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ABSTRACT

This work proposes a perspective towards establishing a frame-
work for uncertainty quantification of autonomous system track-
ing and health monitoring. The approach leverages the use of
a predictive process structure, which maps uncertainty sources
and their interaction according to the quantity of interest and
the goal of the predictive estimation. It is systematic and
uses basic elements that are system agnostic, and therefore
needs to be tailored according to the specificity of the appli-
cation. This work is motivated by the interest in low-altitude
unmanned aerial vehicle operations, where awareness of ve-
hicle and airspace state becomes more relevant as the density
of autonomous operations grows rapidly. Predicted scenarios
in the area of small vehicle operations and urban air mobility
have no precedent, and holistic frameworks to perform prog-
nostics and health management (PHM) at the system- and
airspace-level are missing formal approaches to account for
uncertainty. At the end of the paper, two case studies demon-
strate implementation framework of trajectory tracking and
health diagnosis for a small unmanned aerial vehicle.

1. INTRODUCTION

The application of systematic methodologies for quantifica-
tion of uncertainty in the area of system autonomy is a ne-
cessity to enable safe and efficient operations, diagnosis, and
system recovery in case of partial failures. This need is driven
by multiple factors. First, increasing levels of autonomy re-
quire holistic state awareness capabilities; knowing the sys-
tem condition and its dynamic performance is a need to assess
whether its behavior will adhere to future steps of the mis-
sion. Relevant system states are typically hidden, and state
awareness is achieved with limited sensor data from which
unobservable variables are estimated. The process is charac-
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terized by sensor performance (which generate uncertainty in
the measured variables) and uncertainty caused by the prob-
lem formulation often involving a physics-based, empirical,
or purely data-based model. Second, the system and its oper-
ation may be affected by exogenous variables that are hard to
model, and therefore their quantification relies on loose ap-
proximations on what the system may encounter during its
mission. The uncertainty introduced by such simplifications
should be accounted for when performing look ahead fore-
casts. Then, predictions are needed to compute indicators
suggesting, directly or indirectly, the probability to accom-
plish the mission. The computation depends on a set of as-
sumptions related to: system state and performance, observed
degradation, computational models used to simulate/represent
the system behavior, and external variables affecting system
operations and their corresponding future values.

As previously demonstrated in the PHM domain, predictions
should always be accompanied by confidence intervals (Saxena
et al., 2008; Sankararaman, 2015). All the hypotheses on
models, external variables and observations lead to estimates
that will not replicate the exact future behavior, but they will
represent it in a simplified fashion. Therefore, prognoses
founded on computer models cannot be naively interpreted
as deterministic outcomes, because of the several, simplify-
ing assumptions they are based upon. The analysis proposed
here, which looks at system tracking and health management
with holistic perspectives, suggests a framework to list the
possible sources of uncertainty, discusses which sources (th-
rough quantitative or qualitative approaches) should be mod-
eled within the problem formulation, and defines the chal-
lenges of uncertainty-aware predictive estimation for autono-
mous or automated systems.

Uncertainty quantification is already being investigated in a
number of scientific areas, especially computer models. The
literature on such topics is extensive, and examples include
the work in (Najm, 2009) on uncertainty quantification for
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computational fluid dynamics, and in (Eldred & Burkardt,
2009) on intrusive and non-intrusive spectral methods. In the
case of system tracking and health monitoring tools, a num-
ber of uncertainty sources may enter the prediction problem
(Sankararaman, 2015). When moving beyond component-
level, efforts towards uncertainty management for system-
level PHM are missing, lacking a framework to approach the
design of the monitoring system systematically. Many engi-
neering studies and applications list the source of uncertainty,
(typically naming model, measure, and external variables),
but it is unclear how those uncertainty are linked in the pre-
diction process.

Further motivations for this work, which started by address-
ing uncertainty quantification and management methods of
future low-altitude airspace operations, is discussed in the
next subsection. The contribution of this paper and how it
relates with existing works is addressed in Section 2. The un-
certainty framework is then split into sources and predictive
process, Section 3. Section 4 shows two applications related
to the airspace domain: (i) uncertainty affecting the track-
ing of a small unmanned aerial vehicle over a pre-defined
route, and (ii) uncertainty affecting the design of a model-
based electric powertrain health monitoring system composed
of Lithium-ion battery, electronic speed controller (ESC), and
brushless DC motor.

1.1. Motivation driven by increasing operations of auto-
nomous aerial vehicles

The number of unmanned aerial vehicles (UAVs) entering
the low-altitude airspace is expected to increase drastically in
the next decade (Kopardekar et al., 2016; FAA, 2018). This
forecast, driven by current interests in autonomous or auto-
mated UAV operations like package delivery, surveillance,
agriculture optimization, as well as future urban air mobil-
ity, suggests the need of systematic approaches to enable au-
tonomous UAV operations efficiently and safely. Such a need
is motivated by multiple factors. As addressed in (Kopardekar
et al., 2016), unmanned systems will enter areas originally
used by traditional, manned aviation. However, infrastructure
and integration requirements were not originally developed to
accommodate a mix of different vehicles and systems. Small,
low-cost UAVs, which are likely to be utilized for package
delivery and other operations, do not guarantee high reliabil-
ity standards (King, Bertapelle, & Moses, 2005; Freeman &
Balas, 2014; Johry & Kapoor, 2016), suggesting reliability
issues leading to high failure rates, when compared to com-
mercial aviation. In the case of unmanned urban air mobility,
the absence of an onboard pilot will require advanced state-
awareness tools to ensure safety for passengers as well as on
the ground, minimize failure rates and reduce service disrup-
tion.

In order to make autonomous and automated systems able

to meet high safety requirements, taking the different uncer-
tainty sources into account is crucial to the decision making
process. However, the uncertainty sources and their quantifi-
cation will vary depending on the level of autonomy of the
considered system. While many definitions for autonomous
systems have been proposed (Stevens, Lewis, & Johnson, 2015),
we chose here to adopt the taxonomy proposed by (Fong,
2018), which defines an autonomous system as a system ca-
pable of self-directedness to achieve goals, and self-sufficiency
to operate independently. These two properties, self-directed-
ness and self-sufficiency, highlight the difference with an au-
tomated system, that works with predefined instructions and
commands such as a pre-planned trajectory. In other words,
while operating, the automated system capabilities is lim-
ited to the command and control that were previously im-
plemented, whereas the autonomous system is able to take
its own decisions according to the situation and change the
outcome of the mission. In this paper, the UAV path track-
ing problem reflects the operation of an automated system,
that is a UAV operating on a pre-defined set of instructions.
However, the approach is still applicable to different levels of
autonomy, including autonomous systems as it was defined
previously. That is the reason why this paper often refers to
both autonomous and automated systems.

The effect of growing interest in low-altitude operations is a
number of research activities on automated and autonomous
UAVs, including new design, reliability, efficiency, and au-
tonomous functions. Examples of such works can be found in
(Hoffmann, Huang, Waslander, & Tomlin, 2007) for flight dy-
namics and control, (Langelaan, Alley, & Neidhoefer, 2011;
Glasheen, Pinto, Steiner, & Frew, 2019) for wind field esti-
mation, (Krish nakumar et al., 2017) for safety of low-altitude
UAVs, and (Balaban et al., 2017) for dynamic routing and
decision making. More generally, interests in autonomous
vehicles also generated a number of system-level research
on the safety of the national airspace, as in (Liu & Goebel,
2018). Some system health management and PHM concepts
for UAVs were discussed in (Jing & Haifeng, 2013; Walker,
2010), while an early study on fault detection for unmanned
vehicles was presented in (Drozeski, Saha, & Vachtsevanos,
2005).

2. CONTRIBUTION AND RELATED WORK

This work proposes an approach to identify the sources of
uncertainty and map them into what is defined as predictive
process structure, inspired by concepts in (Smith, 2013). That
notion is developed further to discuss how the uncertainty
sources could be mapped within the predictive structure to
ensure that the link among different elements (and their cor-
responding uncertainty) are captured. The critical analysis
of uncertainty in prognostics and remaining useful life pre-
diction in (Sankararaman, 2015) highlights that the classical
distinction between aleatory and epistemic uncertainty may
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not be as effective when dealing with far-ahead predictions,
which is the theory our work agrees with and incorporates
in the framework. The definition of uncertainty sources as
aleatory or epistemic best fit computer models and their ver-
ification and validation, rather than future predictions. How-
ever, some uncertainty sources in the framework still ben-
efit from such a distinction, and it will be used when be-
lieved to be appropriate. Differently from (Sankararaman,
2015), this paper focuses more on the type of uncertainty
source, and their mapping in a predictive process, rather than
the significance and interpretation of uncertainty in remain-
ing useful life estimations. This work is a direct extension
of (Corbetta & Kulkarni, 2019), where initial concept of the
framework is proposed. This research also leveraged material
from (Roy & Oberkampf, 2011), and previous works on un-
certainty for PHM applications presented in (Sankararaman,
Ling, Shantz, & Mahadevan, 2009; Sankararaman & Goebel,
2015; Sankararaman, 2015; Goebel, 2017). The concepts de-
veloped in those works have been helpful to define the pro-
posed framework, so the reader may find a correlation be-
tween this manuscript and those earlier works. Details on ver-
ification and validation of computer models with associated
uncertainty does not constitute the goal of this paper, and the
interested reader is referred to (Roy & Oberkampf, 2011) for
details. Focusing on the framework level, it is worth mention-
ing the remarkable result of SANDIA National Laboratory
with DAKOTA, a software tool for uncertainty quantification
(Adams et al., 2009).

Within the unmanned aerial vehicle domain, besides stud-
ies of uncertainty affecting aircraft routing (Jun & D’Andrea,
2003) and methods for collision avoidance (Alba ker & Rahim,
2009), methodologies to handle and approach uncertainty af-
fecting UAV systems and operations has been rarely explored.
The work in (Sankararaman, 2017) identified uncertainty so-
urces influencing UAV operations, and presented examples of
decision making strategies based on those uncertainty sources.

Specific statistical techniques used to quantify the uncertainty
in computer models, sensors, or environmental variables are
not discussed. The interested reader may refer to: (Saltelli,
Tarantola, Campolongo, & Ratto, 2004; Cacuci, 2003; Saltelli
et al., 2008; Crestaux, Maıˆtre, & Martinez, 2009) for Sobol’s
indices and sensitivity analysis, (Ghanem & Spanos, 1991)
for spectral methods in finite element simulations, (Najm,
2009; Crestaux et al., 2009) for polynomial chaos expan-
sion, and (Tessem, 1992) for interval analysis. For a broader
overview of uncertainty quantification methods see (Smith,
2013) and references therein. Also, Bayesian filters, which
are one of state-of-the-art methods for model-based filtering
of past and present uncertainty, are not discussed as the inter-
ested reader is referred to (Kalman, 1960; Gordon, Salmond,
& Smith, 1993; Arulampalam, Maskell, Gordon, & Clapp,
2002; Chen, 2003; Haug, 2005), and references therein for a
comprehensive overview.

The goal of this framework is to provide a systematic proce-
dure to identify and quantify uncertainty, from the perspective
of system-level PHM for autonomous or automated systems.
This effort is different from the previous, cited work for the
following reasons. It does not develop new statistical tech-
niques, nor apply existing ones to new problems. Rather, it
discusses the problem of uncertainty quantification for un-
manned system tracking and health monitoring, highlighting
key steps and challenges. A methodology is proposed to list,
define, and map uncertainty in the predictive process struc-
ture. This work does not focus entirely on computer mod-
els, as done by a large number of existing studies. It also
discusses the role of measurement, algorithms, and external
forcing. The analysis shows the importance of predictive ca-
pabilities to assess multiple future scenarios based on those
uncertainty sources, current available information and poten-
tial mission profiles.

The proposed methodology is system agnostic, so the frame-
work can be applied to different systems with appropriate tun-
ing. The case studies reported in Section 4 will discuss imple-
mentation of the framework and the selection of appropriate
statistical techniques to handle specific challenges.

3. UNCERTAINTY SOURCES, QUANTIFICATION, AND SIG-
NIFICANCE

This section has three main goals. First, it reviews the im-
portance of uncertainty quantification involved in predictions
of autonomous systems operations and health management.
Then, it discusses a high-level subdivision of uncertainty, re-
fined from the precursor of this work (Corbetta & Kulkarni,
2019), which mainly combines information from Chapter 1
of (Smith, 2013), (Roy & Oberkampf, 2011), (Goebel, 2017),
and (Sankararaman, 2015), and other works that will be cited
appropriately within the section. Then it defines a predictive
process structure, where uncertainty propagates through the
different elements composing the predictive process.

3.1. Some remarks on uncertainty quantification for au-
tonomous systems

For the sake of this work, system tracking is defined as the
continuous observation (or estimation from observable vari-
ables) of system’s key parameters and telemetry variables to
assess the adherence of the system to its mission. Key param-
eters include, for example, current position, kinematic pro-
file, attitude and battery state of charge. When focusing on
autonomous vehicles, the current position may not be enough
to assess whether the vehicle is operating as planned. We
include battery state of charge under the system tracking um-
brella, since its value is necessary to evaluate if the vehicle
can complete the mission; it is not necessarily a health pa-
rameter like, e.g., capacitance. Health monitoring can be as-
sessed through either dedicated sensor data, like powertrain
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temperature, or a combination of health data and telemetry,
like speed of motors.

Enabling predictive capabilities for automated or autonomous
UAVs operations requires the analysis of more than condition-
based models and data only. It needs also to include op-
erational input, which may change due to external factors,
like other UAVs demanding right-of-way for emergency situ-
ations. However, that may not be enough to ensure safe op-
erations. The third source of information composes of envi-
ronmental variables that may affect UAV dynamics. This is
particularly true for small UAVs expected to operate in urban
environment, where wind tunnel effects and local gusts are
hard to predict. However, wind is not the only variable af-
fecting small UAV performance; temperature, besides being
easier to predict, also plays a role in the integrity of the UAV
electronic components.

Environmental conditions are particularly challenging for the
rate and sparsity at which data can be usually collected, and
some of them, like the wind field, require computationally
intensive models even for the simplest look-ahead forecast.
Also, autonomous vehicles may require an enhanced set of
prediction capabilities in comparison to their automated coun-
terparts. In the latter case, one may use models and historical
sensor data to enable the prediction of environmental vari-
ables along pre-defined sets of options. The computing effort
can be dedicated to those set of possibilities ignoring the rest
of the environment. In the case of an automated UAV, the
set of possible options is typically finite, and restricted to the
previously defined instructions. An autonomous vehicle with
self-directedness has a pool of options that may be, theoret-
ically, infinite. Thus, autonomy may be affected by greater
uncertainty than automation. Predictions for autonomous sys-
tem behavior and operations require in-time assessment ca-
pabilities. For example, an autonomous UAV operating in a
wind field should include expected wind gusts or mean wind
profile along the possible routes. To do so, a wind forecast
tool is necessary to evaluate multiple options explored within
the decision making framework.

3.2. Uncertainty Sources

This section discusses macro-categories model, method, mea-

sure, and input that have been chosen to represent the uncer-
tainty sources of predictive estimation1. Each of them com-
prises of sub-categories which are depicted in Figure 1.

3.2.1. Model

The sources of model uncertainty have been divided in model
abstraction, model parameters, and model error. Model ab-
straction refers to the hypotheses introduced during model

1This section uses the following notation: bold, lower-case letters to define
vectors and random vectors, e.g., x, and functions and vector functions are
defined by parentheses that highlight dependencies, e.g., f(·), f(·).

development with the intent of representing reality and phys-
ical processes through a set of equations. Those hypothe-
ses include neglecting or simplifying (for example, through
linearization or reduced order models) physical phenomena,
environmental effects, and other external factors that may in-
teract with the system, but their effect on the quantities of
interest (QoIs) is believed to be limited.

Model parameters include fixed or variable coefficients re-
quired to estimate the output QoIs from the model. They may
fall within a range of values, or defined by random variables
and therefore represented through probability density func-
tions (pdfs). They may depend on system’s properties, and
they may also evolve over time because of degradation phe-
nomena. However, time-varying external forcing, like envi-
ronmental variables, are not included within the parameter
category. Those are considered as inputs and will be dis-
cussed in Subsection 3.2.4.

Model error introduces the uncertainty representing the dif-
ference between model and observed outcome, when other
uncertainty sources (model abstraction and parameters) are
already accounted for in the prediction. As a matter of fact, a
rigorous discussion should distinguish between modeling er-

rors and residuals, as the former represent the deviation of the
model output from the true (unobservable) value of the QoI,
and the latter defines the deviation between model output and
the observed value of the QoI. For the goal of this work, we
will not distinguish between the two, and the interested reader
can refer to dedicated literature on statistical models and on-
line material on the subject. By abusing the nomenclature,
we will use residuals and errors interchangeably even if their
definition is slightly different. The model error is typically
an additive term whose properties depend on the difference
between observations and model predictions. In the optimal
case, the model error is a zero-mean Gaussian variable with
constant variance, e.g., ✏ ⇠ N (0,�2). For illustration, con-
sider the following model:

f✓ (x, q) ,

Vector x represents independent variables influencing the QoI
or system state variables, while q represents the collection of
external inputs. The latter is a (possibly nonlinear and mul-
tidimensional) mapping function f(·, ·) parameterized by the
parameter vector ✓. In this case, model uncertainty lies in
the hypotheses and assumptions used to define f(·, ·), as well
as in the value(s), distribution(s) or parameter of the distri-
bution(s) that define ✓. Uncertainty driven by model abstrac-
tion is quantified through model validation, which is omit-
ted here for the sake of brevity, and the reader may refer to
(Smith, 2013; Roy & Oberkampf, 2011) for details on the
subject. Unmodeled physical phenomena are typically rep-
resented with additive terms that modify the model response
based on the input values (both x and q); such additive terms
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Figure 1. High-level classification of uncertainty sources encountered in the predictive process.

are meant to replace the ”missing physics”. By slightly modi-
fying the notation in (Smith, 2013) (Eq. 1.5), the model equa-
tion becomes:

f✓ (x, q) + � (x, q) .

Typically, the missing physics term is identified through data-
driven methods, and so the form of the function �(·) and
its parameters lose physical meaning. The model error can
be quantified from the model fitting procedures after missing
physics has been accounted for, and is typically additive. The
model eventually assumes the following structure:

f✓ (x, q) + � (x, q) + ✏ .

Some modeling choices, however, may drive the model error
to be non-Gaussian and nonlinear, for example in damage-
progression power laws.

3.2.2. Methods

Here, methods refers to the collection of algorithms and com-
putation tools utilized to propagate information and variables
through the system model, to compute the QoIs, or to inter-
polate or extrapolate variables from data. The sources of un-
certainty belonging to this category have been divided into
algorithms and numerical errors.

Algorithms for estimation, interpolation or extrapolation in
multi-dimensional spaces introduce uncertainty because they
may converge to sub-optimal solutions trying to minimize
errors or loss functions. Such loss functions may be non-
convex, complex hyper-surfaces. As a consequence, different
runs of the algorithms may generate different results because
the algorithms remain trapped in local minima. This source
of uncertainty is hard to quantify, since the initial conditions
or initial guesses of the algorithm parameters or hyperparam-
eters affect the solution, and because input data also change
the loss function hyper-surface. Gradient-based optimization
methods which depend on the initial guess of the system pa-
rameters and the input data are one example of algorithm
source of uncertainty (for a practical example, consider the

optimization of Gaussian process hyperparameters by maxi-
mizing the log-marginal likelihood, (Rasmussen & Williams,
2006). Typical gradient-based minimization algorithms can
generate different hyper-parameters at different runs depend-
ing on the initial guess). Gradient-free optimization methods
dot not suffer, for obvious reasons, from the same issues re-
lated to initial-guess values as gradient-based methods. How-
ever, hyper-parameters as well as influence of the input data
still play a role when estimating the final output.

Uncertainty does not lie only on the optimization of loss func-
tions, but also in numerical errors raising by running com-
puter models. Those include discretization, iterative, and rou-
nd-off errors, as already discussed in (Roy & Oberkampf,
2011). Discretization errors are caused by the finite grid used
to compute the solution (e.g., finite element models). This
is the case for atmospheric models when the numerical grid
is larger than the scale of the physics that is being modeled
(Smith, 2013).

Similarly to grid discretization, sampling-based methods like
Monte Carlo and its variants (e.g., stratified sampling meth-
ods), suffer of uncertainty caused by the sample size, as al-
ready suggested in (Sankararaman, 2015). The right number
of samples to solve multi-dimensional integrals may be pro-
hibitive. In those cases the number of samples is reduced
according to the computational power available, producing a
coarse solution of the future state of the system or the time
to reach a predefined bound (like in remaining life estima-
tion problems). Such a solution might be affected by large
uncertainty because the few samples are not capable of rep-
resenting the true distribution shape, that can be multi-modal,
heavy-tailed, etc.

Errors due to coding bugs are particularly hard to quantify, if
not impossible, since the presence of a bug is unknown until
it is discovered (and then fixed, so its contribution to uncer-
tainty is then removed). As suggested in (Roy & Oberkampf,
2011), numerical approximation errors should be explicitly
represented by epistemic uncertainty, and sum together con-
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tributions assuming that the lower bounds of each error (dis-
cretization, iterative, and round-off) is zero.

3.2.3. Measures

This category includes measurement incompleteness, uncer-
tainty caused by equipment, which translates into sensor cali-
bration resolution, accuracy, and precision, and systematic er-

rors generated by the measuring process, sensor installation
and human error (if humans are involved). Measure incom-
pleteness or missing measures are very common in complex
measuring tasks, like estimating the GPS position of an object
or collecting large amount of measures, like ocean surface
water temperature (Luttinen & Ilin, 2012). The most common
(and optimistic) assumption for measurement systems is to be
unbiased and Gaussian, which translates into: y = g⌫ (x)+✏,
where ✏ ⇠ N (0,�2), and g⌫(·) is the measurement function
parametrized by vector ⌫. This formulation is widespread in
the field of state estimation, where the challenge is to infer the
hidden state x from observations y. Biases can be modeled as
additive terms, i.e., y = g⌫ (x) + b+ ✏. It should be noticed
that the uncertainty of the measurement noise, represented by
variance �2, and the biases may depend on the input quantity,
b = b(x) and �

2 = �
2(x) (this last equation should be repli-

cated for each element in x, assuming uncorrelated measure
errors). A wrong assumption on ✏ or b will affect the accuracy
and precision of the hidden state estimation, even with a cor-
rect system model. It should be stressed that a similar model
may be necessary to estimate input variables q. Current input
values to the system may aid the prediction of future inputs,
thus refining the prediction problem and reduce uncertainty.
Moreover, if a progressive degradation model is tied to the
main system model, the estimate of input forcing may be nec-
essary to estimate the severity of degradation growth.

Measurement accuracy may be hard to quantify in some real-
time applications when on-demand calibration is not an op-
tion. Accuracy directly ties to biases, which may lead to in-
correct inference over the latent variables. Precision is typ-
ically modeled by means of random variables, and indicates
the dispersion of the observations that should not be attributed
to the system but to the measurement device. The speci-
ficity of measurement uncertainty depends on instruments,
methodologies, and constraints of specific applications, and
so are not investigated any further here. More details on
measurement uncertainty can be found in the ASME stan-
dard (Abernethy, Benedict, & Dowdell, 1985). For an ex-
ample of measurement model and corresponding uncertainty,
the reader is referred to (Frew & Sengupta, 2004) where the
uncertainty of a 2D stereo-camera device was discussed to
implement an obstacle avoidance methodology.

3.2.4. Input

The set of input includes time-dependent variables, initial and
boundary conditions, and exogenous forces that may interact
with the system and therefore affect its dynamics. Some in-
puts are actually operational requirements defined according
to the system’s intended function, and so they are called here
operational input (e.g., desired trajectory of an automated or
autonomous vehicle). External inputs are external forces or
events which depend on the environment the system is oper-
ating into. Initial and boundary conditions are the most com-
mon exogenous inputs.

It should be noticed that other works may include input within
the model category and discuss the corresponding uncertainty
as part of model uncertainty. This is the case in two of the
main sources we used as inspiration. First, (Roy & Oberkampf,
2011) suggests that input includes ”not only parameters used
in the model of the system, but also data from the descrip-
tion of the surroundings, geometry, and initial conditions, ...”
(Subsection 3.1). In (Smith, 2013), model input refers to the
set of parameters ”that must be specified before the model
can be used to represent or predict the behavior of the pro-
cess” (Chapter 1, Sub-subsection 1.1.2).

Differently from those works, here model parameters refer
to system model coefficients (fixed or time-varying, as ex-
plained above), but the system input has a dedicated section,
so there is a slight inconsistency between the categories we
have provided when compared to the existing literature. The
reason lies on the nature of the predictive process discussed in
this paper, which differs from the goal of the aforementioned
works concentrating mainly on computer models. By divid-
ing model input and model parameters, we can distinguish
between uncertainties coming from different, non-associated
sources. Input refers to exogenous variables that do not be-
long to the system, but have a direct or indirect effect on it.
The effect of a random wind field in an urban environment on
a small UAV is a different input source than UAV properties
like inertia moments, which are also input to the model. How-
ever, inertia moments are inherent system parameters depend-
ing on geometry and mass, do not change noticeably (apart
from different vehicle configurations or damages happening
to the airframe), and of course do not depend on the trajec-
tory, differently from wind.

It should be noticed that the discussion in (Sankararaman,
2015) highlights that condition-based monitoring is not af-
fected by ”true variability”, and therefore the distinction be-
tween aleatory versus epistemic uncertainty loses importance.
On the other hand, when discussing input of automated or au-
tonomous systems, external input are often characterized by
both epistemic and aleatory components. The first is caused
by measure errors, interpolation error or forecasts uncertainty,
and the latter given by the intrinsic variability of wind phe-
nomena. Uncertainty related to the health of the system is
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mainly epistemic, as already suggested in (Sankararaman, 2015),
and can be reduced by collecting more data up to a point
where measurement error is not affecting the predictive pro-
cess performance. For those reasons, input and model param-
eters have been kept separate.

3.3. Predictive Process Structure

This section discusses some key aspects in mapping the un-
certainty sources discussed in the previous Section into a pre-
dictive process. The predictive process is straightforward,
and leans towards a generality rather than specificity. Fig-
ure 2 shows a diagram of the predictive process structure. It
is similar to many existing frameworks utilized in PHM and
other fields. The sources of uncertainty discussed in Figure 1
are tightly connected to this structure.

The difference spaces introduced in the predictive process are
tightly connected to the sources discussed in the previous sec-
tion. The measure space and the input space feed the mod-
els, which are collected into the representation space. The
computing space embraces both methods and models, since
algorithms (with their corresponding uncertainty sources dis-
cussed in the previous Section) may be required to solve both
input and system models.

According to the goal of the tracking and health monitoring
process, the predictive process can be simplified by remov-
ing some elements that do not apply to the goal, or whose
uncertainty is expected to be limited and using a determinis-
tic function or value does not affect the prediction (The latter
should be supported by proper sensitivity analysis (Saltelli et
al., 2008)).

4. APPLICATION CASE STUDIES

In this paper, the approach to uncertainty quantification is
demonstrated on an automated UAV flight comprising of tra-
jectory tracking, and by modeling the UAV powertrain ele-
ments for health monitoring purposes.

In the first study, the UAV is commanded to fly through a
set of pre-defined waypoints associated with their expected
times-of-arrival (ETAs). The goal is to quantify the uncer-
tainty of such ETAs as well as the uncertainty of the time of
arrival along the whole path as the vehicle completes its mis-
sion. The quantification of such uncertainty can aid trajec-
tory planning in high density airspace and flight scheduling.
For example, one can compute the upper bound of the mis-
sion time for multiple UAVs and optimize fleet operations.
Multiple sources are responsible for uncertainty in the time
of arrival of the vehicle. First and foremost, external forcing
like wind magnitude, direciton and turbulence intensity along
the route. Without a high-fidelity model of the UAV, the au-
topilot response is also a source of uncertainty, together with
vehicle dynamic properties and potential hinner degradataion

of powertrain components. A comprehensive physics-based
model to reduce uncertainty would require not only the vehi-
cle high-fidelity model, but also high-resolution estimates of
wind speed and direction on the flight route from field sen-
sors and/or complex weather simulation models. The for-
mer (high-fidelity vehicle model) may actually be available
at times, but typically there is a high cost associated with run-
ning the model multiple times. The latter (high-resolution
wind field) is never available to UAV and fleet operators and
is currently an open field of research. Thus, the assumption
used for case study 1 is that the sources of uncertainty men-
tioned above contribute to variations of the flight cruise speed
(that would otherwise be constant in-between way-points).
That is a large simplification of the real phenomena, but con-
stitute an appealing option when compared to the burden of
high-fidelity simulations to be run at fast rate.

The second case study discusses what could be a potential
model-based approach of UAV powertrain diagnosis, mod-
eling three fundamental components, namely battery, ESC,
and motor. For this specific example, variability of external
forcing has been ignored. Similarly to the trajectory track-
ing case study, external forcing is trajectory dependent and
depends on the wind field during flight. It is not agnostic to
the UAV operation. For the sake of brevity, other uncertainty
sources related to model abstraction and battery model pa-
rameters have been ignored or simplified, but are discussed
in the dedicated section. The example aims at providing the
guideline to the uncertainty that may be affecting the model
as well as the diagnosis process based on that same model.

The first case study was developed in a Matlab environment
without any ad-on Toolbox, while the second case study was
developed in Python using packages NumPy, SciPy, and Mat-

plotlib.

4.1. Trajectory tracking

Trajectory tracking is an important area of research in the
field of flight guidance, navigation and control and has been
extensively studied for manned aircrafts (Kaminer, Pascoal,
Hallberg, & Silvestre, 1998; Radmanesh, Kumar, & Sarim,
2018). A few interesting studies pertaining to unmanned ve-
hicles include (Sujit, Saripalli, & Sousa, 2014; Davis & Chakra-
vorty, 2007) that presents flight planning algorithms to con-
trol a UAV under different wind conditions. Yet, uncertainty
in predicted trajectory caused to speed variations has mostly
remained unexplored for UAVs.

In our application, the framework for UAV trajectory track-
ing includes the trajectory generation algorithm to provide a
kinematically-smooth trajectory. One method for generating
smooth paths based on pre-defined waypoints n+1 waypoints
P with their ETAs ta include the non-uniform rational B-
spline algorithm, NURBS (Rogers, 2000). NURBS can com-
pute piecewise-constant jerk polynomial curves thus avoid-
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System models

Input models

REPRESENTATION SPACE

External variables

Operational variables

INPUT SPACE

System variables

MEASURE SPACE

Estimation methods

Prediction methods

COMPUTING SPACE

Uncertainty propagation

Figure 2. Predictive process structure. The bottom arrow describing uncertainty propagation does not indicate that uncertainty
is introduced only in the measure and input spaces, but it rather indicates that all the elements in the predictive process introduce
uncertainty, which increases from left to right.

ing discontinuity in the associated velocity and acceleration
profiles, (Corbetta, Banerjee, Okolo, Gorospe, & Luchinsky,
2019).

P (u) = NURBS(P , ta) (1)

Each segment of the NURBS curve is composed of a weighted
contribution from each way-point defined according to a ba-
sis function Ni,k(u) which is computed for ith way-point and
k
th degree, Eq. (2). The NURBS basis function is described

in Eqs. (3a) and (3b).

x(u) =

Pn
i=0 hiNi,k(u)xiPn
i=0 hiNi,k(u)

, 0  u  n� k + 2 (2)

Ni,k(u) =
(u� ti)Ni,k�1(u)

ti+k�1 � ti
+

(ti+k � u)Ni+1,k�1(u)

ti+k � ti+1

(3a)

Ni,1(u) =

(
1 if ti  u  ti+1

0 otherwise
(3b)

The NURBS trajectory assumes that the UAV flies at constant
velocity in between two consecutive waypoints. This is often
not followed in real applications when external factors and
environmental conditions introduces variations on the vehi-
cle’s expected speed producing uncertainty in the times of ar-
rival (TAs) at all locations along the entire flight. If the uncer-
tainty on the cruise speed is described by a Gaussian distribu-
tion, the uncertainty in the differential times-of-arrival can be
computed according to error intervals (Physical Sciences 2,
2013) as denoted in Eqs. (4)- (5). Finally, the variance of

the time of arrival at each way-point k can be computed by
cumulative sum of variances up to �

2
tk , as in Eq. (6).

�
2
tj,k ,

8
<

:
�ta,k

2 �2
vj,k

v̄2
j,k

8 v̄j,k 2 v̄k : v̄j,k 6= 0

0 otherwise
(4)

�
2
tk , max

j2{x,y,z}

n
�
2
tj,k

o
(5)

�
2
ta,k

=
kX

i=1

�
2
ti . (6)

Eventually, the time of arrival at way-point k can be described
by a normal probability density function (pdf):

ta,k ⇠ N
⇣
t̄a,k,�

2
ta,k

⌘
. (7)

The confidence intervals of the position profile are hence com-
puted by using the upper and lower intervals of the TAs,

P+(t) = NURBS(P , t+a ) ,

P�(t) = NURBS(P , t�a ) ,
(8)

where,

t+a = [t̄a,0, t̄a,1 + �ta,1, . . . , t̄a,K + �ta,K ] ,

t�a = [t̄a,0, t̄a,1 � �ta,1, . . . , t̄a,K � �ta,K ] .

The NURBS trajectory along with the uncertainty bounds for
an experimental UAV flight at NASA Langley Research Cen-
ter are demonstrated in Fig. 3. The UAV is a DJIS1000
octocopter flying through a pre-defined set of 17 waypoints
over 380 seconds. A flight executed from the same vehi-
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cle, on another day and on another route, was utilized to
compute the variance ⌃v of the cruise velocity distribution:
⌃v ⇡ diag3⇥3( [0.0625, 0.0625, 0.0289]) (m/s)2.
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Figure 3. Experimental UAV flight data with GPS measure-
ments and prior uncertainty bounds for (a) position profile (b)
velocity profile.

If wind field is known for the flight path, the wind velocity
vector can be added to the velocity uncertainty as well. For
example, the notation w = [wx, wy, wz]T 2 IR3⇥1 is used to
indicate the wind field components along x (East), y (North)
and z (Up) directions, with corresponding uncertainty ⌃w =
I3 [�2

wx
,�

2
wy

,�
2
wz

]T 2 IR3⇥3 for Gaussian pdfs. By adding
the wind speed in vector form, the ground speed of the vehicle
becomes vg = v + w. Leveraging once more the algebra
of random variables (Physical Sciences 2, 2013), the error
interval on the arrival time, previously defined by (6) can be
described as in (9).

�
2
tj,k ,

8
<

:
�ta,k

2 �2
vj,k

+�2
wj,k

v̄g2
j,k

, 8 v̄gj,k 2 v̄gk : v̄gj,k 6= 0

0 otherwise
(9)

Further, measured location from navigation sensors on-board
of the UAV can be used to update the current estimates of
UAV position as well as compute the remaining future tra-
jectory. Apart from discrepancies in planned velocity, mea-
surement error from the UAV navigation units constitutes an

additional source of uncertainty in the predicted trajectory
(Banerjee & Corbetta, 2020).

In order to integrate measurement error in the uncertainty on
predicted trajectory, the NURBS trajectory defined in Eq. (2)
defines the prior PDF of the position estimates at time t = 0 s
and velocity estimates at time t = 0 and t = 1 s, denoted in
Eq. (12).

�d,t=t0 = max(P+(t = t0)�P(t = t0),

P�(t = t0)�P(t = t0)) ,

d
p
0 ⇠ N

�
Pt=t0 ,�

2
d,t=t0

�
(10)

v
p
0 ⇠ N

�
Vt=t0 ,�

2
v,t=t0

�
(11)

v
p
1 ⇠ N

�
Vt=t1 ,�

2
v,t=t1

�
(12)

Next, the trajectory profile is converted to a discrete time-
state space model such that the position is a function of posi-
tion at the previous time step and parameters ✓t�1:t = (vt�1, v

p
t ).

dt = d
p
t�1 + v

p
t�1�t+

1

2
at�1t �t

2 (13)

= d
p
t�1 + v

p
t�1t+

1

2
(vpt � v

p
t�1)�t (14)

Finally, the uncertainty bounds on the predicted trajectory is
obtained via implementation of Kalman filters (15).

x̂k|k�1 = A x̂k�1|k�1 +Buk�1 + E ek�1

Pk|k�1 = APk�1|k�1A
T +Q

(15)

where, the state vector x = [dx, dy, dz, vx, vy, vz]T , contain-
ing the three positions d and velocities v in the three Carte-
sian directions. The input vector contain the planned velocity
at the next time step, uk�1 = [vpx,k, v

p
y,k, v

p
z,k]

T . A position
error term e used to correct any bias that may be introduced
by initial conditions or external disturbances is denoted by
ek�1 = [ex,k�1, ey,k�1, ez,k�1]T .

In this formulation, the state matrix A, input matrix B, and
error-correction matrix E become:

A = 0.5


03 I3

03 03

�

B = 0.5


I3

03

�

E = kp


I3

03

�

where kp is a constant analogous to the proportional control
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gain, while 03 and I3 are an all-zero matrix and the identity
matrix, both of dimensions 3 ⇥ 3. The constant 0.5 in ma-
trices A and B comes from the approximation of uniformly-
accelerated motion where acceleration is computed as the av-
erage between speed at two subsequent time steps (see Eq.
(14)). Diagonal matrices P and Q of dimensions 6⇥6, repre-
sent the convariance matrix of the state vector and the model
noise. Once the prior of the system state x̂k|k�1 and its co-
variance matrix Pk|k�1 have been computed, the updating is
performed following the Kalman filter procedure, Eq. (16).

ỹk = mk �H x̂k|k�1

Sk = H Pk|k�1H
T + ⌃meas

Kk = Pk|k�1H
T
S
�1
k

x̂k|k = x̂k|k�1 +Kk ỹk

Pk|k = (I �KkH)Pk|k�1

(16)

The three position measurements are collected in vector m.
Matrix H represents the measurement model while ⌃meas

represents the covariance matrix of the measures and matrix
K represents the Kalman gain.

After computing the posterior estimate of the system state,
composed of state vector x̂k|k and covariance matrix Pk|k,
the prediction of the remaining trajectory involves the propa-
gation of the state vector as stated in Eq. (15).

Figure 4 depicts the 95% confidence intervals on estimated
and predicted position values using measurements available
up to (a) 50, (b) 150 and (c) 280 seconds of the flight. As
observed from the plots, it is evident that uncertainty bounds
become tighter when more measurements are available for
prediction. Moreover, the uncertainty is higher at the way-
point locations where the UAV changes its direction yielding
higher deviations from its planned velocity. Besides, the dif-
ference of measurement vector from planned state and the
measurement error is taken into account while computing the
uncertainty bounds on the estimated trajectory.

The current trajectory tracking technique does not comprise
of subsystem behavior such as individual rotor dynamics. As
a result, any anomaly or fault in a specific motor or arm of
the multi-copter will not be reflected in the simulated flight.
Uncertainty introduced from approximation of UAV flight dy-
namics will be investigated in future studies.

4.2. Powertrain Health Diagnosis

In this section, the predictive process is applied to the design
of a model-based diagnostic system for an electrical power-
train typically installed in small, low-cost UAVs. The power-
train system model comprises of an electrochemistry model
for Li-ion batteries developed in (Daigle & Kulkarni, 2013),
a model for the electronic speed controller (ESC) developed
in (Gorospe, Kulkarni, Hogge, Hsu, & Ownby, 2017), and

(a)

Time (s)

(b)

Time (s)

(c)

Figure 4. Trajectory estimation and prediction using Bayes
filtering with on-board navigation measurements available
upto (a) 50 sec (b) 150 sec and (c) 280 sec.

a dynamic model of the brushless DC motor utilized to ac-
tuate rotors. Part of this work has already been presented
in (Corbetta & Kulkarni, 2019), and so only a summary is
reported here. In this exemplifying discussion, un-modeled
physical phenomena are neglected, therefore uncertainty re-
ferring to the model abstraction is not considered. Moreover,
uncertainty in the battery model parameters is also neglected.
The reason is the large number of such parameters, which
would require a careful discussion on the parameter model-
ing strategy, the selection of the distribution functions or the
fine tuning of dispersion indices to prevent model instabil-
ity. Modeling the uncertainty of external disturbances com-
ing from rotors would also require large efforts beyond the
scope of this example, and therefore uncertainty from exoge-
nous variables is also neglected. Instead, this Section dis-
cusses how to model uncertainty affecting voltage values in
the electrochemistry Li-ion battery model, uncertainty rising
from lack of a MOSFET model for the ESC, and the effect

10
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of uncertainty over ESC switch failures. Also, example of
uncertain inertia and friction parameters of the DC motor are
briefly discussed.

The diagram of the health monitoring system is presented in
Figure 5.

4.2.1. Uncertainty representation in powertrain compo-
nent models

The ESC is modeled as an ideal power inverter employing
pulse width modulation (PWM) and half-bridge drivers for
each of the three phases within a control block. The PWM
modulates three sine waves with carrier frequency f and phase
shifts ' = {0, 2⇡/3, 4⇡/3} using a saw-tooth wave with fre-
quency fst. The output is a three phase voltage with duty

cycle depending on f and fst, (Pillay & Krishnan, 1989),
(Holtz, 1992).

The model structure composes of two inputs; battery output
voltage V and the three modulated square waves from PWM,
F1, F2, and F3. The switch matrix is a design property of the
system, and therefore can be considered as a model parame-
ter. The three modulated square waves are pre-multiplied by
the switch matrix and the battery’s output voltage, as in Eq.
(17). The output is a three-phase voltage vab, vbc, vca, with
phase shift of ±2/3⇡ among one another, which becomes the
input of the motor’s electrical dynamic model (Gorospe et al.,
2017).

2

4
vab

vbc

vca

3

5 = V

2

4
1 �1 0
0 1 �1
�1 0 1

3

5

2

4
F1

F2

F3

3

5 (17)

Even if not specified, battery’s output voltage V and output
PWM signals Fi, 8 i = {1, 2, 3} are obviously time-varying.

Uncertainty affecting each single component is modeled as
independent in different ways. The sine wave carrier fre-
quency f can be subject to steady, slow decrease of its value
during operation because of the degradation affecting the MOS-
FETs (Gorospe et al., 2017), which are not modeled in the
framework proposed here. Therefore, a possible approach
would be to model f as a random variable with small un-
certainty around its nominal value. Uncertainty on f should
be represented by an always-negative rate of change, to en-
sure that f is actually decreasing, and not increasing, over
time. As already discussed in (Corbetta & Kulkarni, 2019), a
multiplicative, log-Normally distributed random process can
achieve the goal,

fk = fk�1 �
df

dt

����
k�1

e
⌘

,

where the deterministic value df/dt is multiplied by e
⌘ , and

⌘ ⇠ N
�
��

2
⌘/2,�

2
⌘

�
. The function df/dt as well as �

2
⌘

should be tuned based on historical data on MOSFETs degra-
dation.

Switch failures can be modeled by abrupt changes in the switch
matrix in (17), using a typical reliability-based approach (Ginart,
Brown, Kalgren, & Roemer, 2009), where switch reliability is
defined by failure rates �(t). The elements equal to 1 and �1
in the switch matrix will be reduced to 0, when a failure of the
corresponding MOSFET switches occurs (Celaya, Saxena,
Kulkarni, Saha, & Goebel, 2012). By so doing, uncertainty
in the switch matrix is defined through mean-time-between-
failure or similar quantities. An example of the three-phase
voltages from a switch failure is shown in Figure 6, where
the element (2,3) of the switch matrix in Eq. (17), originally
equal to -1, has been replaced by 0.

The structures of the motor model and the battery discharge
model are sets of first order differential equations, in the form:

ẋ = fp(x,u)

where p is the vector of model parameters and u is the input
vector. State vectors are defined by

x = [qs,p, qb,p, qb,n, qs,n, V
0
o , V

0
⌘,p, V

0
⌘,n]

T
,

x = [ia, ib,!m]T ,

for the battery and motor model, respectively. The motor
model assumes the form

!̇m =
1

J
[�B!m + (Te � Tl)] , (18)

where Te and Tl are electrical and mechanical (external) to-
ques, respectively. The battery model is composed of several
differential equations and the reader is referred to (Daigle &
Kulkarni, 2013) for further details.

For the motor dynamic model, the vector of model param-
eters is p = [B, J,Rs, LM ]T , where B is the friction co-
efficient, J the motor inertia, RS is the resistance for each
phase (assumed identical for the three phases), LM is the dif-
ference between self and mutual inductance (also assumed
equal for each phase). For more information on the motor
model the reader is referred to (Gorospe et al., 2017). For
the battery model, the parameter vector is not reported for
the sake of brevity (since uncertainty on those parameters is
not discussed); the complete set of parameters are derived in
(Daigle & Kulkarni, 2013).

The motor model parameters can be extracted from manufac-
turer data-sheets or estimated from experimental tests, while
the parameters of the electro-chemistry battery model do re-
quire estimation from characterization test profiles. The input
of the battery model is the applied current u = i. The input of
the motor model composes of: (i) two of the three-phase input
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Figure 5. Framework for powertrain health monitoring uncertainty quantification.

Figure 6. Example of three-phase voltages from ESC with
a switch failure. The legend indicates that the switch matrix
(SM) element in position (2, 3) has been replaced by 0.

voltages (vab and vbc) (ii) three-phase back-emf voltages ea,
eb, ec, and (iii) load torque Tl, so u = [vab, vbc, ea, eb, ec, Tl]T .
It should be noticed that motor model input vector is com-
posed of both operational input, that is the desired applied
three-phase voltages, and external input Tl which depends on
exogenous variables.

Focusing on the battery model, the QoI is the output voltage
V , which defines the energy introduced in the powertrain to
produce the torque on the rotors and thus the thrust to operate
the vehicle. Given the complexity of the electro-chemistry
battery model, a sampling-based approach appears to be rea-
sonable. The state vector x is considered a random vector,
where the Li-ions qs,p, qb,p are defined by random variables.
They represent the number of Li-ions on the positive side of
the surface qs,p and bulk qb,p of the cell, respectively. Since

qs,n, qb,n, as well as the voltages V
0, are derived quantities,

they also become random variables. Independent, Gaussian
pdfs have been utilized to compute random realizations of
qs,p, qb,p in a Monte Carlo fashion, using Euler’s forward
method:

qs,p,k = qs,p,k�1 + q̇s,p,k�1�tk�1 + �qs,p

p
�tk�1 r1 ,

qb,p,k = qb,p,k�1 + q̇b,p,k�1�tk�1 + �qb,p

p
�tk�1 r2 ,

(19)

where r1 and r2 are two independent realizations from the
standard Normal distribution, and k indicates the time step.
Rates of change q̇s,p,k�1 and q̇b,p,k�1 are derived from the
battery dynamic model. The random shocks introduced by
�ql,p r1 and �ql,p r2 are scaled by

p
�t for consistency with

Wiener process and Brownian motion used in stochastic dif-
ferential equations (Lawler, 2010). By so doing, the variances
of the two stochastic processes scale linearly with time. The
two standard deviations �qs,p and �qb,p should be properly
quantified to reflect the variability observed in experimental
tests.

Figure 7 shows, as an example, the output of a single cell
modeled using Eq. (19), with initial voltage V0 = V (t =
0) ⇠ N (4.6, 0.316), �2

qs,p = �
2
qb,p = 10.0, and assuming a

constant discharge rate with required power P = 8 W. The
simulation parameters used are �t = 1e � 1 s, N = 1000
samples, and final simulation time 100 s. The kernel den-
sity estimate (KDE) of the voltage at time 100 s, computed
with the Monte Carlo samples (MCS) and Gaussian kernel
with bandwidth equal to 0.125, is compared against a Gaus-
sian distribution, Figure 7b. Despite the nonlinearity of the
model, the output voltage might be represented by a Gaus-
sian random variable, provided that the propagation of uncer-
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(a)

(b)

Figure 7. Simulation of battery discharge at constant power.
Monte Carlo samples are shown in 7a, while the resulting ker-
nel density estimate is compared against a Gaussian distribu-
tion in 7b. Only a subset of all samples has been represented
in 7a to appreciate the different paths.

tainty in time can be also be represented by this simplifying
assumption.

As clarified in the previous paragraphs, motor model parame-
ters could be represented by random variables to encapsulate
the model parameter uncertainty within the model. Sensi-
tivity analyses can aid the selection of important model pa-
rameters that should be modeled as random variables, how-
ever a few general rules can be applied to all parameters.
Because of their physical meaning, all model parameters in
[B, J,Rs, LM , ke]T have to be strictly positive, and there-
fore belonging to IR+. As a consequence, Gaussian distri-
butions may not be suitable for describing their uncertainty,
especially if their value is (relatively) close to 0. Let us con-
sider, for example, the friction coefficient B and motor inertia
J . Their distributions can be defined through a log-Normal
transformation by simply using:

Figure 8. Example of log-Normal probability distributions of
B and J .

lnB ⇠ N
�
µlnB ,�

2
lnB

�
,

ln J ⇠ N
�
µln J ,�

2
ln J

�
,

(20)

assuming that B and J are independent random variables (the
generalization to the case �lnB,ln J 6= 0 is straightforward by
introducing a multi-variate Normal distribution). Examples
of the two log-Normal distributions are shown in Figure 8.

An example of angular velocity output from the model in (18)
using samples from the distributions of B and J is visible
in figure 9. The effect of different inertia values is clearly
visible in the transient period necessary to reach the steady-
state regime. In order to emphasize the effect of B and J

samples, the graph was generated neglecting dynamics effects
on the back-emf voltage and external load torque Tl.

5. CONCLUSION

This paper proposed a framework for uncertainty quantifi-
cation dedicated to autonomous system tracking and health
monitoring. Although being system agnostic, the framework
addresses key issues related to automated and autonomous
UAVs operations in the airspace.

The developed framework is motivated by the need to en-
sure a holistic state-awareness of an airspace with multiple
vehicles operating within, as expected in the near future for
low-altitude airspace in urban and rural environments. Dif-
ferent uncertainty sources that affect the operations of those
vehicles must be properly identified and quantified such that
look-ahead forecast of the airspace or of vehicle health condi-
tions can highlight airspace as well as vehicle anomalies. To
this aim, the proposed approach provides a detailed descrip-
tion of these uncertainty sources classified into model uncer-
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Figure 9. Example of motor speed variations from 0 up to a
steady-state regime (nominal speed !n = 675 RPM).

tainty, method uncertainty, measurements uncertainty and in-
put uncertainty. The identified sources are then included and
propagated within a predictive process structure composed of
different spaces (input space, measure space, representation
space and computer space). The methodology helps mapping
the relevant uncertainty sources that may enter the prediction
process, and define how the identified uncertainty sources in-
teract and impact each other within this predictive process
structure.

The proposed approach was demonstrated using two case stud-
ies. The first application shows a simple technique to mon-
itor the UAV location and its adherence to the pre-defined
flight path. It can provide enough information to compute the
expected time of arrival at each location along the path and
shrink or enlarge uncertainty bounds of the trajectory profile
according to the observed vehicle kinematic profile. The sec-
ond case study shows how the list of uncertainty sources can
aid the design of a vehicle powertrain health monitoring sys-
tem. According to the granularity of the model-based design,
uncertainty can be introduced in different ways, from failure
rates coming from reliability analysis to random variables de-
scribing physical quantities.

This work does not address a number of topics related to un-
certainty quantification: sensitivity analysis of the variables
affecting a specific model, statistical techniques to address
uncertainty quantification and propagation, as well as meth-
ods to describe and interpret uncertainty. It also highlights a
few challenges for the effective implementation of monitor-
ing strategies for automated and autonomous vehicles operat-
ing in time-varying environments. Characterization of exter-
nal forcing, like the wind field and the torque acting on the
powertrain during flight, is a challenge to be addressed in the
future to obtain more meaningful predictions. Such character-
ization inherently involves uncertainty quantification, given

the aleatory nature of some external forcing. This approach
shares similarities with system-level prognostics approaches,
but introduces further challenges related to the automated or
self-directedness properties of the systems. Methods should
be capable of resolving (i.e, estimating) and predicting exter-
nal forcing and environmental factors to enable look-ahead
forecast of the system dynamics. This work will benefit from
more application studies to highlight further challenges and
opportunities to implement effective predictive methods for
low-altitude UAV operations.
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