramp Signal Representing HPT Fault and its repair. 

 

 

 

Fig 4: Combination Signal Representing a HPC fault and its 

repair followed by HPT fault and its repair 
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4. INTRODUCTION TO FPGAS 

A Field Programmable Gated Array – or FPGA, is an 

integrated circuit that possesses the capability of performing 

digital logic and application specific computations that can 

be customized by the end users depending on their need. 

Since its functionality is defined after it has been 

manufactured, therefore the term – “Field Programmable”. 

FPGA’s were originally brought into use in the 1980s as an 

alternative to PROMS (Programmable Read Only Memory) 

and PLDs (Programmable Logic Devices), because these 

were hard-wired, meaning that they could not be 

reprogrammed. With the advent of reprogrammable end-user 

chip technology, the growth of FPGA usage in the consumer 

market has seen an enormous increase over the past years, 

making its way into a variety of industrial domains such as 

automation, computation, networking and communication 

etc. Major companies are bringing about advanced 

technology in the form of high speed processors, dedicated 

computation blocks, large memory blocks in their FPGA 

devices. 

 

Fig 5: The process of generation of data 

 

An FPGA is a semiconductor chip, consisting of millions of 

logic cells that can be programmed to perform any logic 

function. They are used to obtain the same level of 

performance, but at a visibly lower cost than its other 

alternatives such as that of a customized one-time 

programmable ASIC. Its structure consists of fundamental 

elements, which are enumerated next. 

1. Input-Output Blocks (I/O Blocks): The logic gates 

that are present in the FPGA require inputs on which 

it operates, thereby giving the output for which it has 

been designed. For this purpose, FPGAs contains a 

large number of I/O pins and GPIOs (General 

Purpose Input Outputs) such as switches, push 

buttons etc. These direct the electrical signals into 

the logic circuitry and drive the output ports such as 

LEDs, displays etc. 

2. Look-up Tables (LUTs): The smallest block in an 

FPGA is a Look-Up Table, which performs logic 

operations on the input received. Essentially, it is 

similar to a truth table, which holds values of the 

output that is desired for input combinations. In 

general, an N input LUT accesses 2N memory 

locations. It will contain (M=2^N) configuration 

bits, and is capable of implementing 2^M functions. 

3. Flip Flops: Flip Flops are used as memory elements 

in FPGAs, wherein the output computed by the logic 

circuit is stored. It holds onto the value stored, till a 

new value is fed into it. 

Xilinx manufactures commercially available 

reprogrammable FPGAs, whose basic architecture is array-

based. An array based structure implies that the logic blocks 

that make up a chip, is in the form of a 2-D matrix, and are 

linked to each other through both vertical and horizontal 

interconnects. The interconnect present in the chips are 

reprogrammable. These logic blocks are known as CLBs 

(Configurable Logic Blocks) in Xilinx, and are made up of 

Look-Up Tables. 

In the FPGAs manufactured by INTEL, the basic logic block, 

is known as a Logic Element (LE), similar to a CLB present 

in a chip in the Xilinx FPGAs. Each of these logic elements 

is made up of one LUT, which can take up to four inputs to 

perform logic operations. For the output, one single flip flop 

is present in each LE. 

The overall process of generating data and simultaneously 

programming the FPGA is shown in Fig 5. 

5. FPGA IMPLEMENTATION 

5.1. Intel Quartus Development Suite 

The family of FPGAs offered by Intel (previously, Altera) 

contain dedicated and specialized high-performance DSP 

blocks, logic modules for logic implementation and large 

block memory on the system chip.  

The design and synthesis for the purpose of the filter 

implementation was carried out on the Quartus Prime Lite 

Edition 19.1 on Windows. For the current problem, Cyclone 

V was chosen for the implementation. Modelsim-Intel FPGA 

Edition was used for simulation and optimization of the 

Verilog HDL program. The results of the filter design 

parameters when synthesized on the software are tabulated in 

Table 1. 

The Weighted Recursive Median consumes the most logic 

modules in the design, while the simple median filter uses the 

least. The weights considered for the WRM filter are 

[4,1,3,2,4], [4,1,2,2,3] and [2,2,2,1,3] for Step, Ramp and 

combinational signals respectively. The WRM filter also 

exhibits the maximum average fan-out, which indicates that 

it its power usage remains the highest amongst all. We deduce 
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that the design of the median filter is the most efficient in 

terms of design and logic unit utilization on the chip. 

 

Filters/ 

Parameter

s 

Logic 

Utilizatio

n in 

ALMs 

(56,480) 

I/O 

Pins 

(480

) 

Averag

e Fan 

Out 

Combinatio

n ALUT 

Usage 

Average 13 45 1.45 20 

Median 1 35 0.50 0 

Recursive 

Median 

96 48 2.74 190 

Weighted 

Recursive 

Median 

154 28 3.56 291 

 

Table 1: Compilation and Synthesis Results of Quartus 

Development Suite 

 

5.2. Xilinx Vivado Development Suite 

Xilinx is a company that provides FPGAs to meet various 

requirements, such as greater performance, high end 

complicated operations at affordable costs. There are 

primarily five families of the FPGAs, namely VIRTEX, 

KINTEX, ARTIX, ZYNQ and SPARTAN, all of which are 

designed to meet the needs demanded by field-specific 

applications. There are certain FPGAs with on-chip processor 

features, known as System-on-Chips, for making the 

processing quicker and providing advanced capabilities to the 

devices. 

For the implementation of the filters, the Xilinx board 

Nexys4 DDR which belongs to the ARTIX-7 low voltage 

family is used. The Nexys4 DDR kit has 15,850 logic slices, 

each with four 6-input LUTs and 8 flip-flops. The software 

used for the hardware description is the VIVADO Design 

Suite 2019.2. This software enables us to design and simulate 

the coded Verilog HDL program. Using the RTL analysis, the 

schematic based on the code can be obtained. At the end of 

the RTL analysis, the peak memory requirement is known. 

The VIVADO suite also facilitates synthesising the Verilog 

code which is specific to the board in use. After the synthesis, 

the board specific schematic is attained that has the 

descriptions of the number of input output ports, flip-flops, 

LUTs and DSP blocks used. Following the implementation 

of the filters, the descriptions shown in the software are 

tabulated in Table 2. 

From the values in Table 2, it can be observed that the 

average filter’s implementation uses the highest number of 

I/O ports. The Recursive Median Filter needs the highest 

peak memory. The Weighted Recursive Median filter 

implementation uses the highest flip-flops and LUT. The 

weights considered for the WRM filter are [4,1,3,2,4], 

[4,1,2,2,3] and [2,2,2,1,3] for Step, Ramp and combinational 

signals respectively. These values might vary with the FPGA 

board and the algorithms used for implementation. For 

Median, Recursive Median and Weighted Recursive Median 

filters the sorting method used here is bubble sort. Usage of 

some other sorting algorithm will yield different results. 

Filters/ 

Parameters 

Peak 

Memory 

(MB) 

I/O 

Ports 

Flip 

Flops 

LUT 

Usage 

Average 1414.855 68 0 1 

Median 1481.805 28 0 0 

Recursive 

Median 

2022.215 28 0 0 

Weighted 

Recursive 

Median 

1649.820 12 3 113 

 

Table 2: Compilation and Synthesis Results of Vivado 

Development Suite 

 

 

Fig 6: RTL Schematic of Averaging filter 

 

The data is generated through MATLAB and decimal 

truncated, following which it is fed into the VERILOG code. 

The code is repeatedly modified till a synthesizable design is 

obtained. Fig 6 and Fig 7 depicts the RTL synthesis diagram 

obtained of the average and recursive median filter 

respectively, after compilation of the Verilog program. 
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Fig 7: RTL Schematic of Recursive Median Filter. 

 

6. PERFORMANCE ANALYSIS OF FILTERS 

The noise can get added to the signal during the creation or 

even during the transmission of data. It is also possible that 

the noise at times overpowers the signal itself. This becomes 

a concern as the signal is completely corrupted and retrieval 

becomes a difficult challenge. Various methodologies are 

used for signal cleaning and noise removal. The next hurdle 

is to identify the best possible solution for the removal of 

noise from the signal. The extent of denoising is compared by 

certain parameters such as: 

1. PSNR: peak signal to noise ratio; which is the ratio 

of the maximum possible power of the signal to that 

of the power of the noise that affects the signal’s 

representation. 

2. MSE: mean squared error; it is squared to remove 

the negative components of the noisy signal and is 

averaged out to give more weightage to the larger 

deviations. Lesser the value of MSE the better in the 

considered signal. 

3. SNR: signal to noise ratio; it the comparison of the 

RMS value of the ideal or expected signal to that of 

the RMS of the noise content of the signal. 

4. RMSE: Root mean squared error, it quantifies how 

far or close is the spread of noise from the original 

signal. (Hore and Ziou, 2010; Saladi and Prabha, 

2017) 

The motive of considering all these parameters for 

comparison is to obtain a clear demarcation between the 

signals which are compared. In this paper, the outputs of the 

filters are compared using the SNR parameter. Any ratio 

more than 1:1 indicates that the signal has more required 

component, than the noise component. The larger the value 

of the SNR the better is the obtained output. This can be 

represented by the equation: 

 
𝑆𝑁𝑅 = 20 ∗ log10

𝑅𝑀𝑆 𝑆𝑖𝑔𝑛𝑎𝑙

𝑅𝑀𝑆 𝑁𝑜𝑖𝑠𝑒
 

(7) 

 

A complete removal of noise is not possible with these filters, 

but any improvement in the signal by reducing the noise 

component can result in better performance. As per the 

tabulated values in Table 3, it can clearly be seen that the 

filter with the best performance is the Weighted Recursive 

Median filter followed by Recursive, Median and Average in 

the same order. The results obtained below are from the 

FPGA simulation. The input for the simulation was a noisy 

signal whose data points were rounded off to the nearest 

integer. For simplicity 4-bit numbers were taken which could 

give numbers between 0-15 only and the peak of the signal 

considered was 15. Thereby leaving no scope for decimal 

values. Hence the outputs obtained were also integers. The 

results are based on the above considerations. 

The increment in the window length of the filter results in the 

improvement, which is what essentially occurs in the 

Weighted Recursive Median Filter. It is necessary to select 

the correct set of weights for the WRM filter for better 

performance. Fig. 8-16 illustrates the plots of the obtained 

filtered output. On implementing the same filters on 

MATLAB with non-truncated input values and comparing 

the results, we note that the filter designs on FPGA perform 

with a relative error of (4%-15%). 

Filters / 

Signals 

Step 

(σ=3.6262) 

Ramp 

(σ=3.0541) 

Combination 

(Step and 

Ramp) 

(σ=3.2210) 

Average 8.130 9.841 10.391 

Median 16.552 13.500 12.599 

Recursive 

Median 

16.640 16.248 13.248 

Weighted 

Recursive 

Median 

(Weights) 

17.068  

(4,1,3,2,4) 

16.560 

(4,1,2,2,3) 

13.471 

(2,2,2,1,3) 
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Table 3: SNR of Tested Signals 

 

 

Fig 8: Median Filter Output on Noisy Step Signal 

 

Fig 9: Recursive Median Filter Output on Noisy Step Signal 

 

Fig 10: Weighted Recursive Median Filter Output on Noisy 

Step Signal 

 

Fig 11: Median Filter Output on Noisy Ramp Signal 

 
Fig 12: Recursive Median Filter Output on Noisy Ramp 

Signal 

 

Fig 13: Weighted Recursive Median Filter Output on Noisy 

Ramp Signal 
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Fig 14: Median Filter Output on Noisy Combination Signal 

 

Fig 15: Recursive Median Filter Output on Noisy 

Combination Signal 

 

Fig 16: Weighted Recursive Median Filter Output on Noisy 

Combination Signal 

 

7. DISCUSSION 

Based on the numerical analysis performed, we deduce that 

the weighted recursive median filter provides the most 

effective results in the removal of noise from data. The 

averaging filter performs poorly and succeeds in removing 

nominal noise from the faulty signal generated. This is 

primarily due to the fact that the averaging filter causes 

smoothening of the data points near sharp changes in the 

measurement signal which leads to loss of vital attributes 

contained in the signal that can prove to be essential to the 

task of the removal and isolation of faults from the noisy 

signal as suggested by Payuna and Ganguli, (2010). The 

average filter also fares poorly in the preservation of edges 

present in the test signal, thus causing performance 

degradation. Therefore, the averaging filter is not the ideal 

choice for noise removal and fault isolation.  

The median filter, on the other hand performs well in the 

feature preservation for the faulty signals, unlike the linear 

averaging filter. This can be seen through the reported results 

which show significantly better performance metrics when 

tested on the error signals. Median filters are more sensitive 

to the existence of outliers in the data. Its variant, the 

recursive median filter achieves even better results. The 

outcome obtained depicts the superior performance in fault 

isolation, and therefore is better suited than the previously 

noted filters, as it takes into account the output values of 

previous iterations as well.  

The weighted recursive median, which involves the 

assignment of weights to the recursive median filter exhibits 

the greatest efficiency in filtering out noise, as it allows the 

fine-tuning of the filter according to the signal under test. 

It should be mentioned that the results in this paper use 

simulated data. Using simulated data allows easy comparison 

of the algorithms in terms of error norms as the ideal signal 

is known. However, our work can easily be used by 

practitioners working in companies who may have access to 

real world test data.  

8. CONCLUSION 

The performance of linear and non-linear filters are evaluated 

through their implementation on FPGAs for the purpose of 

improved prognostics of gas turbine engines, wherein the 

filters are employed to detect and isolate faults in the data 

signals. The signals modelled for this task include the step 

signal which represents an abrupt fault and a ramp signal 

which indicates a gradual fault occurring in the data received 

from measurements of the engine. Two different platforms, 

namely the Vivado Design Software Suite by Xilinx and the 

Quartus Pro Lite Edition by Intel are used for the design and 

simulation of the filters. The filters modelled are a five point 

averaging filter, which is a linear filter; a simple median 

filter, a recursive median filter, which comprise of window 

length of N=5 and a weighted recursive median filter that are 
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non-linear in nature. The architectural difference between the 

two designing platforms is noted. Finally, the performance 

analysis of the filters was conducted based on the signal-to-

noise ratio obtained, by recording the difference in the SNR 

of the noisy data and subsequently, the data received after 

filtering. It was hence, shown that the weighted recursive 

median filter provides superior results than the other filters 

designed for testing. In subsequent research, the real-time 

implementation of the proposed filters can be carried out on 

FPGA to highlight the performance benefits offered by the 

devices such as high sampling rate for input data, 

input/output rates, etc. 

The FPGA implementation of the denoising filters is likely to 

spread this technology in the prognostics community and lead 

to considerable benefits in terms of real time implementation. 
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