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ABSTRACT

Incorporating resilience in design is important for the long-
term viability of complex engineered systems. Complex
aerospace systems, for example, must ensure safety in the
event of hazards resulting from part failures and external cir-
cumstances while maintaining efficient operations. Tradition-
ally, mitigating hazards in early design has involved experts
manually creating hazard analyses in a time-consuming pro-
cess that hinders one’s ability to compare designs. Further-
more, as opposed to reliability-based design, resilience-based
design requires using models to determine the dynamic effects
of faults to compare recovery schemes. Models also provide
design opportunities, since models can be parameterized and
optimized and because the resulting hazard analyses can be
updated iteratively. While many theoretical frameworks have
been presented for early hazard assessment, most currently-
available modelling tools are meant for the later stages of
design. Given the wide adoption of Python in the broader
research community, there is an opportunity to create an en-
vironment for researchers to study the resilience of different
PHM technologies in the early phases of design. This paper
describes fmdtools, an attempt to realize this opportunity with
a set of modules which may be used to construct different
design models, simulate system behaviors over a set of fault
scenarios and analyze the resilience of the resulting simulation
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results. This approach is demonstrated in the hazard analysis
and architecture design of a multi-rotor drone, showing how
the toolkit enables a large number of analyses to be performed
on a relatively simple model as it progresses through the early
design process.

1. INTRODUCTION

Resilience, the ability to prevent and mitigate hazards, is a
key consideration in the design of complex engineered sys-
tems (Cottam et al., 2019; Yodo & Wang, 2016a). In the
aerospace industry, for example, it is important that aircraft
adapt and recover from hazards (Choi, Atkins, & Yi, 2010), air-
ports reconfigure runways in the event of damage (Faturechi,
Levenberg, & Miller-Hooks, 2014), and supply chains that
mitigate disruptions (Treuner, Hiibner, Baur, & Wagner, 2014).
Because resilience factors heavily into the risk, safety, and
functional reliability of a system, it is important to proactively
consider resilience in the early design phase, when there is the
most freedom to consider alternatives and allocate PHM fea-
tures (Yodo & Wang, 2016b; Youn, Hu, & Wang, 2011). It is
often helpful to support this consideration with a cost-benefit
analysis that can then be used to provide a coherent business
case for PHM system development (Banks, Reichard, Crow,
& Nickell, 2009).

Considering hazards in early design involves representing the
system in a high-level function structure to identify hazards
and develop resulting design requirements (Stone, Tumer, &
Van Wie, 2005). In the design of aircraft, this process is
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Figure 1. fmdtools is intended specifically to provide fault analysis methods that enable the consideration of risk in early

conceptual design processes

called functional hazard assessment and follows the ARP4761
guideline (ARP, 1996; Allenby & Kelly, 2001). Model-based
functional hazard assessment has been an active research area
(Krus & Lough, 2009; Kurtoglu & Tumer, 2008; Noh, Jun,
Lee, Lee, & Suh, 2011), with many new methods focusing on
how to model different aspects of the system, such as human
errors (Irshad, Ahmed, Demirel, & Tumer, 2019), dynamic
behaviors, new flows resulting from failures (Jensen, Tumer,
& Kurtoglu, 2009), and operational decision-making (Short,
2016). However, there has been less demonstration of how to
use this information to compare design alternatives, and the
research codes underlying these methods have not been shared
within the research community. To enable this resilience-
based design, then, there is an opportunity to develop a tool
that enables one to assess the resilience of a model without re-
implementing underlying data structures and fault propagation
methods.

The main contribution of this work is the development
and study of a computational environment for performing
resilience-based hazard assessment early in the design pro-
cess. This paper presents this contribution by first describing
the fmdtools project, an open-source python-based toolkit
for the high-level modelling, simulation, and analysis of re-
silience. It then demonstrates the usefulness of this toolkit
in early design by showing how it can support the analysis
of models as a design increases in fidelity. In doing so, it
seeks to enable the practical application of early model-based
functional hazard assessment frameworks while explicitly en-
abling the consideration of resilience. An approach like this
has a number of potential applications to considering PHM
in aerospace systems by supporting cost-benefit analysis (e.g.,
(Holzel, Schilling, & Gollnick, 2014)), which can used to
allocate resources for PHM (Youn et al., 2011) and assess de-

sign alternatives (e.g. prevention or recovery schemes) (Hulse,
Hoyle, Goebel, & Tumer, 2019b). While most traditional risk
assessment methods focus on how faults lead to system-level
failures, the resilience-based approach used in this work rep-
resents the full set of dynamic effects that result from a given
fault scenario, so that one can compare the effect of different
recovery actions.

The modelling framework described here additionally repre-
sents an advancement on current modelling paradigms used in
early design. One major difficulty in modelling failure prop-
agation is representing the system in a way that captures the
full set of effects which would be caused by a fault (Honig,
Lunde, & Holzapfel, 2017). While a number of formalisms
have been developed that enable this (e.g. modelica (Bunus,
Isaksson, Frey, & Miinker, 2009), simulink/lustre (Joshi &
Heimdahl, 2007), etc), these models are often computation-
ally expensive and are more applicable for later design when
one has the complete set of system behaviors. As a result,
previously-presented simulation-based functional hazard as-
sessment methods have often been defined directly in code in
a base language (e.g. MATLAB/Python). In this setting, it is
convenient to express the system using a procedural, directed-
graph representation of system behaviors where each function
is defined in a method and where the output flows of each
function are used as inputs to the next function in the graph.
The main problem with this representation is that it can only
represent flow propagation that occurs in a single direction—
from the source functions where flows originate to the sink
functions where flows terminate. Defining a model in a base
language also makes it difficult to then structure the model in
a way that logically organizes faults, states, and behaviors of
functions to be be easily understood, visualized, and modified.
To improve on this approach, fmdtools uses a object-oriented,
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undirected-graph representation of system behaviors, where
each function’s states, behaviors, and faults are defined in a
function class and a model class is used to connect adjacent
functions so that behaviors can propagate in any direction
through the model graph and one can easily parse the structure
of the system model.

The rest of this paper is organized as follows: Section 2 dis-
cusses and compares the approach used by fmdtools with
existing fault propagation toolkits to show how it compares
with the state-of-the-art as well as uses of fault injection in
other fields. Section 3 the underlying model representation,
fault propagation, and visualization algorithms provided in
the toolkit. Section 4 provides an example of using fmdtools
to model on a multirotor drone case study with increasing
fidelity in the design process and using it to inform decision
making. Finally, Section 5 concludes with some assessment
of the usefulness of the tool and directions for future work.

2. BACKGROUND

Fault propagation is widely used in a number of domains to as-
sess the safety and resilience of a system of interest. As shown
in Figure 1, while most current tools focus on modelling the
system in the later design stages and in the verification and
validation process, when there are detailed models of the sys-
tem, fmdtools is meant to support early design processes. To
do this, it provides analyses that support each phase of the
function-behavior-structure design process commonly used
in engineering design (Howard, Culley, & Dekoninck, 2008).
In this process, one creates a functional decomposition of the
tasks the system is to perform, finds solution principles to
achieve those tasks, and then synthesizes those principles into
a realized design concept. These design processes are sup-
ported by static failure-logic functional hazard assessment and
network models, dynamic behavioral models, and hierarchical
fault models, respectively.

A number of modelling formalisms have been developed to
assess the risk of hazards in engineered systems, including
fault trees, bayesian networks, and stochastic petri nets (a type
of discrete event simulation) (Chemweno, Pintelon, Muchiri,
& Van Horenbeek, 2018). While the simpler methods (fault
trees, bayesian networks) enable stronger proofs of system
dependability (Chemweno et al., 2018), they do not express
the system resilience—the behavior over time resulting from a
fault. In these situations, a discrete event simulation or contin-
uous dynamic model is used. Discrete event simulation (e.g.
(Matloff, 2008)) has been used to assess and design resilience
into systems, including maintenance (Wang, Cui, & Shi, 2015)
and recovery aspects (Miles, 2018). Similarly, Monte Carlo
techniques are often used with continuous simulation models
to quantify risk of hazardous states (Hu, 2005). While these
approaches describe the underlying general approaches to sim-
ulating faulty behaviors in a system, the following sections

describe specific toolkits that use these approaches to quantify
risk and resilience.

2.1. Related Work

As shown in Table 1, there have been some prior efforts to de-
velop generally-applicable toolkits for the design of resilience
in a model-based engineering process. One major difference
between toolkits is the way they represent causality in the
system to determine the effects and propagation of faults,
which has a number of potential aspects, including the types
of failure paths able to be represented (through the system be-
havior, failure logic, state transitions or a hybrid) (Honig et al.,
2017), and the nature of causality (probabilistic or determin-
istic). To integrate with design activities, currently-available
frameworks are built around either a standardized modelling
language (e.g. AADL), or an existing systems modelling tool
such as Simulink or Modelica. While this enables one to use a
single unified model for multiple analyses through the process,
it can also be limiting if certain aspects of fault propagation
are difficult to represent in the given formalism. Finally, while
each of these toolkits are claimed to support different design
processes, the design being performed is later stage embodi-
ment design—not the early conceptual design shown in Figure
1. The main exception to this is Hip-Hops (Hierarchically
Performed Hazard Origin and Propagation Studies) and IBFM
(Inherent Behaviors of Functional Models), which both tar-
get early design processes. As a result, the implementation of
early functional risk assessment tools has been cited as a neces-
sity to bridge the gap between model-based hazard assessment
methods in literature and their adoption in industry (Grigoleit
et al., 2016).

Development of the fmdtools toolkit was initiated to ad-
dress limitations with the previously-developed IBFM sim-
ulator (Mclntire et al., 2016). While IBFM was developed for
the early, high-level functional design of engineered systems
and was able to determine the end-states of large sets of sys-
tem faults, the behavioral representation was limited to finite
states (Zero to Highest), a set of given possible operations on
input and output flows, event-based dynamic propagation, and
a given syntax for specifying failure logic. This limited its
ability to express all possible behaviors that could occur in a
system as a result of a given fault. Additionally, the text-based
model representation made it difficult to parameterize models
and simulate them iteratively in an optimization algorithm.
In this work, these limitations are addressed by defining the
model as a set of interacting Python classes with possible
faults and (nominal or faulty) behaviors to simulate over a set
of discrete time-steps. With this model representation, one
can easily express and optimize the dynamic behavior of the
system without being limited by expressiveness of the underly-
ing modelling tool. fmdtools has additionally since expanded
in scope to include not just fault propagation tools but the
necessary analysis and visualization tools needed to interpret
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ToolkKit | Causality Representation Model Format(s) | Availability| Use in design
HiP-Hops . Dynamic simulation with fail- [ Simulink, Simula- [ Commercial| Functional Hazard Assessment,
(Papadopoulos & McDermid, 1999) | ure logic tionX, AADL, etc. Design Optimization
(Papadopoulos et al., 2011)
Rodon Behavioral constraint network | Modelica-like Commercial| Model-based engineering pro-
(Bunus et al., 2009) with failure logic Rodelica model cess
(Lunde et al., 2006)
Modelica fault Tibraries Undirected behavioral/failure | Modelica Open Design exploration
(van der Linden, 2014; Minhas et al., logic Source (Lattmann et al., 2014)
2014; Gundermann et al., 2019)
OpenErrorPro Probabilistic markov chain Simulink, Stateflow, | Open Model-based reliable system de-
(Morozov et al., 2019) UML, SysML, | Source sign
AADL (Morozov et al., 2018)
SHyFTOO Dynamic simulation with prob- [ Simulink, =~ MAT- | Open Model-based design
(Chiacchio et al., 2020) abilistic hybrid fault tree LAB code Source (Chiacchio et al., 2019)
OpenCossan Probabalistic semi-markov tran- | MATLAB code Open Resilient, reliable, robust design
(Patelli et al., 2018) sitions and/or external simula- Source under uncertainty
tion (Patelli & Broggi, 2015)
IBFM Bond graph with failure Togic Text files, Python Open Functional decomposition and
(Mclntire et al., 2016) Source design optimization
(Hulse et al., 2019a)
fmdtools Dynamic un-directed behav- | Python subclasses Open Early resilience-based design,
ioral propagation with failure Source analysis, visualization and opti-
logic mization

Table 1. Comparison of Model-based Fault Simulation Toolkits for Design

simulation results. In doing so, it comprises an early resilience-
based design environment that enables quick, iterative analysis
over a design model.

2.2. Other Fault Modelling Tools

In addition to the fault propagation toolkits mentioned above,
there are additionally a number of toolkits used for fault prop-
agation in safety assessment and for application-specific re-
silience assessment.

Safety assessment toolkits are used to verify that a given de-
sign meets desired safety and reliability criteria (Honig et al.,
2017; Joshi et al., 2006). Typically, these tools take a design
model specified in a formal language (e.g. Simulink (Joshi &
Heimdabhl, 2005), Lustre (Joshi & Heimdahl, 2007), Modelica
(van der Linden, 2014), AADL (Stewart, Liu, Whalen, Cofer,
& Peterson, 2018), UML (Combemale, Crégut, Giacometti,
Michel, & Pantel, 2008)) and apply a model checker to the sys-
tem description to find cases where the system does not work
as intended. While this process can be performed in a nominal
system model, model-based safety assessment tools extend
this process to assess safety by including failure modes and
faulty behaviors in the system description (Joshi & Heimdahl,
2005, 2007). However, because the intended purpose of these
tools is to verify safety requirements post-design (see the right
side of the v-model in Figure 1), they typically rely on detailed,
fully-specified models of the design that are not available early
in the design process (Grigoleit et al., 2016). Furthermore,
these tools are not intended to assess resilience—the dynamic
effects of failures due to faults—but instead assess the safety
or reliability of the system (i.e. an overall fault tree or failure
probability). As a result, they are not applicable to the de-
sign of resilience in the early design process when the system

has not been fully specified and the designer is interested in
assessing the system’s dynamic response to faults.

Fault injection is used widely in software and hardware en-
gineering to assess a computer system’s ability to manage
the different types of faults. Existing simulators vary by do-
main (e.g. distributed systems (Martins et al., 2013), servers
(Kollarova, 2014), stand-alone systems) and type of faults
(hardware-originated (Georgakoudis, Laguna, Vandieren-
donck, Nikolopoulos, & Schulz, 2019; Schirmeier et al., 2015)
or software components/algorithms (Goldstein et al., 2020;
Arribas, Nikova, & Rijmen, 2018)), though generic simulators
also exist (Winter et al., 2015). One of the advantages of soft-
ware (as opposed to hardware/systems) engineering is that this
testing can be iteratively performed on a running prototype of
the system at a low computational cost, and as a result, these
tools do not operate on models of the system as is needed in
engineering design.

There are additionally a number of application-specific re-
silience assessment toolkits that interface with specific system
simulators to model the resilience-related attributes for that
domain. For example, integrated circuits have well-defined
properties that have led to a number of specialized fault sim-
ulation algorithms, which have since been implemented in
software (May & Stechele, 2012; Niermann, Cheng, & Pa-
tel, 1992). Infrastructure often has specific hazards to assess,
which has resulted in tools to consider natural disasters for
cities (Fraser et al., 2016; McKenna, 2011) and cyber-physical
threats in smart grids (Wadhawan & Neuman, 2017). Finally,
assessing the hazards of autonomous vehicles in a real system
is both costly and hazardous (Gambi, Miiller, & Fraser, 2019),
which has led to the development of a number of simulators
that enable one to try different policies to approaching haz-
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Figure 2. The fmdtools design, simulation, and analysis environment.

ards which the vehicle will encounter (Jha, Banerjee, Cyriac,
Kalbarczyk, & Iyer, 2018; Jha et al., 2019). While these toolk-
its can assess resilience in specific design contexts with high
fidelity, they are not applicable to a generic systems design
context.

3. METHODS AND ALGORITHMS

The fmdtools toolkit aims to provide a design, analysis, and
simulation environment that enables the design of resilience
into a system. To accomplish this, it provides a number of tools
to represent, simulate, and analyze the system as it progresses
through the design process, as shown in Figure 2. As a result,
it can accommodate a number of modelling and analysis use-
cases to progress from the early, abstract representations of the
design (e.g. network and static propagation models) to more
detailed representations of the system structure (e.g. dynamic
and hierarchical propagation models) and behaviors in the
same modelling environment, as shown in Figure 3.

The full implementation of this work is provided in a publicly-
available repository, along with examples and documenta-
tion at github.com/DesignEngrLab/fmdtools or

(Hulse, Walsh, Biswas, & Zhang, 2021). While an exhaustive
description of every method and class is out of the scope of
this paper, this section will discuss some of the underlying
concepts and structure of the toolkit. The fmdtools toolkit is or-
ganized into different modules used for model representation,
simulation, and analysis. The modeldef module provides
the classes to define a system model from functions, flows,
and components as well as a fault sampling approach for re-
silience quantification. The faultsim module then provides
methods for propagating faults in a model and quantify net-
work metrics. Finally, the resultdisp module provides a
number of methods to process and visualize simulations of
the model, including behaviors over time, FMEA tables, fault
graphs, and heatmaps.

3.1. Model Representation

In this work a system consists of functions (modules that per-
form a task), components (specific solutions to a function),
and flows (variables) that are connected with each other in a
bipartite graph. In a model (itself defined by a user-defined
class), functions, flows, and components are represented by ob-
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Figure 4. Example model representation. A Model is com-
posed of function objects with internal states and faults, (op-
tional) instantiating component objects and relationships to
flow objects.

jects instantiated from user-defined classes that are connected
by a graph, as shown in Figure 4 for a model of a wire. In
this representation, each function (e.g., Transport EE) con-
sists of its associated flow objects (e.g., EE 1, EE 2), internal
state variables, set of faults, behavior methods, and constituent
component objects (if a component representation is used).
Flows are in turn defined by dictionaries of states with corre-
sponding values and components are defined by internal state
variables, a set of faults, and behavior methods. Model objects
are then composed of their constituent functions, flows, and
components as well as a graph object used to track the connec-
tions between functions and flows and a classification method
used to quantify the costs of a fault scenario propagated in the
model.

This model is constructed in fmdtools by defining a subclass
that extends the Mode1 class to represent a system of interest.
This model class is constructed by defining the simulation
parameters (e.g. units, timesteps, starting and ending sim-
ulation times, design parameters), adding each flow in the
model, adding each each function in the model and connecting
them with flows to construct the model graph, and creating
a classification method which determines the rate, cost, and
expected cost of a given scenario given the results and param-
eters for that simulation—the end-state of functions and flows
(e.g. values and faults present), the scenario properties (e.g.
rates, faults, etc.), and the history of model states (values for
flows over time). By instantiating this class, one can then use
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the resulting object to model the evolution of system states
over time for a given set of defining parameters.

3.1.1. Functions

In design, functions represent the high-level tasks performed
by the system (Pahl & Beitz, 2013). In fmdtools, the
FxnBlock class is used to represent these functions, which
constitute the main building block of the system model defin-
ing faults and system behaviors. To use this class, users define
a subclass for each function which uses inherited FxnBlock
attributes to represent the properties of the function. At its
most basic, a user-defined function class is defined by the
flows going in and out of the function, a behaviour method
which relates values of input flows to values of output flows,
and a set of faults which modify the input-output relationship
defined in the behavior method. However, more attributes
can be defined, including states (internal variables of the func-
tion tracked in the model history), conditional fault methods
defining input/output flows or function states result in faults,
timers that can be used to express delays in behaviors, and
components, described in Section 3.1.3.

To enable expected resilience quantification, each fault to
inject in the function can be associated with a probability
model that expresses the likelihood of the fault occurring.
This probability model is defined by a function-wide rate, the
proportion (or rate/probability) of faults resulting from the
mode, an opportunity vector expressing the relative likelihood
of a fault occurring at a specific phase of operation, and a
specification of whether these values are a rate (with units) or
a probability. Each fault can additionally be given a cost of
repair that can be used to calculate the costs of fault scenarios.

3.1.2. Flows

Flows represent the states (e.g. energy, material, or signal)
with which the functions interact to achieve the overall goal of
the system. In fmdtools, the F1ow class is used to represent
these states, which can either be extended in a user-defined
subclass (if there are special properties the designer wishes
to represent) or instantiated using a dictionary with the name
of the flow, name of the values characterizing the state of the
flow, and initial quantity for each value. Because of the undi-
rected nature of the model graph and associative relationships
between functions and flows, flows are accessible (i.e. values
can be changed) in all connected functions.

3.1.3. Components

While functions represent the task a system performs, com-
ponents can be used to represent realizations of that function.
Often in risk or resilience-based design, one is interested in
designing component architectures which will fulfill an overall
function, even when an individual component fails (Youn et
al., 2011). To represent this, fmdtools uses the Component

class, which shares many attributes with the Function class,
including internal states, a behavior method, and a set of
fault modes. Similarly, to use the Component class in a
model, one must define a subclass for the modelled compo-
nent with its own states, fault modes, and behavior method.
However, unlike the FxnBlock behavior method (which
acts on FxnBlock attributes and does not return anything),
Component behavior methods explicitly take the inputs of
the component behavior as input and return outputs of the be-
havior as output. This is done to enable the designer to relate
the inputs and outputs of the components in the architecture
fulfilling a function with each other and function states in the
behavior methods of its corresponding function.

3.2. Resilience Simulation

fmdtools has two main approaches for assessing the resilience
of a model: quantifying network metrics of the system archi-
tecture and propogating faults in the system model. Network
metric quantification, described in Section 3.2.1 and imple-
mented in the networks submodule enables some considera-
tion of the structural resilience of the system before specifying
the fault logic in the system. Fault propagation, described
in Sections 3.2.2 and 3.2.3 can then be used to assess the re-
silience of a model given the model has faults to propagate in
each function (or the function of interest) and the functions
each have the necessary fault logic and/or behaviors.

3.2.1. Network Metric Quantification

The network metric quantification tools in fmdtools enable
the early assessment of the failure tolerance and resilience
of a design. Network analysis is an emerging early design
methodology for predicting the likely failure tolerance of a
design without the need for high fidelity models (Haley, Dong,
& Tumer, 2016; Mehrpouyan, Haley, Dong, Tumer, & Hoyle,
2013). In this approach, engineered systems are represented
as networks in which nodes represent functions, parameters,
or components depending on the specific network formalism.
In short, network analysis enables analysis of the topology
that emerges from the connectivity between system elements.
The representation of connectivity between system elements
is similar to that of a design structure matrix (DSM), and
network theory enables visualization and powerful analyses
of emergent network properties. Networks are used for both
a priori assessment of resilience properties as well as for
quantifying the network’s response to simulated faults.

Resilience Properties of Networks Known relationships
between structure and failure tolerance (Boccaletti, Latora,
Moreno, Chavez, & Hwang, 2006) in complex networks en-
able the a priori assessment of a network’s resilience prop-
erties prior to simulation. The structure of a network is in-
trinsically related to its functionality; structural vulnerabilities
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are therefore relatable to loss of functionality. In networks,
failure tolerance is typically studied by attacking or removing
nodes and measuring the resultant degradation of the network
structure. That is, much as loss of functionality in one com-
ponent in an engineered system leads to decreased overall
performance, degradation or removal of one node in a network
leads to an alteration of the network’s topology. In this way, a
network’s resistance to failure is relatable to an engineered sys-
tem’s resistance to failure. Certain networks are more prone
to degradation due to node removal than others. Likewise, cer-
tain nodes are more prone to causing degradation than others.
In component networks, failure or removal of a component
node implies loss of functionality in that component, and the
analysis therefore relates to the effects of the failure of that
function. Network analysis of the effects of function node fail-
ure is complementary to, for example, FMEA in that it enables
an assessment of the effects of a failure and its severity.

A common method for characterizing a network is studying
its degree distribution. In an undirected network, the degree
of a node is its the number of connections (edges). Nodes
with high degree (hubs) tend to be more critical in retaining a
network’s functionality. A network’s degree distribution is a
histogram of the degrees of all nodes in the network. Degree
distributions that follow a bell-curve tend to be more vulnera-
ble to random node removal, whereas degree distributions that
follow a power law tend to be more vulnerable to targeted node
removal (Barabdsi, 2009) (i.e. removal of a hub). High degree
nodes are identifiable using find_-high_degree_nodes.
Degree distributions are provided using degree_dist.

The modularity and community structure of a network also
have significant bearing on the network’s failure tolerance.
Modules, or communities, are tightly coupled groups of nodes.
The modularity of a network, the degree to which a network
exhibits a modular structure, is typically measured using Q-
modularity (Newman, 2010). Nodes that connect modules —
bridging nodes — are functionally important to a network’s
failure tolerance (Walsh, Dong, & Tumer, 2018). This is
comparable to, for example, identifying high severity fail-
ures in FMEA. Networks with high modularity have been
found to be less robust overall (Walsh, Dong, & Tumer, 2019).
find.bridging_nodes is provided to identify bridging
nodes in the network model. calc.modularity is pro-
vided to compute the modularity of the network model.

Average shortest path length (ASPL) is a measure of the effi-
ciency of the spread of information through a network. Under
attack, networks with low ASPL are more likely to retain short
to moderate length paths between any given pair of nodes,
whereas networks with high ASPL are more likely to disin-
tegrate significantly under attack. ASPL is defined as the
mean of the sum of all edge weights along the shortest path
between each pair of nodes in a network and is available as
calc.aspl.
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Figure 5. Illustration of static fault propagation. Function
behavior methods are iteratively run in a list until the states of
the system no longer change.

Simulation-Based Analysis of Network Resilience Rather
than using a network’s structure to predict its response to
failure, it is possible to use simulation-based approaches to
network analysis. First, robustness coefficient simulates the ef-
fect of failure in the network. This approach, implemented as
calc_robustness_coefficient, measures the chang-
ing size of the largest connected component of a network
during successive node removal (Viana, Tanck, Beletti, &
da Fontoura Costa, 2009). A second simulation-based ap-
proach is an SFF (susceptible-failed-fixed) epidemic spread-
ing model, which is able to explicitly represent node recovery
(Mehrpouyan et al., 2013). Rather than attacking or removing
nodes as in the robustness coefficient, this model considers
nodes to be in a susceptible, failed, or fixed state. Failed nodes
may cause susceptible nodes to fail, similarly to infected per-
sons spreading an epidemic. After a node is fixed, it is unable
to fail again by the same cause (immunity). The SFF model is
available as sff model.

3.2.2. Fault Propagation

Propagation of faults in a model has two major aspects: static
fault propagation and dynamic fault propagation. Static fault
propagation is the process of determining the immediate ef-
fects of a fault in a system, as illustrated in Figure 5. First, all
of the behavior methods are run. If a new value occurs in one
of the functions (e.g., because of fault injection) or its associ-
ated flows, that function and functions adjacent to the changed
flows are added to a list of functions to update. The behavior
functions for those functions are then run and new functions
to update are again added if they receive new input values.
This process is run iteratively until the system reaches a stable
end-state, if a stable end-state is possible. Thus, one necessary
property for fault models is stable fault behavior-behaviors in
one function should not change behaviors in other functions
that will in turn change the original behaviors in the original
function repeatedly, indefinitely.

As shown in Figure 4, functions have associative relationship
with flows, meaning functions have full access to (and can
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Figure 6. Dynamic fault propagation. A model is iteratively
updated at each discrete time-step from fault injection to the
end of simulation.

T3]

change the values of) the states of both “input” and “output
flows. Because the propagation of system states is undirected,
functions have the ability to propagate new system states to any
other functions in the graph—not just the function that would
be placed “next” in the sequence of tasks to perform. However,
because of the undirected system representation, conflicts be-
tween function behaviors can occur when different functions
specify different values for the same flow state, resulting in a
non-convergent system state at a given time-step. This must
be avoided in model setup, which can be achieved by repre-
senting flows with states that propagate forward through the
model graph (i.e. “effort” variables such as voltage or poten-
tial in a bond graph representation) and states that propagate
backwards through the model graph (i.e. “flow” variables such
as current or rate).

Dynamic fault propagation is the evolution of states in the
model over time necessary to quantify resilience as a time-
dependent property of a system. The implementation of dy-
namic fault propagation used here is illustrated in Figure 6.
As shown, the static propagation procedure is iteratively run
over a set of time-steps from fault injection time to the end
of the simulation time. To fully assess resilience, a history is
kept of all of the states of the model (flow values, function
state values, faults in functions, etc.) over the set of time-steps.
Based on a simulation like this, one can then quantify metrics
for the simulation such as dynamic costs, recovery time, or
worst state over time.

3.2.3. Fault Injection

Depending on the scope of the analysis, one might be inter-
ested in injecting faults in different ways. Before injecting
faults, it is important to determine that the model performs as
expected by simulating the system without any faults. Then,
while setting up faults and fault behaviors (and in systems
with single faults), one can propagate a single fault at a given
simulation time to verify that the simulated behavior matches
the expected behavior for that fault. Once faults are encoded,
the list of faults can be propagated in the system at times
defined in the model. While this approach lets one see the
consequences of faults injected at set times, it may not be for
calculating expected resilience metrics, since it neglects joint
fault scenarios and when in time faults are most probable.

To quantify the mathematical expectation of fault-injection
based resilience models, the SampleApproach class can
be used to define the set of fault scenarios to propagate in the
model, as illustrated in Figure 7. This class uses the dynamic
probability model set up in the model, functions, and com-
ponents, along with user-defined parameters to create a list
of fault scenarios which will be used to represent the statis-
tical expectation of the defined faults. This approach can be
defined over the set of faults to include, the number of joint
faults to inject and the probability model for the joint faults
(e.g. assuming independence or a conditional probability),
and the times to inject the faults at. The set of injection times
is determined by two main parameters: the phases defined
in the model (and opportunity vectors for each fault in the
probability model), and the set of times within each phase.
Within each phase, these times can be specified as every dis-
crete timestep, an evenly-spaced approach with a set number
of points, a randomly-spaced approach with a set number of
points, or an approach using a given quadrature defined in
the quadpy software package (Schlomer, Papior, Ancellin, &
Arnold, 2020). Additionally, Sample Approaches can be re-
fined post-hoc based on a set of simulation results to represent
the behaviors with a small set of sample points. Using these
approaches, one quantify expected metrics iteratively with as
few fault simulations as possible.

3.3. Resilience Analysis and Visualization

Using the models defined in Section 3.1 and simulations in
Section 3.2, one can then perform analyses on the results.
fmdtools provides a number of different methods using ex-
isting Python libraries, including matplotlib (Hunter, 2007),
networkx (Hagberg, Swart, & S Chult, 2008), and pandas
(pandas development team, 2020) to makes sense of the fault
behaviors modelled in the system. To assist with this analysis
and visualization, the results of the simulations are processed
to summarize the state of different aspects of the system as
nominal or faulty. This process results in three categorizations
for functions, flows, and components: nominal, when the data
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Figure 7. Injecting faults according to a fault sampling ap-
proach.

structure behaves as it does in the nominal state; degraded,
when the data structure has a different behavior than it does in
the nominal state; and faulty, when a component or function
has a fault. This approach to result processing enables high-
level visualization of the status of model structures without
the user defining bounds or conditions for each variable to be
listed as faulty or degraded. Using this representation, one can
make a number of plots of the model graph structure, system
behaviors over time, and tabular summaries of results.

3.3.1. Graph Plots

To visualize the propagation of faults in the system, fmdtools
provides a number of methods that display a graph view of
the system using matplotlib (Hunter, 2007), networkx
(Hagberg et al., 2008), and netgraph in the graph sub-
module. Graph views of the system enable one to see the struc-
ture of the model as well as desired states or properties of the
functions and flows. Two main graph representations can be
plotted: a default graph representation where the flows are plot-
ted as edges between function (which are nodes) and a bipartite
graph representation where both functions and flows are nodes
and edges are the associative relationships between them. To
visualize the model graph in an intuitive layout, methods call-
ing netgraph’s InteractiveGraph are provided which
enable one to place nodes manually (rather than relying on an
algorithmic layout). While the default representation is more
intuitive to interpret—especially for simple systems—the bipar-
tite representation often makes a better use of space—especially
when a flow is connected to more than two functions—because
there is less more freedom to ensure that edges do not overlap.
Using the graph view, one can then visualize graph metrics
as shown in Figures 8, the state of the model at the end-state
or a particular time (or set of times) in the model history as
shown in Figure 11, and various model run statistics defined by
heatmaps (e.g. expected degradation time, maximum number

of faults, etc.). These visualizations give one a view of how
faults and behaviors propagate at the system level.

3.3.2. Dynamic plots

When modelling a dynamic system, it is often important and
necessary to plot particular states over time in order to see
how the behavior evolves over time. Methods in the plot
sub-module use matplotlib (Hunter, 2007) to show the
evolution of chosen states of the model over time, with (if the
simulation was a run of a fault scenario) faulty states overlaid
over the nominal states over time to aid assessment of the
fault-induced behavior, as shown in Figure 12. In addition to
modelling system behavior in a particular modelling scenario,
time-based plots also have the ability to visualize the cost
responses given by the simulations at each injection time.
This plot, shown in Figure 13, can be used visualize how the
sample approach defined in Section 3.2.3 approximates the
expected resilience costs by showing the rate over time for a
particular fault, as well as the modelled cost and quadrature
weight for each sample point. Since these plots are plotted in
matplotlib, well-known commands and interfaces can be
used to edit and save the plots.

3.3.3. Tables

Finally, it is often helpful to be able to view the results of
fault simulations in tabular form. While simulation results are
typically returned as nested dictionaries, fmdtools provides
methods to view this information as a pandas (pandas de-
velopment team, 2020) table to enable results processing and
display. Based on the processed results, one can also make
tabular summaries of simulations, such as the number of func-
tions and flows degraded over time or in a particular simulation.
Tables are most helpful for summarizing the results of a set of
simulations, where they can provide an FMEA-style assess-
ment of the functions and flows affected as well as the rate,
cost, and expected cost of each fault simulation, as shown
in Table 3, which can be generated to delineate between or
summarize fault effects over each phase. Since these tables
are implemented in pandas, existing interfaces can then be
used to display and/or save results (e.g. as a . csv).

4. EXAMPLE - DRONE MODEL

This section illustrates how one can use the fmdtools software
package to aid the conceptual design of a real system by pro-
viding analyses that increase in fidelity and detail with the
design process. A number of examples are provided in the
repository, including a conceptual model of a pump, a dynamic
modelling of virus spreading, a human-operated tank system,
and a static model of an electric power system.

This example considers the design of a multi-rotor drone which
must fly to a given location and return to its destination. The
functional model of this system is shown in Figure 11, which
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ASPL | Modularity | Robustness Coefficient
1.44 ] 0.12 [ 95.85

Table 2. Network metrics for default (function) network repre-
sentation of example drone model.

High Degree Nodes (90th Percentile)

ViewEnv

DistEE

ffectDOF————Frajectory

Figure 8. Visualization of high degree nodes in default (func-
tion) network representation of example drone model.

includes the rotor lines, structure, electrical power source and
distribution, and path planning of the system. In this example,
we first quantify metrics about the system structure, then use
a static representation to generate a high-level FMEA and
visualize fault propagation, then create a dynamic version of
the model to visualize fault behaviors over time and quantify
the effects of injecting faults at different simulation times,
and finally use a hierarchical model to compare the dynamic
fault responses and resulting resilience of different component
architectures.

4.1. Network Representation and Analysis

First, the model is analyzed using network metrics and al-
gorithms. In fmdtools, it is possible to analyze various
network representations of the model, although only one net-
work representation will be shown in each step. Each network
analysis function has options to analyze the default (function)
network, the bipartite (function-flow) network, the parameter
network, or the component network. The bipartite network is
treated as a unipartite-like network for analysis (Haley et al.,
2016). Analysis of the various network perspectives provides
a more complete understanding of the model’s resistance to
failure.

The network metrics for the function network are given in Ta-
ble 2. Low (close to zero) modularity indicates a high degree
of interconnectivity and has been correlated with high robust-
ness (Walsh et al., 2019). High robustness coefficient and low
ASPL indicate high robustness to random node failure. High
degree nodes are highlighted in red in Fig. 8. Nodes with high
degree, or hubs, are more likely to cause significant perfor-
mance degradation if in a fault state. Based on this analysis of
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Figure 9. Degree distribution of default (function) network
representation of example drone model.
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Figure 10. SFF model applied to function network representa-
tion of example drone model.

the system topology, we can conclude that the functions with
the most opportunity to affect other functions at a topological
level are path planning, control systems, and the structure of
the drone, since these functions have the most connections
with other subsystems. Identification of these vulnerabilities
is similar to the identification of high severity failures within
an FMEA. The degree distribution of the function network
is presented in Fig. 9. The relatively homogeneous degree
distribution in Fig. 9 indicates that the network is not particu-
larly robust to failure of critical nodes. The SFF model for the
function network is provided in Fig. 10. This model demon-
strates the system’s resilience (based on parameter topology)
to a cascading failure, given a user defined failure rate, fix rate,
and start node (first node to fail). If various design alternatives
are being considered, their relative resilience can be compared
using the SFF model.

4.2. Static Representation and Analysis

To identify how faults lead to failures and begin to quantify
risk in the system, the model is elaborated with flow attributes,
function states, and failure logic, creating a static propagation
model. As modelled in this system, deviations in the input of

11
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Figure 11. Static fault effects to the motor breaking: the drone
crashes.

Dynamic Response of ['Env1', 'StoreEE'] to fault AffectDOF mechbreak

Envl: x Envl:y
M "\
e —— S —
100 \ 100 \— faulty
1S \ 1S ;
\‘ —— nominal
\\ ‘\
01; R 015 —=—=—=o
0 50 100 0 50 100
time (s) time (s)
Envl: elev StoreEE: soc
100
50 - ~—rn | \
e \‘ ° 80
! N—
0! = *1 AEN
0 50 100 0 50 100
time (s) time (s)

Figure 12. Dynamic behaviors of a motor breaking

the Trajectory function block lead to a crash, which in turn
propagates faults through the structure to initiate faults in the
rest of the functions. Using this model (and an underlying
fault probability model), one can create a FMEA-like table
of fault effects, rates, and costs, as shown in Table 3, to show
which faults have the highest impact on the design. As shown,
most faults in this model lead to a crash, making the chosen
rate the driving factor of expected cost. One of the faults under
consideration in this model is a mechanical break causing the
AffectDOF function to lose the ability to control the degrees
of freedom of the drone. This fault is visualized in Figure 11,
showing how fault leads to a crash and in turn faults in the
other functions. This fault will be used to motivate analysis
and design through the rest of this example.

4.3. Dynamic Representation and Analysis

In the dynamic model, the drone is given dynamic states and
behaviors which iterate over time—in this case the position,
velocity, charge, and perceived location of the system. This
can then be used to model how the system behaves in faulty

Cost function of AffectDOF: mechbreak over time
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Figure 13. Modelled cost over time of the motor breaking

and nominal scenarios as shown in Figure 12 for the mechan-
ical break fault. In the nominal case, the drone flies out to a
location and returns to land, while in the faulty case the system
crashes soon after the fault is injected, leaving it far from the
landing location.

While this single-fault injection can help one understand how
the system behaves, a fault injection approach can be used
to quantify the expected effects of a fault which could occur
at different points in the simulation. This is shown in Figure
13. As shown, the cost is high in the ascent and forward
flight phase ($134K-$184K) since the fault then leads to a
crash, and low in the descent phase ($500), since the drone has
already landed. Additionally, the cost increases in the middle
of the forward flight phase since the system crashes far from
its landing location, which incurs additional cost in the model.
While these results are consistent with the results of the static
model at the point in time considered in the model (forward
flight), they also show how a higher-fidelity dynamic model
model can elicit a more nuanced consideration of fault effects.

4.4. Hierarchical Representation and Analysis

Given the effects of failures in this system, it is important to
consider how they can be mitigated through the component
architecture. In the drone model, for example, one has the
ability to consider whether to realize the AffectDOF function
with a quadrotor, hexarotor, or octorotor architecture. This
example considers the quadrotor and octorotor architectures.

To compare how each architecture adapts to faults, the dy-
namic behaviors over time can be plotted. When considering
the break fault, the quadrotor architecture reacts identically
to the fault as in Figure 6, since losing one motor causes the
system to lose stability. However, when the drone has an oc-
torotor architecture, the system behaves as shown in Figure
14, faltering due to lost thrust but ultimately recovering and
landing in the desired location. Thus the octorotor architecture
is more resilient to this fault scenario.
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Fault [ Degraded Functions [ Degraded Flows [ Rate | Cost [ Exp. Cost
StoreEE nocharge StoreEE, DistEE, CtIDOF, Planpath, Trajectory... Force_ST, Force_Lin, Force_GR, Force LG, EE_T... Te-05 183300 183300
Planpath degloc DistEE, CtIDOF, Planpath, Trajectory, EngageL... Force_ST, Force_Lin, Force_GR, Force_LG, EEmo... | 8e-06 193000 154400
DistEE short DistEE, CtIDOF, Planpath, Trajectory, EngageL... Force_ST, Force_Lin, Force_GR, Force LG, EEmo... 3e-06 186000 | 55800
AffectDOF ctlbreak DistEE, AffectDOF, CtIDOF, Planpath, Trajecto... | Force_ST, Force_Lin, Force_GR, Force LG, EEmo... 2e-06 184000 | 36800
AffectDOF ctlup DistEE, AffectDOF, CtIDOF, Planpath, Trajecto... | Force_ST, Force_Lin, Force_GR, Force LG, EEmo... 2e-06 183500 | 36700
DistEE break DistEE, CtIDOF, Planpath, Trajectory, EngageL... Force_ST, Force_Lin, Force_GR, Force LG, EEmo... 2e-06 183000 | 36600
CtIDOF noctl DistEE, CtIDOF, Planpath, Trajectory, EngageL... Force_ST, Force_Lin, Force_GR, Force LG, EEmo... 2e-06 183000 | 36600
AffectDOF short DistEE, AffectDOF, CtIDOF, Planpath, Trajecto... Force_ST, Force_Lin, Force_GR, Force LG, EE_1... 1e-06 186200 18620
AffectDOF mechbreak DistEE, AffectDOF, CtIDOF, Planpath, Trajecto... Force_ST, Force_Lin, Force_GR, Force LG, EEmo... 1e-06 183500 18350
AffectDOF openc DistEE, AffectDOF, CtIDOF, Planpath, Trajecto... Force_ST, Force_Lin, Force_GR, Force LG, EEmo... 1le-06 183200 18320
Planpath noloc Planpath, Trajectory Ctll, DOFs, Dirl 2e-06 | 60000 12000
CtIDOF degctl CtIDOF Force_GR, Force_LG, Ctll, DOFs 8e-06 10000 8000
AffectDOF propbreak DistEE, AffectDOF, CtIDOF, Planpath, Trajecto... Force_ST, Force_Lin, Force_GR, Force_LG, EEmo... 3e-07 183200 5496
AffectDOF propstuck DistEE, AffectDOF, CtIDOF, Planpath, Trajecto... Force_ST, Force_Lin, Force_GR, Force LG, EE_1I... 2e-07 186200 3724
HoldPayload break DistEE, CtIDOF, Planpath, Trajectory, EngageL... Force_ST, Force_Lin, Force_GR, Force_LG, EEmo... 2e-07 183000 3660
ViewEnv poorview ViewEnv 2e-06 10000 2000
EngageLand deform EngageLand 8e-06 1000 800
HoldPayload deform HoldPayload Force_ST, Force_Lin 8e-07 10000 800
DistEE degr DistEE Force_GR, Force_LG, EEmot, EEctl, Ctll, DOFs 5e-06 1000 500
EngageLand break EngageLand 2e-06 1000 200
AffectDOF ctldn AffectDOF Force_GR, Force_LG, DOFs 2e-06 500 100
AffectDOF mechfriction | AffectDOF EE_1, EEmot 5e-07 500 25
AffectDOF propwarp AffectDOF Force_GR, Force_LG, DOFs le-07 200 2

Table 3. Automatically-Generated Scenario-Based Static FMEA from model
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Figure 14. Fault behavior of octorotor

However, to make a decision about component architectures
on the basis of resilience, the expected cost of all fault sce-
narios for both architectures must be compared and weighted
against the operational and implementation costs. To quan-
tify this cost, each of the faults associated with the realized
function (AffectDOF) are injected in the model according to
a sampling approach. In this case, while the octorotor com-
ponent architecture mitigates a number of scenarios due to
the increased system redundancy, it does not mitigate every
fault (e.g. control errors), and in fact increases the chance
of other faults (e.g. electrical problems that propagate to the
battery) because the larger number of components provides
more opportunities for the fault to occur. Statistics from this
fault approach are shown in Table 4. As shown, while the num-
ber of scenarios increases in the octorotor architecture, the
number of scenarios which lead to a crash (and overall crash
rate) is much lower, resulting in a lower overall resilience cost.
This shows how fmdtools can be used to assist resilient design
decision-making in the early design process.

| Quadrotor [ Octorotor

Number of Scenarios 104 208
Number of Crashes 46 24
Crash Ratio 0.44 0.12
Crash Rate 2.4e-6 0.8e-6
Resilience Cost 45565 19359

Table 4. Cost of rotor faults in each architecture

5. CONCLUSIONS

Computational environments for resilience-based design can
enable the tractable modelling, simulation, and analysis of
resilience in early design that can directly inform early design
decisions. As presented in Section 3, the fmdtools project
realizes this goal by providing a set of model classes, simu-
lation methods, and analyses that reduce the complexity of
the resilience modelling task while keeping a high level of
expressiveness needed to fully represent system fault behav-
iors. This is because analyses and simulation methods are
already implemented in the environment in a way that inte-
grates with the underlying model representation, meaning that,
to analyze resilience, the user only needs to define a model
and run the corresponding method. As demonstrated in Sec-
tion 4, this approach supports the analysis of the system as the
design progresses from a low-detail network representation to
a higher-fidelity dynamic component model. In this demon-
stration, the automated generation of network visualizations
and metrics, behavior-over-time plots, cost-based FMEA, and
expected cost quantification informed the understanding of
the resilience of the system and enabled its consideration in
early architectural design decisions. Because this work was
implemented in the open-source Python code, this general
design environment can be easily modified and extended as
needed to fulfill future research needs.

While the usefulness of this work is apparent from the demon-
strations shown here, there are a number of possible extensions

13



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

that would increase its practicality in design. First, safety is an
important aspect of resilience that has specific requirements
not explicitly taken into account in this work. That is, while
this work is concerned with quantifying the costs of faults,
safety procedures require one to quantify the overall cost of
the entire set of failure scenarios, which often requires tak-
ing a deductive approach (ARP, 1996). Future work should
address this by providing an approach to identify top-level fail-
ure events and quantify the risk of those events. Additionally,
while the models used in this work are deterministic, failures
can often have probabilistic effects that must be taken into ac-
count to accurately quantify overall risk. Future work should
incorporate probabilistic state transitions into the model to
enable non-deterministic fault propagation. Finally, while
defining models directly in Python code increases model ex-
pressiveness, it forces one to use a stand-alone model and
may make the toolkit difficult to use without the relevant pro-
gramming knowledge.Future work should provide an interface
for defining these models in an existing modelling tool-chain
or model formalism (e.g. AADL) so the same model used
by other design and analysis processes can be used to model
resilience.
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