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ABSTRACT

Mainly, the prognostics and health management (PHM) pro-
cess is based on three processes: the data acquisition and
health assessment process in which sensors signals are ac-
quired and processed, the diagnostic and prognostic process
in which the source of failure is detected and the remain-
ing useful life (RUL) is predicted and finally the decision-
making process that refers to the term management in prog-
nostics and health management. This paper reviews in the
literature about the different aspects of decision-making in
the context of PHM. The selected papers are subject to con-
tent assessment and grouped according to the decision type.
Additionally, this paper presents a synthesis of the previous
works that helps identify new trends and deficiencies in the
decision-making process. The synthesis can guide efforts for
future work.

1. INTRODUCTION

Industries exist in highly competitive environments. To main-
tain their profit margins, they need a high level of system
reliability and availability at the lowest cost. To control
the systems’ dependability, an adequate maintenance policy
needs to be set up. Thus, maintenance policies have evolved
quickly from waiting to fix the machine after it fails in a
corrective maintenance style to preventive maintenance. In
its turn, preventive maintenance has evolved from systemic
maintenance, in which the interventions were scheduled us-
ing age-dependent metrics or reliability information provided
by the component constructor, to condition-based mainte-
nance (CBM). As the name suggests, in CBM, we assess the
condition of a component, i. e. , its degradation level, and we
follow its evolution until it crosses a threshold, at which point
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a maintenance action is scheduled. Lately, with the introduc-
tion of prognostics (Vachtsevanos & Wang, 2001), defined
as the science of prediction in (Goebel et al., 2017), CBM
emerged into prognostics and health management (PHM)
as described in (Byington, Roemer, & Galie, 2002). As a
result, one no longer compares the actual degradation level
to a threshold. Instead, we estimate the remaining useful
life (RUL) of the component in question by predicting its
end-of-life (EoL). Based on RUL, a decision should be made
to avoid failures.

One can finds plenty of definition for the PHM concept in
literature, but no unified definition has yet been proposed.
In (Uckun, Goebel, & Lucas, 2008), Uckrun et et al. de-
fined PHM as an engineering discipline that joins the study
of the failure mechanism and the management of the sys-
tem’s life cycle. In (Sun, Zeng, Kang, & Pecht, 2010), Sun
et al. described PHM as a methodology to not only pre-
dict the component responsible for the failure and when it
will fail, but to also reduce the risks by studying the relia-
bility of a system in its environmental, operational and usage
conditions. The Center for Advanced Life Cycle Engineering
(CALCE 2012) defined PHM as “the means to predict and
protect the integrity of equipment and complex systems and
avoid unanticipated operational problems leading to mission
performance deficiencies, degradation and adverse effects to
mission safety. ” Skima in (Skima, 2016), used the same defi-
nition as Sun et al. but specified that the objective behind the
use of PHM systems is to manage the health of a system by
minimizing its operations and maintenance costs. Goebel et
al. in (Goebel et al., 2017), did not directly define PHM, in-
stead defining prognostics in the PHM context as when one is
studying the conditions of a fielded engineering system and
whether it is behaving within nominal operation bounds. If
it is not, one then predicts where and when the system will
no longer fulfill certain functional requirements. They spec-
ify that the prognostics are performed not as an objective in
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themselves, but for a decision-making process afterward.

The PHM process is similar to the architecture presented in
the OSA/CBM in (Lebold & Thruston, 2001). Open stan-
dard implies that a PHM or CBM system should be built
over seven layers: data acquisition, data processing, condi-
tion assessment, diagnostics, prognostics, decision-making
and human machine interface. Lately, these layers have been
grouped into three processes in (Gouriveau, Medjaher, & Zer-
houni, 2016): the observation process that contains data ac-
quisition and processing; the analysis process in which the
system’s conditions will be assessed, followed by diagnostics
and prognostics; and finally, the act process involve decision-
making and application through the human-machine inter-
face.

According to the origin of PHM, one can define a decision
as a set of maintenance actions. This decision is usually
the solution to an optimization problem consisting in defin-
ing adequate interventions dates. But the use of prognostics
has evolved to include other sorts of decisions. For exam-
ple, prognostics information were used to define process set
points and controller parameters in closed-loop actuators con-
trols as mentioned in (Pereira, Galvão, & Yoneyama, 2010)
or (Langeron, Grall, & Barros, 2013). Other works have in-
tegrated prognostics information into production scheduling
and mission assignment, in which the health prognostic of
the system was defined as a constraint or included in the op-
timization objective, as was the case in the works of (Herr,
Nicod, Varnier, Jardin, et al., 2017).

Gouriveau et al. stated in (Gouriveau et al., 2016) that the
PHM is not limited to industrial maintenance but can be ap-
plied to any kind of activity as long as it fits the elementary
process defined by the OSA/CBM decomposition. The only
difference is in the nature of the decisions to be made. The
evolving nature of the integration of prognostics information
in different kinds of decisions calls for a review of the existing
works in this domain. Consequently, this paper investigates
the approaches to decision-making for all kinds of decisions,
the proposed scope of work, the dominant assumptions and
the fields of application. Next, current and future challenging
issues are pointed out and discussed to help centralize efforts
for future works. Although it is important to note that this pa-
per does not present an exhaustive review because we limited
our study to papers published between 2006 and 2018.

The organization of the paper is as follows: a definition of
post-prognostics decisions is presented in Section 2, with a
presentation of the bibliographic search results. In Sections
3, 4 and 5, related works are classified by the type of decisions
and discussion is, also, presented for each type of decisions
to compare the approaches proposed in those papers. Section
6 presents a synthesis of the selected papers, new trends and
scientific locks. Finally, we present a conclusion of this study
and suggest some future works in Section 7.

2. DEFINITION OF POST-PROGNOSTIC DECISIONS

Literally decision-making is the name given to the process
of selecting the logical best choice from a list of available
options. In such a process one should weight the pros and
cons of each possible option, consider all the alternatives and
forecast the outcome of each option. Such a process can ei-
ther be performed by human operators or a systemic approach
that can support the human operators decision-making pro-
cess. As a result, one can model the decision-making problem
with an optimization problem. Since human decision-makers
are limited in their cognitive capacity to process and analyze
large quantities of information, in the context of industry, the
decision-making process will be performed by an algorithm.

In the PHM context, we are supposed to take the adequate
actions to prevent or mitigate the degradation of the stud-
ied system. Thus the ultimate goal of PHM is to make de-
cisions based on prognostics information. Iyer et al. in
(Iyer, Goebel, & Bonissone, 2006) were the first to intro-
duce the term “post-prognostic decisions” to describe deci-
sions made in the PHM context using prognostic informa-
tion from the system to choose the most adequate actions for
logistics platforms, maintenance, supply chain management,
mission planning and mission allocation. Later, Balaban et
al. in (Balaban & Alonso, 2012), defined the post-prognostic
decision as one that takes into consideration the prognostic
information (i. e. , RUL) to define the future utilization of
the system in question so as to optimize a predefined objec-
tive. This same definition was used by Herr in (Herr, 2015)
and by Chebel-Morello et al. in (Chebel-Morello, Nicod, &
Varnier, 2017). Recently in (Goebel et al., 2017), Goebel et
al. gave a more precise definition for post-prognostic deci-
sions. As a result, one calls a post-prognostic decision the set
of actions at time t that best overcome an undesirable future
event, predicted to take place at t+ tE , by satisfying a given
set of constraints and optimizing a set of objectives expressed
in a cost function.

In the same context, we propose that post-prognostic deci-
sions are a sequence of configurable actions built over a pre-
defined duration, called the decision horizon. This series of
actions is built at time t to best manage the health of the sys-
tem, its operations and its missions under the prospect of an
undesirable future event, foreseen to take place at t+ tE . The
built decision must satisfy a given set of constraints and opti-
mize a set of objectives expressed in a cost function.

In the literature, one can find plenty of works that discuss
post-prognostic decision-making. To study these articles, one
can conduct a two-level bibliographical research. First, dif-
ferent combinations of keywords related to prognostics and
decision-making, presented in Table 1, can be used in clas-
sic search engines like Web-of-Science and Google Scholar.
Sorting the resulting papers is the next step to identify the rel-
evant ones. Then one can search for the works that cited the
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outstanding studied papers. Using this method, we identified
a total of 109 articles (see Figure 1). The growing number
of publications per year proves that post-prognostic decision
is an expending research domain. Also we note the absence
of papers that review the integration of prognostics informa-
tion in decision-making and the importance such a paper can
have in defining the current and future challenges in post-
prognostic decision-making.

Table 1. The list of the used keywords.

Keywords
Prognostics information

Post-Prognostic decision-making
Maintenance decisions

Maintenance scheduling
Maintenance planning
Operational decisions
Operational planning

Joint optimization
PHM decision-making

Condition-Based Maintenance
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Figure 1. Evolution of publications on Post-Prognostic Deci-
sion

In (Goebel et al., 2017), Goebel et al. proposed a classifica-
tion of the possible prognostic-based actions to take depend-
ing on the duration of the prognostic horizon. The classifi-
cation included controller reallocation, mission rescheduling,
and maintenance plan optimization. In this paper, we propose
another classification of the post-prognostic decisions based
on the nature of the action itself. The analysis of the type of
decisions discussed in the identified papers helped define the
categories. As a result, we propose to classify post-prognostic
decisions into three categories using the type of the decision
as a criterion: (i) decisions that describes the schedule of
maintenance activities, (ii) decision that influence the opera-
tional condition of the system and (iii) mixed decisions that
optimize jointly the maintenance of the system and its oper-
ational conditions. Table 2 represents the distribution of arti-

cles according to these three categories. One can easily note
that the maintenance decisions are more dominant. indeed,
operational and mixed decisions are more recent fields of re-
search. These categories are explored in the next sections, in
which a further analysis is conducted on subcategories and
on the related work by reviewing their ideas and investigating
their main assumptions.

Table 2. Publications on Post-Prognostic Decision per Deci-
sion Type

Type of Decision Maintenance Operational Mixed

Publications 51 28 30
Percentage 46.8% 25.5% 27.7%

3. MAINTENANCE DECISIONS

In this section, the works that considered maintenance sche-
duling and maintenance interventions optimization based on
prognostics information are studied. In the literature, post-
prognostics maintenance planning can be divided into two
categories according to the number of the considered ma-
chines. Single machine maintenance planning and multiple
machine maintenance scheduling are detailed in the following
subsections. In each category, the authors solved the mainte-
nance scheduling problem for either multi-machine or single
machine system configuration. They assumed that a machine
is composed of one or more components, and that the health
status or the degradation of the system is known. A prognos-
tic algorithm provides the predictive information i. e. the re-
maining useful life, the evolution of degradation, or the prob-
ability of failure. Based on the estimated future information,
the authors proposed methods to optimize a given objective
function under several constraints that both depends on the
type of application.

3.1. Single Machine Maintenance Planning

In this subsection, the authors focused on single machine
maintenance scheduling based on the estimated health condi-
tion of the machines’ components. The papers that focused
on one machine maintenance planning are grouped according
to the application.

3.1.1. Manufacturing

Zhao et al. (Zhao, Fouladirad, Bérenguer, & Bordes, 2009)
presented a new method for optimizing the maintenance pol-
icy for a system with a single deterioration, to minimize
long-run maintenance costs. Camci used genetic algorithms
in (Camci, 2009) to schedule maintenance interventions for
a multiple-component single machine. The schedule devel-
oped by this method minimizes the maintenance cost and
satisfies the constraints on available resources. Tian et al.
(Tian & Liao, 2011) considered the maintenance scheduling
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of a multiple-component single system in which the identi-
cal components are economically dependent. In this paper,
Tian et al. used the proportional hazard model instead of
RUL to estimate failure probability. Based on the obtained
failure probability, suitable maintenance actions are made.
Van Horenbeeek and Pintelon in (Van Horenbeek & Pintelon,
2013) scheduled the maintenance activities of a multiple-
component single machine on a finite rolling horizon. The
proposed approach consists of selecting the suitable dates for
maintenance interventions and then updating them when new
prognostics information is available. In addition, a grouping
algorithm was used to group maintenance activities of the
different components based of their dependencies. The three
considered components that presented different kinds of de-
pendencies. Finally, the paper presented the effects of depen-
dencies of the component lifetime with different maintenance
policies. In the same context of a rolling decision horizon,
Rodrigues et al. (Ramos Rodrigues, Paixao de Medeiros,
& Strottmann Kern, 2015) proposed a dynamic maintenance
strategy for a group of similar components monitored with a
PHM system. At each inspection time, the prognostics infor-
mation of the components is estimated. Based on the failure
probabilities of the components a two-level decision-making
process is executed. At the first level the cost of maintenance
of each component is minimized. Next, the maintenance
activities are grouped to minimize the overall maintenance
cost. The obtained schedule is applied until the next in-
spection, when new health information is available and the
rolling horizon is shifted. Khoury et al. (Khoury, Deloux,
Grall, & Bérenguer, 2013) presented a framework for pre-
dictive maintenance of a single machine over a finite rolling
“visibility” horizon. The decision horizon is characterized
by two maintenance opportunities in which maintenance ac-
tions could be exclusively planned. The main objective is
to find a trade-off between doing premature maintenance at
the first opportunity or planning the intervention too late at
the second opportunity or later based on a failure probability
obtained from the RUL distribution. If the failure probability
at the maintenance opportunity exceeds a certain threshold,
then a maintenance action is scheduled in that opportunity;
otherwise, it is postponed. Huynh et al. in (K. T. Huynh,
Castro, Barros, & Berenguer, 2014) studied the case of a
single-component single machine with aging effects. In this
paper, the machine could fail due to degradation or to the
effect of a shock caused by the accumulation of degradation
and the aging of the machine. For this reason, Huynh et
al. proposed two maintenance policies based on the rate
of the machine’s degradation and the mean residual life. In
(K. Huynh, Grall, & Bérenguer, 2017), Huynh et al. not
only proposed unusual new prognostic-based maintenance
strategies built on various variants of the systems RUL, but
also compared these strategies to diagnostic-based strategies
and CBM and then quantified the performance and robustness
of the diagnostic and prognostic indicators for maintenance

decision-making. Tang et al. (D. Tang, Makis, Jafari, & Yu,
2015) proposed two control limit maintenance policies based
on the current degradation of a single component machine.
The first policy consists of periodic inspections using a CBM
approach, while the second policy consists of delaying the
first inspection time under the assumption that a slowly de-
grading system is less likely to cross the failure threshold at
an early stage. The paper also presented a way to estimate the
RUL of the machine, but this RUL was not integrated into the
decision-making process. Do et al. (Do, Voisin, Levrat, &
Iung, 2015) used a gamma process to describe the degrada-
tion of the system. The authors proposed an inspection-based
CBM strategy with the possibility of choosing the quality
of the preventive maintenance intervention. This work also
presents a novel method for the definition of the inspection
dates based on the RUL of the system. The failure probability
of the system is estimated from its RUL, and the next inspec-
tion is scheduled to guarantee that the failure probability
does not exceeds a required reliability level. Langeron et al.
(Langeron, Fouladirad, & Grall, 2016) applied the mainte-
nance scheduling on a controlled system subject to a random
deterioration of the actuator. The maintenance optimization
was carried out on the controller settings along with the RUL
threshold and the inspection period, at which point two possi-
ble actions were considered: either a preventive replacement
or a corrective one. Shi et al. (Shi & Zeng, 2016) con-
sidered the case of stochastic dependencies of components
when the degradation of a component affects the degrada-
tion of another. The proposed approach in this paper used
a dynamic opportunistic maintenance scheduling based on a
real-time RUL prediction. Liu et al. (Q. Liu, Dong, Lv, &
Ye, 2017) developed a new approach for maintenance inter-
vention scheduling on a manufacturing machine to optimize
the maintenance cost based on prognostics information. The
approach consists of dividing the health state of the machine
into four levels with two different maintenance actions. The
problem is then solved using dynamic programming model.
Wang et al. (K. Wang, Tian, Pecht, & Xu, 2015) applied
a PHM framework to electro-mechanical systems to make
decision about components refurbishment policy. Actually
refurbishment consists of making component replacements
to restore the system to satisfy its initial specification. In
other words refurbishment could be considered maintenance
intervention by replacement. The method is based on the
estimated RUL of the considered system and its components
to define an optimal replacement policy for the deteriorating
components while considering the impact of such policies
on the system’s health for the purpose of minimizing the
refurbishment cost.

3.1.2. Wind Turbines

Lei et al. (Lei & Sandborn, 2016), studied maintenance
decision-making based on PHM information applied to wind
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turbines. The approach consists of using real options analysis
to schedule maintenance action. To take uncertainty into ac-
count, the authors used simulation paths by which each path
represents one possible future scenario to finally determine
the optimum predictive maintenance opportunity. Mazidi et
al. (Mazidi, Bertling Tjernberg, & Sanz Bobi, 2017), pre-
sented a hybrid method of neural networks and proportional
hazard model to wind turbine behavior for prognostics and
maintenance management. The approach evaluates the ef-
ficiency of previously applied maintenance plans. First, a
neural network is built to model the normal behavior of the
wind turbine with data gathered from a supervisory control
and data acquisition (SCADA) system. Then a deviation sig-
nal that describes the stress condition and the health status of
the wind turbine is extracted by comparing the real-time data
to the neural network predictions. The obtained signal is used
to assess the goodness of previous maintenance actions and
propose suggestions for future maintenance planning. This
work actually takes into consideration the effect of decisions
on the system.

3.1.3. Aerospace

The aerospace domain is intensively studied in the case of
single machine systems. Si et al. (Si, Li, Zhang, & Hu,
2018) proposed a CBM replacement strategy for stochasti-
cally deteriorating aircraft components. The framework con-
sists of a classical periodic inspection CBM policy, and even
although the reliability of the components is computed it was
not considered in the decision-making process. Instead, de-
cisions are made on the current observed degradation level.
In (Vianna & Yoneyama, 2018), the authors used a Kalmann-
filter-based prognostic method to estimate the future degrada-
tion and RUL of a multi-component redundant system while
assuming different wear profiles. The obtained prognostic in-
formation from the multiple model of prognostics is used to
specify the maintenance intervention dates that minimize the
maintenance cost. Several operational aspects were consid-
ered in this work by integrating their cost into the mainte-
nance cost. Wang et al. (Y. Wang et al., 2017) used a model-
based prognostic framework to monitor and estimate the evo-
lution of the size of cracks in the fuselage of an aircraft. The
PHM process is done periodically through inspections and
decision-making. The decision-making process includes the
obtained prognostic information to schedule the maintenance
intervention in the current available stop or to postpone it to
the next one if the safety level allows it. The maintenance
cost is minimized in this framework by finding a trade-off be-
tween the probabilities of failure occurrence and the waste of
RUL of the fuselage. Later in (Y. Wang et al., 2018), the au-
thors integrated unscheduled maintenance to work in tandem
with the scheduled opportunities and considered the engine
and some non-structural components. Nguyen and Medja-
her (K. T. Nguyen & Medjaher, 2019) provided a full data

driven framework to schedule maintenance from data acqui-
sition to decision-making. The authors used long short term
memory neural networks to predict the failure probabilities
of the machine under the proposed schedule of operations.
Then, they used a rule based heuristic to schedule the main-
tenance activities. Uncertainty in prediction have been dis-
cussed and their effects on the maintenance decision-making
process have been given.

3.1.4. Railways

Lin et al. (S. Lin, Zhang, & Feng, 2016) used a partially
observable Markov decision Process (POMDP) to plan main-
tenance interventions for a traction power supply based on
its RUL. The degradation of the power supply is modeled
by Gauss-Poisson process, in which natural and sudden de-
terioration are considered. Health indicators are deduced
from the degradation to define the health of the system.
The POMDP is solved using a one-pass algorithm that is
based on n-computation through dynamic programming. In
(D. Feng, Lin, He, & Sun, 2017), the authors developed
a novel framework that combines PHM and active mainte-
nance to better manage the health and maintenance activities
of high speed railways’ traction power supply system. The
proposed framework consists of classical PHM technology
in which RUL, reliability and risk are estimated from differ-
ent data resources. Active maintenance is used in the PHM
decision-making module. This module has the objective to
select the suitable maintenance strategy for each compo-
nent of the system (CBM, corrective, periodic preventive or
RUL-based predictive) to avoid accidents and guarantee a
predefined reliability requirement.

3.1.5. Other type of applications

Nzukam et al. (Nzukam, Voisin, Levrat, Sauter, & Iung,
2017) proposed a maintenance decision support system for
heating, ventilation and air-conditioning (HVAC) of non res-
idential buildings. The method considers the components’
RUL and their criticality on the one hand and the planned
stoppages of the system on the other. The RUL distributions
of each component are estimated and compared to the stop-
page dates to produce a list of opportunities for maintenance
actions. A grouping algorithm takes into account the RUL,
the maintenance duration and the severity of each component
and the duration of the maintenance opportunities, to pro-
duce a schedule of grouped maintenance interventions. Later
on, the authors integrated uncertainties into their model in
(Nzukam, Voisin, Levrat, Sauter, & Iung, 2018) by supposing
that the duration of the stoppages are stochastically defined.
Effects of the uncertainties were studied and the consistency
of their method was proved using Monte Carlos simulations.

Later, and still in single machine maintenance optics, a new
structure of maintenance decision-making is proposed. In-
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stead of using a central unique maintenance decision-making
process, these papers proposed to use a two-level method
for maintenance scheduling. Huynh et al. (K. T. Huynh,
Barros, & Berenguer, 2015), proposed a two-level mainte-
nance decision-making for multi-component complex sys-
tems. The novel RUL-based maintenance scheduling frame-
work combines the system-level maintenance decisions and
the component-level one. A periodic inspection is imple-
mented, and at each inspection, the component’s degrada-
tion level is updated and corresponding new RULs are es-
timated. Then the RUL of the system is determined by the
k − out − of − n : F structure. If the system’s RUL fall
below a predefined threshold, at the system level, an inter-
vention should be made, and so the component level of the
framework is triggered. At this level, a list of the compo-
nents to maintain is made based on the components’ RULs
and the economic dependencies using opportunistic mainte-
nance strategies. Nguyen et al. in (K.-A. Nguyen, Do, &
Grall, 2015) used the same concept of the framework pre-
sented in (K. T. Huynh et al., 2015), except they improved
the framework by implementing the use of reliability ob-
tained from the RUL distribution instead of using the RUL
directly. Also in this updated framework, the objective at the
component level is now defined as selecting and grouping
the components to be maintained based on their predicted
reliability and economic and structural dependencies while
the system level remains unchanged by comparing the re-
liability of the system to a threshold. Unlike the previous
works, Verbert et al. (Verbert, De Schutter, & Babuška,
2017) started by optimizing the maintenance strategy at the
component level and then moved to the system level. First,
for each component, the maintenance options are evaluated
considering the risk tolerance and the predicted degradation
level, and then the optimal option is chosen. After choosing
the maintenance option for each component, at the system
level, the maintenance strategy is optimized to account for
economic and structural dependencies and the component’s
chosen maintenance options.

3.1.6. Synthesis

Tables 6 and 7 describe these papers by specifying if they con-
sidered multi-components, the degradation model, the objec-
tive of the optimization and the method, how the RUL of the
components/systems is used and the corresponding applica-
tion domain. Authors that considered post-prognostic main-
tenance planning for single machine have mostly (18 papers
out of 28 (64.3%)) studied multi-component systems. One
can also see that stochastic processes, especially the gamma
process, are extensively used as a degradation model for sin-
gle machine maintenance decision-making compared to other
models (see Table 3).

Except for two works that aimed to maximize either the reli-
ability or the lifetime of the system, all works aimed at min-

Table 3. Statistic Summary of Degradation Models for Single
Machine Maintenance Planning

Type of Model Publications Percentage
Stochastic Process 12 42.9%

Data Driven 4 14.3%
Physic Based 2 7.1%

Other 4 14.3%
Not Mentioned 6 21.4%

imizing maintenance cost. In most of the works, RUL is
used in the decision-making process to determine the dates of
maintenance interventions or/and as a term in the cost func-
tion (see Table 4 Note that the sum is not equal to 100% be-
cause some works use more that one method of integration).

Table 4. Statistic Summary of RUL Integration for Single
Machine Maintenance Planning

Method of Integration Publications Percentage
Maintenance Date 13 40.4%

Cost Function 14 50%
Strategy/Opportunity Selection 6 21.4%

Not Integrated 3 10.7%

Most of these works actually do not present an optimization
method other than a simple algorithm that compares the RUL
to a safety threshold to schedule the maintenance interven-
tion, or in the case of multiple components, the authors usu-
ally use a grouping algorithm to group the maintenance ac-
tivities on the different component, assuming that maintain-
ing two or more components at the same time costs less than
maintaining each component alone.

Table 5 presents the distribution of the application domain
of the found works. One can notice that half of the existing
works on single machine maintenance scheduling are made
in the context of manufacturing application.

Table 5. Statistic Summary of Application Context for Single
Machine Maintenance Planning

Application Domain Publications Percentage
Manufacturing 14 50%

Aerospace 5 17.9%
Railways 3 10.8%

Wind Turbines 2 7.1%
HVAC 2 7.1%

Not Mentioned 2 7.1%

3.2. Multiple Machines Maintenance Planning

In this subsection, works on maintenance planning on multi-
ple machines are described. These papers are classified ac-
cording the type of application.
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3.2.1. Production Shop Floor

Yang et al. proposed in (Yang, Djurdjanovic, & Ni, 2008)
an approach to schedule maintenance activities on manufac-
turing systems with different typologies of machines. The
decisions were based on the forecasted degradation of the
machines. Ambani et al. (Ambani, Li, & Ni, 2009) de-
fined an approach to chose the adequate maintenance policy
for multiple serial machines to maximize overall profit. To
avoid conflicts caused by the use of common material re-
sources, they proposed two policies for prioritization based
on stoppage time and failure sensibility. In (Matyas, Nemeth,
Kovacs, & Glawar, 2017), the authors proposed a framework
for maintenance planning in automotive manufacturing in-
dustries based on data collected from programmable logic
controller (PLCs), quality control services, machine failures
and production planning. This framework correlates real-
time data to historical failures to predict failure events, health
indicators (like RUL) and quality deterioration. The interven-
tion dates are then suggested by the perspective maintenance
support system, thus allowing the operators to make the final
decision. In (Meraghni, Terrissa, Ayad, Zerhouni, & Varnier,
2018), Meraghni et al. developed a PHM framework based
on Internet-of-Things and cloud computing and cyber phys-
ical systems to help maintenance decision-making in big in-
dustries. The framework includes maintenance resource al-
locations, maintenance planning, and traveling cost oriented
for maintenance services based on the estimated RUL of the
different machines. An example of maintenance technicians
traveling cost minimization is given in which the positions of
the machines are known and their relative RUL is provided
by the prognostic service.

3.2.2. Wind Farms

Tian et al. (Tian, Jin, Wu, & Ding, 2011) addressed the
problem of maintenance scheduling for multiple-component
wind Turbines in Which a wind turbine is considered a se-
rial connected components (i. e. , if one component fails,
the whole system fails). The only dependency considered in
this work is economic factors. The policy is based on the
failure probabilities that are extracted from the RUL of the
wind turbines. Haddad et al. developed, in (Haddad, Pe-
ter, & Pecht, 2011), a new real-option model to optimize the
maintenance of offshore turbines based on prognostic indi-
cations. The real-option analysis is used to value the main-
tenance options depending of the RUL of the turbines, thus
leading to resolution of the optimization problem of whether
to send a maintenance vessel, and if the maintenance team
is to be sent, which turbines should be maintained. Lei et
al. developed in (Lei & Sandborn, 2018) a prognostic-based
maintenance schedule for wind turbines that are subject to
power purchase agreements and prefixed maintenance oppor-
tunities. The estimated RUL of the wind turbines is used to
define the suitable date of the predictive intervention from

the available opportunities. The RUL is periodically esti-
mated to reduce the uncertainty level. At each sampling time,
the decision is updated to make sure that the power purchase
agreement constraints are satisfied. Wang et al. (P. Wang,
Tamilselvan, Twomey, & Youn, 2013) developed a prognos-
tic informed maintenance decision-making process that takes
into consideration the different operational and maintenance
costs. In this framework, the degradation level is monitored
through periodic inspections. Once it exceeds a predefined
threshold, the next maintenance intervention is set based on
the estimated RUL by finding a trade-off between operational
and maintenance costs.

3.2.3. Aircraft Fleets

Goebel et al. (Iyer et al., 2006), proposed a framework for
post-prognostic decision-making for airplanes under the con-
straints of workshops and spare parts availability. Although
the work did not include the use of prognostic information, it
was a promising approach that was referenced by almost all
of these papers. Balaban and Alonso proposed, in (Balaban &
Alonso, 2012), an approach for maintenance decision-making
based on prognostic information in the aerospace domain.
Rodrigues et al. (Rodrigues et al., 2015) developed an ap-
proach to select system components that need to be replaced
to lead the system to a desired safety level. The method is
based on the combination of system RUL and the system
architecture using a fault tree analysis to obtain the failure
probability. Cai et al. (Cai, Li, & Chen, 2016) presented
a decision support module for aero-engine maintenance that
integrates the RUL of the aero-engine and the repair time
distribution to optimize the cost of maintenance of an air-
plane. Li et al. described, in (Z. Li, Guo, & Zhou, 2016),
a prognostic-based maintenance scheduling for an Air Force
fleet. The maintenance scheduling optimizer considers sev-
eral inputs like the predicted aircraft health indicators, the
amount of workload of each maintenance activity, the un-
certainties and the remaining flying hours from the already
elaborated flying hour program. Lin et al. developed in
(L. Lin, Luo, & Zhong, 2017), a decision support system for
aircraft fleets maintenance planning to jointly optimize the
fleets availability and its maintenance cost. A novel reliabil-
ity function is introduced that integrates the real-time load
assessment with the current health state of the machine. The
RUL is estimated from the reliability function and is used in
the decision-making process by penalizing the waste of RUL.
In the same context, Feng et al. (Q. Feng, Bi, Zhao, Chen,
& Sun, 2017), proposed a fleet maintenance strategy to min-
imize overall maintenance costs while meeting the mission
risk requirements. The approach is based on dynamic two-
level decision-making that supports a competition and a co-
operative game. The RUL of each aircraft is estimated, and
the respective failure probability is deduced. According to
their RUL and failure probability, the aircrafts are classified
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into two groups: a maintenance group and a standby group.
Then a cooperative game takes place between two randomly
chosen members of each group to satisfy the mission require-
ments. The results explain how the combination of the two-
level games provides an optimal solution for the maintenance
problem. Luo et al. (Luo & Lin, 2018) solved the main-
tenance decision problem for aircraft fleets using a support
vector regression method. The RUL of each aircraft is esti-
mated to determine its reliability level. Then it is integrated
into the maintenance cost by penalizing the waste of RUL.
The proposed approach aims, on the one hand, at minimizing
the maintenance cost by minimizing the RUL waste and at
maximizing the fleet availability and reliability on the other
hand.

3.2.4. Geographically Distributed Assets

Jin et al. (Jin et al., 2015) proposed a framework for plan-
ning maintenance activities for a geographically distributed
manufacturing system. The resulting schedule optimizes the
spare parts inventory, resources management and remaining
useful life of the machines. Meraghni et al. (Meraghni,
Terrissa, Zerhouni, Varnier, & Ayad, 2016) introduced a
framework that provides a schedule of maintenance activities
and assigns a maintenance team to each activity for a geo-
graphically distributed assets. The methods was tested on
cellphone towers in which the PHM system used Internet-of-
Things and cloud computing. Aizpuraua et al. (Aizpurua,
Catterson, Papadopoulos, Chiacchio, & D’Urso, 2017) of-
fered new system-level dynamic maintenance planning based
on cost-effective grouping of assets. This approach inte-
grates prognostics information, especially the RUL of com-
ponents, and takes into consideration the dynamic economic
and stochastic dependencies between components. The main
idea is to schedule predictive maintenance activities for criti-
cal components while run-to-failure the uncritical ones.

3.2.5. Railways

Camci (Camci, 2014) defined a new variant of the travel-
ing salesman problem that takes into consideration the travel
time between machines that need maintenance, that are mod-
eled as cities and the time of their maintenance. This variant
was tested on geographically distributed railways switches.
This approach aims at minimizing overall cost by schedul-
ing maintenance activities under the constraint of the travel
time. In his later work, Camci (Camci, 2015) used the same
principle of the traveling maintainer problem (Camci, 2014)
with new constraints on the number of working hours of the
maintenance team. In this work, Camci defined the frequency
of maintenance scheduling and considered schedule changes
in case of failures. In (Durazo-Cardenas et al., 2018), the
authors designed a maintenance decision support system for
railways based on massive data fusion and systems engineer-
ing. The proposed system uses collected data to evaluate

the degradation levels and the health states of the railways.
The pattern of the degradation is then matched with historical
data, and if the level of degradation exceeds a threshold, an
alarm is generated and maintenance interventions are sched-
uled according to the operation schedule and the availability
of maintenance resources. Villarejo et al. (Villarejo, Jo-
hansson, Galar, Sandborn, & Kumar, 2016), proposed a hy-
brid model for fault diagnosis, prognostics and maintenance
decision-making for railways system. Information is com-
bined from expertise of maintenance workers, rolling stock
data, operating conditions and infrastructure data to assess
the health of the system and estimate its RUL. The resulting
prognostics information is used to plan maintenance interven-
tions to reduce the slowdowns and shutdowns of a rail track.

3.2.6. Synthesis

Tables 12 and 13 summarize these papers by specifying if
the papers considered multi-components, the used degrada-
tion model, the objective of the optimization and the used
method, how the RUL of the components/systems are used
and the corresponding application domain. One can notice
that most of the works do not specify the used degradation
model or they assume that the degradation is obtained from
historical data (see Table 8). A common assumption in these
works is that the RUL of the component and/or the system is
supposed to be obtained from a prognostic process.

Table 8. Statistic Summary of Degradation Models for Multi
Machine Maintenance Planning

Type of Model Publications Percentage
Data Driven 8 36%
Physic Based 1 4.5%

Other 4 18%
Not Mentioned 9 40.5%

From Table 9, one can deduce that the objective behind in-
tegrating prognostics and health management technologies in
the case of multi-machines maintenance scheduling can be ei-
ther cost-oriented (by minimizing maintenance costs, or max-
imizing profits) or reliability-oriented (by minimizing failure
probabilities and maximizing availability and reliability).

Table 9. Statistic Summary of Objective for Multi Machine
Maintenance Planning

Type of Objective Publications Percentage
Maintenance Cost 14 64%

Profit/Benefit 3 13.5%
Reliability 4 18%

Other 1 4.5%

As these tables show, most works that focused on multi-
machine systems (55%), use the remaining useful life as
either a penalty on the waste of RUL in the cost function or
as a criteria to define the maintenance dates by comparing it

10
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to a safety threshold (see Table 10).

Table 10. Statistic Summary of RUL Integration for Multi
Machine Maintenance Planning

Method of Integration Publications Percentage
Maintenance Date 11 50%

Cost Function 12 54.5%
Strategy/Opportunity Selection 3 13.5%

Table 11 presents the distribution of the application domain
of the found works. One can notice that half of the existing
works on multi machine maintenance scheduling are made in
the context of aerospace application.

Table 11. Statistic Summary of Application Context for Multi
Machine Maintenance Planning

Application Domain Publications Percentage
Manufacturing 4 18%

Aerospace 7 31.5%
Railways 4 18%

Wind Turbines 4 18%
Geo-Distributed 3 13.5%

4. OPERATIONAL DECISIONS

In this section, the works that considered operational decision-
making based on the health information of the systems are
studied. As mentioned, operational decisions in the PHM
context can be divided into three categories: (i) production
planning and mission assignment based on the RUL of the
machines, (ii) logistics planning in which the spare parts or-
dering is optimized to avoid stock shortage and minimize the
cost of storage and ordering, and (iii) automatic control de-
cisions in which the control parameters are optimized while
considering the health information of the actuator. These
categories and their related works are discussed in the next
subsections.

4.1. Production and Mission Planning

For this type of operational decisions, the authors studied the
planning of tasks and/or missions on different configurations
of systems. There are two levels for this problem. Some au-
thors considered the mission or tasks assignment by choosing
which machine to perform a given mission based on predic-
tive information either of the machine (e. g. degradation level
or RUL) or of the mission (e. g. the estimated effects of per-
forming such task on the given system). While other authors
considered the scheduling and the sequencing of missions and
tasks on the given system also while considering prognostic
information. The works proposed different resolution meth-
ods to solve the problem while optimizing an objective func-
tion under several constraints imposed by the considered ap-
plication.
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Tang et al. (L. Tang, Hettler, Zhang, & DeCastro, 2011) pre-
sented a real-time autonomous vehicle PHM and contingency
management application framework. The framework has the
ability to proactively and autonomously adapt to changes in
the health states of the vehicle while achieving all acceptable
subsets of the mission objective. This is done by low and
medium control levels (by controller configuration) and high-
level mission re-planning and optimization while integrating
prognostics indicators like the end-of-charge and RUL. The
authors focused on mission re-planning so that when a fault
occurs, the system periodically estimates the RUL values,
which are then used as new constraints or additional elements
in the cost function of the mission planning algorithm. Cho-
lette et al. (Cholette, Celen, Djurdjanovic, & Rasberry,
2013) implemented prognostic information in the production
scheduling of semi-conductors. The solution proposed the
scheduling of products between different machines by rerout-
ing products from a degraded machine to a less degraded one
to increase yield and the probability of mission success. To
satisfy a production demand and maximize the production
horizon, Herr et al. proposed different heuristics in (Herr,
Nicod, & Varnier, 2014). The algorithm consists of choos-
ing q of the m parallel machines that are capable of perform-
ing independent and identical tasks. Their adequate running
profiles are also determined to fulfill the mission (production
level). Zhang et al. developed in (Zhang, Tang, Decas-
tro, & Goebel, 2011) and (Zhang, Tang, DeCastro, Roemer,
& Goebel, 2014) a mission-planning algorithm for an au-
tonomous vehicle, that enhanced prognostics information in
the decision-making process. The algorithm is based on a D∗

search algorithm to find a suitable road on an unknown map.
The best road was chosen gradually as the rover moved. Dif-
ferent objectives were considered in the objective function,
including RUL optimization. Medeiros et al. (de Medeiros,
Rodrigues, Santos, Shiguemori, & Júnior, 2014) presented a
task assignment algorithm that considers health monitoring
information obtained by the distribution of components RUL
and the system fault tree representation. The proposed re-
ceding horizon task assignment (RHTA) algorithm aims at
increasing the probability of the tasks’ success. Rodrigues et
al. (Rodrigues, Gomes, & Alcântara, 2018) proposed a res-
olution of the task assignment problem for unmanned aerial
vehicle (UAV) subject to the remaining useful life of the ve-
hicles. The modified Receding Horizon Task Assignment al-
gorithm uses a rejection list to reduce the number of mission
combinations. At each step of computation, the obtained sub
problem (after applying the reject list) is considered a mul-
tiple choice multidimensional knapsack problem. Chretien
et al. (Chrétien, Herr, Nicod, & Varnier, 2016) proposed
a post-prognostic decision framework for scheduling multi-
stack fuel cell systems under service constraints. The prob-
lem considers the fuel cells parallel independent machines.
It was solved using two convex resolution methods, mirror
prox algorithm and adaptive lasso algorithm. Herr et al. de-

veloped a framework in (Herr, Nicod, Varnier, Jardin, et al.,
2017) for managing fuel cell stacks to satisfy a load demand
for as long as possible. The problem combined production de-
cisions by selecting the power output of each fuel cell with the
task assignment decisions by choosing which fuel cell stacks
to run. The problem was then solved using mixed integer
linear programming that integrated prognostics information
about the health state of fuel cell which are subject to wear
and tear behaviors. Zuo et al. (Zuo, Cadet, Li, Bérenguer,
& Outbib, 2020) proposed a heuristic that manages the load
distribution for a two-stacks fuel cell system to maximize
the service time. The authors considered that the fuel cells’
degradation could be described by a Gamma process that de-
pends on the load of the system. Skima et al. (Skima,
Varnier, Dedu, Medjaher, & Bourgeois, 2017) applied post-
prognostics decision-making for a conveying surface made of
micro-electro-mechanical systems. The problem in this paper
is choosing the proper path to transport micro-objects from a
source block to a destination block in a way that maintains the
system’s best conditions for as long as possible. To improve
the conveying surface performance, the proposed algorithm
combined the use of already obtained prognostics information
to maximize the lifetime of the surface and the use of travel
time of the objects to optimize the utilization of the conveying
surface. Tamssaouet et al. (Tamssaouet, Nguyen, & Med-
jaher, 2019) proposed to maximize the RUL of a rail vehicle
through the optimization of the mission’s parameters. The au-
thors considered that the rail vehicle is composed of several
components and they modeled the overall health of the ve-
hicle through an inoperability input-output model. They used
genetic algorithm to optimize a railway vehicle’s mission pro-
file parameters (e. g. speed, load, etc) to maximize the RUL
of the considered system.

Table 14 papers, that treated production or mission planning
in the context of PHM. Most of these works are built on the
assumption of having a prognostic module that provides the
RUL of the machines and/or their components. This assumed
prognostic module also provides the health state requirement
of certain production jobs or mission and how much they
affect the systems’ RUL. For these reasons, most of these
works do not specify the degradation model (45.5% of found
papers) or the method used to estimate the RUL. Instead, they
focus on the decision process and its optimization procedure.
The objectives of these papers can be classified into three
categories: (i) time-oriented objective (in which the focus is
on extending the planning horizon 27% or the life time of
the system 18%. or minimize the mission duration 18%);
(ii) cost-oriented objective by maximizing the benefits 9%;
or (iii) reliability-oriented by minimizing failure risk 28%.
Various optimization algorithms are used in the decision-
making process: local search algorithms, linear program-
ming, path-finding methods and task assignment methods.
The integration of the RUL into the decision-making process
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for production and mission planning is more dynamic than
for maintenance decisions. This can be observed through
the use of RUL not only as a penalty in the cost function or
as a constraint but also as a decision variable for selecting
the suitable path (63.5% of the found works) or by making
a reject list in the case of mission assignment (18% of the
found works). Another important point is that most of these
decision-making processes are based on one RUL estimation
for the whole decision-making process. Thus, the dynamics
of RUL estimation are not considered in Table 14.

4.2. Logistics Planning

The authors studied the planning of logistic movements on
different configurations of systems. They considered the or-
dering of spare parts and inventory management while con-
sidering the predictive information of the operating system.
The works proposed resolution methods to solve the prob-
lem while optimizing an objective function under several con-
straints imposed by the considered application.

Li and Ryan (R. Li & Ryan, 2011) modeled the deterioration
of components with a Wiener process and used a Bayesian
approach to estimate the distribution of the RUL. The pre-
dicted end-of-life is updated periodically by integrating the
new available system data through condition monitoring. The
estimated RULs define the demand for spare parts in the fu-
ture. This demand is then used to order the spare parts.

To meet the delivery commitment of at least possible cost,
Julka et al. (Julka et al., 2011) integrated the use of prog-
nostic information in the discrete event logistics systems
(DELS). The RUL was integrated into the D-SIMPAIR sys-
tem to optimize the inventory and movement of spare parts by
predicting the system failure date and moving the spare parts
to a location where maintenance will be conducted. Based
on the same context, Cui et al. (Cui, Shi, & Wang, 2015),
proposed a modification of the DELS. The approach is based
on a two step RUL estimation in which the first estimated
RUL is used to define the logistics movements according to
the maintenance events activities, while the second estimated
RUL is used to calibrate the fault occurrence time. The ob-
tained system aims at arranging the spare allocations ahead
of the fault occurrence, which largely reduces the logistic de-
lays. Lin et al. (X. Lin, Basten, Kranenburg, & van Houtum,
2017) considered the case of a group of identical machines
that each contained one critical component. The degradation
of these components is monitored and the remaining useful
life distribution of each part is estimated. The RULs are up-
dated at each inspection period, and the results are used to
determine the distribution of the demand for spare parts in
the upcoming periods while considering a non zero lead time
for spare parts delivery.

Usually, logistic decision-making is highly related to mainte-
nance decisions. To our knowledge, only four works treated

logistics decisions alone. These works were described earlier
and are summarised in Table 15. One can note that stochas-
tic processes are commonly used for the logistics decision-
making, to implement the uncertainties in estimations. Al-
though all these works have a common cost-oriented objec-
tive to minimize the inventory and logistics costs, various
methods are used to achieve that. As for the RUL, it is es-
timated with different dynamics from only one time to a pe-
riodic estimation, and it is used mainly to define the ordering
dates for the spare parts, taking into consideration the lead-
time to deliver the orders. Most of the works that treat logistic
decisions, are in aerospace or heavy manufacturing applica-
tions, in which the spare parts are large and thus require a
large storage facilities. Thus the cost of inventory is expen-
sive, and the storage of multiple spare parts can be difficult.

4.3. Automatic Control

In this subsection, the authors considered smaller parts of the
system (i. e. actuators). They proposed enhancement of the
control loop by considering the health state of the compo-
nent. Different methods are used to integrate the predictive
information in the control loop to maximize the actuator life
spin or its’ reliability level.

Bogdanov et al. (Bogdanov, Chiu, Gokdere, & Vian, 2007),
designed a linear-quadratic regulator (LQR) controller that
has a single scalar as a parameter that establishes a trade-
off between performance, the desired lifetime and the con-
trol power. The actuator in the paper is supposed to be un-
der stochastic external load that affects its lifetime. A con-
straint is made on the desired lifetime, and the main work
is to optimize the parameter of the LQR controller. Brown
et al. (Brown et al., 2009) presented a methodology for de-
signing a fault-tolerant controller that re-configures the actua-
tors’ control activity using prognostics information by trading
off performance and control power. Composed of electro-
mechanical actuators, the system is supposed to complete a
critical mission within a time window. This defines the lim-
its of the performance of the actuator and thus the controller
has to be able to reconfigure the control activity to secure an
acceptable performance level that satisfies the mission need.
Later, Brown et al. (Brown & Vachtsevanos, n.d.) presented
an approach in elaborating a prognostic-based reconfigurable
control for electro-mechanical actuators. The framework is
based on a PHM module parallel to the controller. The main
idea consists of comparing the RUL to a desired value. If the
system can secure the desired lifetime, then no action has to
be taken. Otherwise, a reconfiguration is triggered by allow-
ing new acceptable minimum and maximum tracking errors
that will change the cost function of the model predictive con-
troller (MPC). Consequently, the control signal will change
and some set-point adjustments will be obtained. Bole et
al. (Bole, Tang, Goebel, & Vachtsevanos, 2011) developed a
prognostic-based controller that will adaptively allocate the
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actuator’s load to optimize a risk metric based on the un-
certain RUL. The prognostic-based fault-adaptive controller
finds a trade-off between minimizing the failure risks and the
system’s overall performance “without becoming overly con-
servative”. Pereira et al. (Pereira et al., 2010) developed a
predictive control based on the prognostics and health mon-
itoring of the actuators. The main idea is to determine the
remaining allowed degradation until the end of life of the sys-
tem and then distribute it uniformly on the remaining time un-
til the next scheduled maintenance. This approach has been
tested on systems with redundant actuators. In the same con-
text, Langeron et al. (Langeron et al., 2013), proposed a
LQR controller, in which the matrices Q and R are modified
with the evolution of the system degradation. Nguyen et al.
(D. N. Nguyen, Dieulle, & Grall, 2014) improved the RUL
estimation process of the closed loop systems. The output
RUL is then used to configure an adaptive controller. Vieira
et al. (Vieira, Galvão, & Yoneyama, 2015) proved the exist-
ing relationship between the degradation of the actuator and
the loss of its effectiveness. They also used the results in the
configuration of the LQR controller parameters. The results
obtained in (Vieira et al., 2015), were used by Langeron et al.
in (Langeron, Grall, & Barros, 2015) to model a closed loop
system that can fully implement the control law regardless of
its degradation. The system is controlled by a LQR in which
its parameters are adapted using the degradation level of the
actuators through its RUL. Grosso et al. (Grosso, Ocampo-
Martinez, & Puig, 2016) proposed an improved reliability-
based economic model predictive control strategy that is sim-
ilar to the predictive control proposed by Pereira et al. in
(Pereira et al., 2010). The idea consists of computing and
distributing the remaining allowed degradation level on the
remaining time to maintenance but with an additive dynamic
stock policy in the optimization problem. The system has to
guarantee the spatial and temporal re-allocation of water re-
sources under demand uncertainty. This strategy was used
on a centralized control for distributed actuators of the wa-
ter network distribution of Barcelona. Niu and Liu (Niu &
Liu, 2018) used condition monitoring to estimate the current
degradation of the component. Then, the authors estimated
the evolution of the component’s fatigue and damage under
different control laws. Finally, they extracted the control law
that stabilise the evolution of fatigue and damage to extend
the remaining useful life of the component.

Table 17 summarizes these works. Most aim to compute new
control set points or controllers’ parameters taking into con-
sideration the health state of the actuator. Since the applica-
tion can be considered a low-level control process, the degra-
dation models are most likely based on the physics of the
degradation of the actuator. In some cases, when the physics
of degradation are complex the authors tend to use stochas-
tic processes to model the deterioration of the actuator (see
Table 16).
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Table 16. Statistic Summary of Degradation Models for Con-
trol Decisions

Type of Model Publications Percentage
Physic Based 5 45.5%

Stochastic Process 4 36.5%
Not Mentioned 2 18%

As Table 17 shows, almost all the works aim to extend the
lifetime of the actuator (64%) by balancing the performance
and the control power. Automatic control loops are charac-
terized with high speed feedback dynamic. Thus, the esti-
mation of RUL needs to follow the same high speed that is
guaranteed by the chosen degradation model and the estima-
tion techniques. Consequently, the decision-making process
needs to match the speed of the feedback dynamic and the
speed of changes in the actuators’ health state. Therefore, one
can note that works that investigate automatic control usu-
ally avoid classic optimization algorithms, which can take a
long time to compute and find solutions, and to use analytical
methods instead. As for the RUL, it is most commonly used
as a constraint in the computation of new control settings or
included in the function that defines the new settings or in the
cost function itself.

5. MIXED DECISIONS

Mixed decision-making in this work refers to works that
jointly optimize operational and maintenance decisions. As
noted in the previous section, operational decisions are clas-
sified into three subcategories. Therefore, mixed decisions
can also be classified into three subcategories: (i) mission
and production planning jointly with maintenance, (ii) auto-
matic control with maintenance scheduling, and (iii) logistics
or spare parts ordering jointly with maintenance planning.
These subcategories are described in the following subsec-
tions. In addition, some works do not present a specific type
of mixed decision-making, but they present frameworks to
mixed decision-making on an enterprise level. These works
are also discussed in this section.

5.1. Mission or Production Planning Jointly with Main-
tenance

Medeiros et al. (De Medeiros, Rodrigues, Kern, Dos Santos,
& Shiguemori, 2015) proposed a joint task assignment and
maintenance scheduling for unmanned aerial vehicle (UAVs).
A fault tree is used to determine the failure probability of the
system based on the components RUL, while a RHTA al-
gorithm with PHM information is responsible for the task
assignments. Herr et al. in (Herr, Nicod, Varnier, Zerhouni,
et al., 2017) jointly optimized the rolling stock assignment
and maintenance scheduling of trains. The main idea is to
assign the suitable train to each trip and minimize the waste
of useful life of components while avoiding their failure by

taking into consideration the predefined train timetables and
prognostics information. Niknam et al. (Niknam, Kobza, &
Hines, 2015) developed a method to optimize the decision-
making to control the system and schedule its maintenance.
The method was tested on a variable speed wind turbine by
controlling its speed and planing the maintenance actions.
Pan et al. (Pan, Liao, & Xi, 2012) proposed a mathemat-
ical programming formulation to solve the joint problem of
production and maintenance scheduling on a single man-
ufacturing machine. In this work, the RUL of the system
is estimated and then remaining maintenance life (RML) is
deduced by respecting a minimal reliability level. Once the
RML is obtained, production and predictive maintenance
are scheduled in a way that minimize the total tardiness of
jobs and respects the RML constraint. Another contribu-
tion presented in this paper is the influence of the age of
the machine on its degradation dynamic. It is assumed that
after a certain number of maintenance interventions, the ma-
chine deteriorates more quickly. Wang (W. Wang, 2014)
used a prognostic information based method to schedule the
suitable task and preventive maintenance on a stochastic de-
grading single manufacturing machine. The method aims
at maximizing the long-term expected profit per unit time.
Fitouri et al. (Fitouri, Fnaiech, Varnier, Fnaiech, & Zer-
houni, 2016) proposed a heuristic to solve the problem of
job shop production and predictive maintenance schedul-
ing. The approach aims at minimizing the Makespan and
the total cost of maintenance based on prognostic informa-
tion. In their approach the RUL of each machine depends on
the task in progress. Ladj et al. (Ladj, Varnier, Tayeb, &
Zerhouni, 2017) solved the integrated production and main-
tenance scheduling for a multi-functional single machine,
to minimize the total maintenance cost, in which each job
is characterized by a degradation level. The solution con-
tains two methods mixed-integer linear programming and
pro-genetic algorithms, and took into consideration the con-
sumption of each job in terms of degradation. Later, the
same authors in (Ladj, Benbouzid-Si Tayeb, Varnier, Dridi,
& Selmane, 2017) proposed a method for jointly planning
production and maintenance activities based on prognostic
information in the case of permutation flow-shop scheduling
problems. The predicted RUL and degradation values are
associated with each machine when processing each kind of
job. Uncertainties in this work are modeled through the use
of fuzzy logic to model the RUL distributions. The main
objective is to find the best sequencing of jobs to optimize the
maximum completion time (Makespan) and the maintenance
cost simultaneously. Desforges et al. (Desforges, Diévart,
& Archimède, 2017) presented a generic equation to evaluate
the system’s capacity to satisfy the requirements of future
production planning. The object oriented Bayesian network
based equation includes different levels of system modeling:
a functional model, a structural model and a behavior model.
The prognostics of different components are used with the
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future load to assess the system capacity at fulfilling its fu-
ture plans while suggesting which components to maintain to
guarantee a predefined minimal level of reliability. Cheng et
al. (Cheng, Zhou, & Li, 2018) proposed a method that op-
timizes the production, quality control and condition-based
maintenance for a stochastic deteriorating manufacturing
system. A periodic inspection CBM policy is used to define
imperfect maintenance actions. The degradation level of the
component is combined with the quality control inspection
data to define the maintenance dates. While the system is
producing, the degradation of its components is monitored,
and the ratios of defectives from the quality control inspec-
tions are compared respectively to a preventive threshold
and a quality threshold. The excess of degradation level
or the ratio defect causes the system to stop for preventive
or corrective maintenance. Bencheikh et al. (Bencheikh,
Letouzey, & Desforges, 2018) proposed a multi-agent-based
system to solve the problem of jointly scheduling production
and maintenance on a multi-purpose multi-machine work-
shop. Each machine is capable of different functions, and the
scheduling of the production activities and maintenance inter-
ventions takes into consideration the current and future health
state of the machine. Bougacha et al. (Bougacha, Varnier,
Zerhouni, & Hajri-Gabouj, 2018) addressed the problem of
scheduling jointly maintenance and production tasks on a
single multi-purpose machine. In this paper, the scheduling
of production jobs is based on the machine capacity in satis-
fying the task requirements and guaranteeing a certain level
of reliability. Whenever the estimated machine degradation
reaches a predefined threshold, a preventive maintenance in-
tervention is planned. The main idea is to find the suitable
trade-off between producing with different production speeds
and maintaining the system components to maximize the to-
tal profit. In (Q. Liu, Dong, Chen, Lv, & Ye, 2019), the health
state and the RUL of the machine are used to schedule jointly
production activities and maintenance actions to improve the
machine utilization, decrease the failure rate, and minimize
the total costs, including the production cost, maintenance
cost, downtime cost and tardiness cost. In this work, Liu et
al. used a Weibull distribution to model the degradation
of the machine. Benaggoune et al. (Benaggoune, Mer-
aghni, Ma, Mouss, & Zerhouni, 2020) studied the effects of
RUL uncertainties on the resolution of the joint problem of
maintenance scheduling and production planning for a multi
purpose single machine. The authors used a particle swarm
optimization algorithm to search for the best schedule of pro-
duction jobs and maintenance interventions that minimizes
the maintenance cost.

Table 18 summarizes these papers. One can note the big va-
riety in the degradation models used for these works. Some
works did not focus on the degradation model of the system
or the components and just assumed that each job has a fail-
ure probability related to the system health. Most likely these

failure probabilities are not explained and the authors did not
show how they obtained such information. Others used deter-
ministic models by supposing that the degradation of the sys-
tem can be described through a simple function (exponential
as in (Bougacha et al., 2018)) or that each job/task is asso-
ciated with a predetermined level of degradation called task
severity in this paper. The objectives of these works can be
gathered under three categories: (i) production-oriented ob-
jectives, which can be found in the literature of classic pro-
duction scheduling problems like minimizing the tardiness
or the Makespan; (ii) maintenance-oriented objective, by try-
ing to minimize maintenance cost or minimizing the waste of
the useful life; and (iii) mixed objectives, that includes both
maintenance and production objectives indirectly like maxi-
mizing the profits, or multi-objective problems in which there
are two objectives, like in the case of (Fitouri et al., 2016).
Thus, different kinds of optimization method have been used
to solve the problems. Finally, RUL is used differently in
these works, mostly to define the capacity of achieving a task,
to define the maintenance date or as a constraint by compar-
ing it to a threshold. In other works, the RUL is directly used
in the cost function by penalizing the waste of useful life or
by implementing the failure risk.

5.2. Automatic Control Jointly with Maintenance

Langeron et al. (Langeron, Grall, & Barros, 2017), pre-
sented an approach that defines operational decision-making
by changing the matrix Q and R of the LQR controller and
scheduling the maintenance actions based on the RUL of the
system. This approach was tested on a DC motor by varying
its speed and planning the replacement of its bearing. Jain
et al. (Jain & Lad, 2017) established a relationship be-
tween product quality and the tool degradation level. Based
on this relationship, they designed a dynamic policy for op-
timizing process quality control and preventive maintenance.
The method integrates real-time RUL estimations. The pro-
duction process starts with its optimal pre-established param-
eters. Then, at each sampling time, the RUL of the tool and
its health status are estimated, upon which the parameters of
the production process are re-adapted to the RUL. Mainte-
nance interventions are scheduled in parallel in a way that
balances the cost of waste of remaining life and the cost of
loss of quality computed through the ratio of defects. Grif-
fith et al. (Griffith, Yoder, Resor, White, & Paquette, 2014)
proposed a structural health and prognostic management sys-
tem to enhance the use of prognostic information like health
indicators and RUL in the maintenance decision-making and
prognostic control jointly. The health information in this case
are used to define the operation controls and the maintenance
intervention scheduling.

Niu and Jiang (Niu & Jiang, 2017) proposed a novel method-
ology to optimize the maintenance of braking system in rail
operations. First, they compute the offline braking force pro-
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file based on the condition previous experiences. Then, they
compute the online braking force profile that relieves the wear
of the brake. Finally, on a system level, they plan mainte-
nance actions on the brakes to minimize the cost of mainte-
nance per km. extends the life of the brakes.

5.3. Logistics Jointly with Maintenance

Wang et al. in (Z.-Q. Wang, Wang, Hu, Si, & Zhang, 2015)
presented a RUL-based spare parts ordering and predictive
maintenance scheduling for a stochastical deteriorating non-
repairable critical system. Wiener process was used to model
the degradation of the system, in which its parameters are es-
timated from the real-time condition monitoring data. The
obtained Wiener process is used to estimate the RUL distri-
bution that are used to update ordering and the maintenance
schedule. This method aims at minimizing the expected cost
rate over an infinite time horizon. Wang et al. in (Z. Wang,
Hu, Wang, Kong, & Zhang, 2015) proposed a prognostic-
based spare part ordering and maintenance intervention for
an aerospace system with a random lead time. The dynamic
method consists of periodically collecting new monitoring
data related to the condition of the system. Based on these
data, the degradation model parameters is estimated, and the
RUL is predicted. The RUL is then used to feed the optimiza-
tion of the ordering date and the maintenance intervention
schedule. Wang et al. (C. Wang, Xu, Wang, & Zhang, 2018)
proposed a multi-spare ordering policy for complex systems
with multiple continuously deteriorating components. The
method consists of computing the overall reliability of the
system from the components’ reliability. To guarantee a pre-
defined level of reliability of the system, some components
are chosen to be maintained or replaced and their respective
spare parts orders are issued to minimize the overall cost of
maintenance, ordering and storage. Cai et al. (Cai, Yin,
Zhang, & Chen, 2017) studied a joint optimization of mainte-
nance and spare part inventory with appointment policy. The
authors combined the classic CBM approach with periodic
inspection of components with the estimation of the RUL to
appoint spare parts to the component with an estimated RUL
below a specific threshold. Once the spare part inventory is
lower than a predefined security level, the spare parts orders
are placed. Later, the authors of (Cai, Li, & Chen, 2017)
considered the same approach but this time instead of using
a periodic inspection policy, the inspection dates are defined
according to the degradation phase of the components. In this
work, the inventory is kept empty for a certain duration un-
der the assumption that during the first part of its lifetime the
aircraft does not need any maintenance interventions. After-
wards, the demand for spare parts grows gradually and sta-
bilizes at a certain level. At this point, the inventory will be
monitored and compared to a security level to place the or-
ders.

Chen et al. (Chen, Xu, & Xiao, 2016) introduced a method

to predict RUL of an individual component when the degra-
dation cannot be reflected by historical data in totality. The
estimated RUL is formulated into failure probability function,
upon which maintenance interventions and spare part order-
ing are optimized jointly. Bousdekis et al. (Bousdekis, Pa-
pageorgiou, Magoutas, Apostolou, & Mentzas, 2017) devel-
oped a proactive decision-making framework for condition-
based maintenance. This framework optimizes jointly the
maintenance and the spare parts inventory based on prognos-
tics information. The module defines the maintenance activ-
ity time by minimizing the long-term maintenance cost and
the best time to order spare parts by minimizing the long-
term inventory cost. Liu et al. (X. Liu, Yang, Pei, Liao,
& Pohl, 2019) developed a heuristic based on a Markov de-
cision process to solve the problem of maintenance replace-
ments and spare parts ordering in the case of single manu-
facturing machine. The Markov decision process integrated
health information of the system component when this infor-
mation is directly obtained from the degradation model. The
method aims at maximizing the net revenue of the workshop.

Moghaddass et al. (Moghaddass & Ertekin, 2018) proposed
a dynamic decision policy to jointly optimize ordering and re-
placement dates for a single-unit inventory system. The pro-
posed method consists of periodically collecting and observ-
ing data related to the system operations and then determin-
ing whether to start the setup of a maintenance intervention
on one level. On the second level, the method is used to de-
termine when a maintenance activity should take place. At
each inspection, the current degradation level and the system
health state are assessed and then the failure probability until
the next inspection date is computed. This information is in-
tegrated in the decision-making process to generate warnings
and schedule maintenance to minimize the long-run expected
cost per unit of time.

Table 19 summarizes these works. First, almost all the works
that dealt with spare part ordering and maintenance planning
used stochastic process for the degradation model. Works in
the aerospace domain used the Wiener process. The objec-
tives of these works are always cost-oriented, in which either
the cost are to be minimized or revenues and benefits to be
maximized. As for the method used to solve the optimiza-
tion problem, mostly each of these works developed its own
heuristics with the exception of two that used genetic algo-
rithms with Monte Carlo simulations. All these works used
the prognostic information in the same way, i. e. , to de-
fine the maintenance and the spare part ordering dates. Ac-
tually, the works of each domain are quite similar, and the
only difference is the proposed heuristics. Sadly, neither of
these works proposes a comparison between the results they
obtained and the results obtained by other authors.
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5.4. Mixed Decisions Framework

(Choo, Beling, LaViers, Marvel, & Weiss, 2015) and (Choo,
Adams, Weiss, Marvel, & Beling, 2016) presented a future
vision of integrating PHM in the smart manufacturing sys-
tems. In this framework, the PHM information is no longer
confined to the lowest levels of the control hierarchy, and
decisions are no more locally made and limited to a spe-
cific component or machine. The proposed adaptive multi-
scale PHM (AM-PHM) approach for system-wide health-
aware decision-making serves as a structure to move health
information from components up in the hierarchy until they
reach the facility manager and to the emanate control sig-
nal in the other way. The AM-PHM also creates operational
profiles that include operational policies and projected health
information (degradation levels, RUL). The hierarchy goes
from component level to facility manager through machines,
shops, assembly lines, etc. Each of these nodes is a decision-
making node influenced by the decisions of the superior level.
Later, Choo et al. (Choo, Weiss, & Beling, 2017) improved
the proposed AM-PHM framework by adapting a model-free
environment for the nodes. Also, decisions are now passed
down from a parent node to their children nodes as an opti-
mization objective through reward weights instead of being
transmitted as constraints.

6. NEW TRENDS AND SCIENTIFIC LOCKS

Considering the classification of post-prognostics proposed
in the previous sections we can now draw a parallel between
PHM process and system process. Figure 2 presents the syn-
thesis of the PHM role in the industrial applications. The
resource planning bloc is responsible for the definition of the
spare parts, raw materials and tool storage and orders. The
objectives bloc uses these resources to define the strategy of
the system and plan the work to achieve it. Once the tasks are
defined, they are transformed into a group of set points used
to control the system or the actuator. The closed loop here
represents a classic automatic control loop. Aside from the
sensors’ data inputs, the PHM process acquires the outputs
of the system process like the resources status, the objectives
of the machines and its control law. These data are consid-
ered in either the prognostic process or the decision-making
one. Finally, the decisions are used to fine-tune the respective
module to the decisions type.

Throughout the analysis of the post-prognostic decisions lit-
erature, one can note a lock of positioning between the works.
This lack is due to the fact that the papers used different prob-
lem formulations (i. e. , objective functions, constraints, etc.
. ) plus, they used various metrics to assess the outcomes of
the decisions. Thus, it is difficult to position one’s work to the
current research in the domain if the chosen objective func-
tion is not the same. Most authors prefer to compare their
results to other maintenance strategies, namely, systematic

Resource
Planning

Objectives Controller
System/

Component

Prognostics
and Health
Management

Observations

+

−

Logistic
Movements

Task/Mission
Assignment

Automatic
Control

Maintenance

Figure 2. PHM place related to the system process

preventive maintenance, cyclic maintenance and corrective
maintenance. Therefore, there is a need to define some com-
mon metrics to evaluate decisions and rank research accord-
ing to these metrics. Ranking the works in the field by differ-
ent metrics would help identify the gaps in the research and
provide support for future work. Thus, the post-prognostic
decisions will evolve rapidly.

Another reason behind the lack of positioning in the post-
prognostic decision-making literature is the lack of informa-
tion about the decision problem. In most works, the RUL
and/or the health indicators of the machine are assumed to be
given by a prognostic algorithm and the degradation of the
considered components is supposed to be known. However,
no further information is given about how to obtain these val-
ues or the model used behind to get the predictive informa-
tion. Since post-prognostic decision-making is based on pre-
dictive information, omitting how to get this information and
its nature would result in the impossibility to reproduce the
same results. This problem could be solved by introducing
the method used for the prognostic module and/or the consid-
ered degradation model even by just referring to a previous
work that studied the prognostic problem. Moreover, in some
cases in which the degradation model is given, the parameters
of this model are omitted. As an example, in (Camci, 2009),
the author gave the degradation model however they did not
provide the used numeric parameters in the study. Allowing
a transparent share of data in the context of PPDM would fa-
cilitate the positioning of work and thus help the evolution of
the domain.

The post-prognostic decision-making literature would benefit
from the proposition and the use of common metrics to eval-
uate the outcome of the proposed approaches. Such the case
for the prognostic literature, the use of mean squared error
and its variants allows to better position the works. How-
ever, defining such metrics is hard due to the lack of some
information about the decisions in the literature. Moreover,
only few works provide full information about their decision-
making process and performances. Some decision method
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performances are omitted , such as:

• the execution time of the algorithm is an important metric
of the used decision method. This execution time would
allow readers to check if the proposed method validate
the time constraint. It also provide a support for method
selection since in some application the reaction time of
the decision module is critical.

• the quality of the provided decision define if the provided
solution is optimal or not and/or how far is it from the
optimal solution. This could be obtained by comparing
the proposed methods to exact resolution methods if they
could be applied. This metric could be useful in defining
the trade off between the quality of the solution and the
execution time of the algorithm.

• the effects of RUL uncertainties on decisions and how
they are expressed. The prognostic method usually esti-
mate a distribution of possible RUL and/or evolution of
the health indicators. However, most works in PPDM
assume that the provided predictive information are de-
terministic. One could question the robustness of these
decision methods towards the uncertainties in the prog-
nostic results.

• the type of decision-making process (i. e. , online or
offline algorithms); and

• the consequences of the decision on the different work
processes, mainly the load of the maintenance shop.
Such metric could change the validation process of the
proposed solution. For example, in some cases the use of
prognostic information in the decision-making process
could result in oversizing the maintenance workshop.
Hence, at most time the maintenance workload are get-
ting paid but they are not performing any actions. While
at some cases, they are overloaded with maintenance
interventions. This could be not allowed by the system
owner.

The PPDM is expressed as an optimization process of a given
problem formulation. However, once the solution is obtained
by the optimization algorithm how could one judge if this so-
lution is valid or not? And how can one validate the decision-
making process? Thus, one important challenge of the post-
prognostic decision-making process is the validation of the
given solution. One possible way of thinking of decision val-
idation process could be by applying the selected decision on
the system and assessing its outcome. However, this valida-
tion could be expensive and does not allow to compare the
applied decision to other possible solutions. One can also
think of simulation as a possible validation process. Given
the system state and the proposed solution, the outcomes of
its application could be simulated. This method allows to
compare different decisions. However, building a simulator
that models the system could be challenging.

In the decision-making process, the resolution algorithm is

building a solution for a given optimization problem. One im-
portant parameter of this process is how long far ahead should
the solution be? In other words, what is the duration of the
decision horizon? On one hand, if the system owner would
implement the PPDM for short decision horizon the resolu-
tion algorithm would probably consume less time in finding
the optimal plan. However, solving the same problem repeat-
edly over short duration could be seen as locally optimizing a
global problem. Plus, the sum of local optimal does not nec-
essary have a global optimal. Besides, the algorithm would
base its decision-making process on information in the near
future. On the other hand, if large decision horizon is consid-
ered, the difference between what the prognostic algorithm
estimates and the real values would become greater due to the
accumulation of uncertainties over the decision horizon. Be-
sides, the algorithm would take more time to solve the prob-
lem. Therefore, a compromise between the resolution method
performance and the management of the uncertainty should
be studied and defined through the choice of the appropriate
decision horizon.

Naturally, one can understand the functioning of the PHM
process presented in Figure 3. Thanks to the sensors of a
system,data are obtained. The observation of sensor data
(storage, signal processing etc. ) allows for producing pre-
processed information that can be used in an analysis module
(detection, diagnostics and prognostics). The analysis ends
with estimated RUL and/or the health indicators (HI). Based
on the obtained values, the decision support system provides
a schedule of the optimal or sub-optimal decisions. When
decisions are applied, they have an effect on the system’s
states. Changes in the system’s states are observed in the
sensor data, which cause modification of the prognostics out-
comes. With a different RUL and/or HI, a different schedule
of decisions is obtained. For each new cycle, a new schedule
is obtained.

RUL(1) Decision(1)

RUL(2) Decision(2)

Observation

System

Sensors Analysis
Decision
Support

Applying Decision(1)

Figure 3. The natural PHM process

Most of the works are based on a single RUL value. In some
cases, the decisions are made over a long horizon without
considering the effects of the decision on the system. Most
of the effects of decisions are defined in assumptions such
as the perfect quality of the maintenance or the constant
environmental and operational conditions (for example, in
(Van Horenbeek & Pintelon, 2013) or in (Camci, 2009), the
production system is supposed to produce the same prod-
uct and in the same operating conditions). The assumptions
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made about the type of decision limit the approach of PHM
to an open loop process. Decisions that are made with such a
process can become quickly out of date because their effects
are not considered in the health assessment of the systems.
Surely the decision-making function is not run just once dur-
ing the lifetime of the asset. Instead, it is run repeatedly, and
the impact of the decisions is captured through this cyclic
execution. Yet, this point was not mentioned in most of the
literature. Moreover, the suitable duration for the decision
horizon or the frequency of the decision-making was not
studied. Consequently, we can suppose that these papers
considers the open loop PHM process as presented in Figure
4. In Figure 4, the decision applying process is represented
by a dashed gray line since it is a natural process but was not
explicitly mentioned or studied.

RUL Decision
Observation

System

Sensors Analysis
Decision
Support

Applying Decision

Figure 4. The proposed PHM process in most literature works

Although the importance of integrating decisions in the prog-
nostics module was not the aim of previous studies, some
works have included the hypothetical decisions or future
loads into the prognostics procedure. Both Daigle and Goebel
(Daigle & Goebel, 2010) and Zhang et al. (Zhang et al.,
2014) integrated information about the future loads of the
system in their model-based prognostic methods to estimate
the RUL of the system. In (Zhang et al., 2014), the resulting
RUL was more involved in the decision-making process by
using it as a variable in the optimization objective function.
Welz et al. (Welz, Coble, Upadhyaya, & Hines, 2017)
integrated maintenance information into the prognostic pro-
cess. Maintenance actions, whether perfect or imperfect,
were modeled and then used as inputs to the prognostics. The
approach was tested for the Weibull method and the general
path model (GPM) method. In both, the integration of the
maintenance model improved the accuracy of the prediction
by reducing the prediction error. The approach was validated
on a heat exchanger test bed. Vileiniskis and Remenyte-
Prescott (Vileiniskis & Remenyte-Prescott, 2017) developed
a new approach for predicting the quantitative risk of failure.
The method consists of creating a Petri-net model to present
the current state of the system, the degradation and the future
operation and maintenance activities. The model is then run
in a Monte Carlo simulation to obtain the statistics of com-
ponents’ performance over a selected horizon. The results
are fed into a bow-tie model to estimate the risk of hazardous
events.

By analyzing the papers that treated post-prognostic decision-

making and those that aimed to integrate future loads in the
RUL prediction, we can easily notice the important interac-
tions between the prognostics and the decision-making mod-
ules. In Figure 5, the prognostics module influences the de-
cision by the value of the RUL, and the decision-making pro-
cess modifies the prognostics outcome with the future loads
and the selected decisions. This can drive toward the neces-
sity of integrating the prognostics and decision processes into
a closed loop. One proven advantage of such an approach is
the improved accuracy of the RUL prediction.

Figure 5. The interactions between the prognostics and the
decision-making modules

7. CONCLUSION

In this article, the literature related to prognostic-based
decision-making is reviewed. The related works were classi-
fied according to the decision type into three categories: (a)
maintenance decisions, (b) operational decisions, for which
we proposed three sub-categories: (i) automatic control; (ii)
task/mission assignment; and (iii) logistic decisions; and
(c) mixed decisions that include maintenance and operational
decisions jointly optimized. The main assumptions and appli-
cations were synthesized from the articles for each category.
Finally, we presented the new trends in the PHM field by
emphasizing the relationship and interactions between the
prognostics and the decision-making processes.

The importance of those interactions offers a promising field
of research in prognostics and health management. For this
reason, we will aim our future works at defining new ap-
proaches to a closed loop PHM process to emphasize the
prognostics-decision-making loop.
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