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ABSTRACT

The difficulties in analyzing large and extensive systems ne-
cessitate the use of efficient machine-learning tools to identify
unknown system anomalies in order to avoid critical prob-
lems and ensure high reliability. Given that data logged by
a system include unknown anomalies, anomaly identification
models aim to simultaneously identify the time of occurrence
and the features that contributed to these anomalies. To max-
imize accuracy, it is important to utilize the data as well as
the domain knowledge of the system. However, it is difficult
for a system analyst to possess not only machine-learning ca-
pabilities but also domain knowledge to incorporate into the
model. In this paper, we propose a new anomaly identifica-
tion framework capable of utilizing feedback based on do-
main knowledge without requiring any machine-learning ca-
pabilities. We also propose a novel method, the so-called rank
ensemble method, to improve the accuracy of anomaly iden-
tification with erroneous feedback, that is, feedback that in-
cludes incorrect information. Our method enables erroneous
information to be adaptively ignored by assuming consistency
between the data and the user feedback. An intensive parame-
ter study using benchmark datasets and a case study with real
vehicle data demonstrate the applicability of our framework.

1. INTRODUCTION

Recent progress in system development technologies has en-
abled the construction of complex and extensive systems such
as autonomous driving, factory automation, and computer net-
work systems. Moreover, each of these systems frequently in-
cludes one or more subsystems; for example, an autonomous
driving system consists of many modules, including those
performing environmental sensing, decision-making, and con-
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trol. These modules are interconnected in a complex manner,
run in parallel, and are variously controlled to be versatile
and have advanced features. Eventually, each of these sys-
tems becomes highly complex and requires expert knowledge
to construct a prognostics and health management system to
ensure reliability. In practice, when unknown anomalies oc-
cur within a system, it is important to incorporate counter-
measures into the prognostics and health management system
to prevent recurrence. Engineers accomplish this by analyz-
ing the data logged at the approximate time of observation of
the anomalies to identify the exact timing and causes of such
anomalies. However, this data analysis is considered to be a
difficult and costly process that requires efficient tools from
various fields.

Consequently, users have been demanding cost-effective data-
driven methods for investigating these systems. When un-
known anomalies are observed within a system, data-driven
methods automatically analyze the corresponding data logged
by the system to identify the time when the anomalies oc-
curred and the features that contributed to them. These meth-
ods are cost-effective because they require neither human re-
sources nor specific knowledge of the system.

However, most existing data-driven anomaly detection meth-
ods have three main drawbacks (see Section 2 for further in-
formation):

1. Difficulty in identifying causes of anomalies.

In the machine-learning community, anomaly detection meth-
ods are commonly used to determine the occurrence of anoma-
lies (see (Chandola, Banerjee, & Kumar, 2009) and refer-
ences therein). However, this information is insufficient for
users who require information about the features that actu-
ally caused the anomalies. Identifying the cause is impor-
tant to enable users to implement countermeasures to pre-
vent recurrence. A method that determines the occurrence of
an anomaly and its contributory features is referred to as an
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anomaly identification method. Methods capable of conduct-
ing anomaly identification, for example, (Candès, Li, Ma, &
Wright, 2011) have been proposed; however, they exhibit lim-
ited performance owing to reasons that include the difficulty
of incorporating domain-specific knowledge.

2. Limitation in utilizing domain knowledge.

The incorporation of domain knowledge into data-driven meth-
ods has limitations. It is often difficult for an analyst in one
domain to have both machine-learning knowledge and do-
main knowledge. In addition, analysts have difficulty in in-
troducing precise information into the models because they
do not know enough about the anomaly itself. Models that
rely on incorrect information will produce faulty estimations.

3. Lack of interactivity with users.

In principle, the process of anomaly identification is exploratory
and interactive. The discovery of causality requires that ana-
lysts specify a suspicious part of a system and investigate it.
If the part is determined to be normal, the analyst then sug-
gests another part of the system to be analyzed based on the
knowledge obtained during the initial stage of the investiga-
tion. In this case, specifying the suspicious part containing an
unknown anomaly is often difficult and incorrectly specifying
a part causes excessive trial-and-error problem solving. Data-
driven anomaly detection methods are expected to help users
with this exploratory process by automatically suggesting a
suspicious part as well as by accepting feedback from users
to refine the suggestions for the next trial. However, anomaly
detection methods often analyze the data only once and are
incompatible with the exploratory and interactive aspects of
anomaly identification.

In this study, we propose a novel framework to overcome
these three drawbacks simultaneously. Figure 1 illustrates the
process of our framework. The process starts when an analyst
notices something anomalous in a target system and logs the
data at the approximate time when the anomalies were ob-
served. Initially, the analyst does not know exactly when the
anomaly occurred or what contributed to it. First, the frame-
work conducts anomaly identification using only data based
on a sparse and low-rank model (Candès et al., 2011). Our
proposed approach shows that this method can be extended to
incorporate user knowledge in a simple manner, that is, users
only provide feedback on whether the predicted anomalies
are indeed anomalous. Subsequently, the anomaly identifica-
tion procedure is refined without requiring difficult and costly
manual modifications. This process continues interactively
until the users complete the analysis, and this corresponds
well with the exploratory and interactive nature of anomaly
identification. The experimental results, which are based on
a variety of datasets, showed that our framework successfully

Figure 1. Interactive anomaly identification framework.

improves the accuracy of anomaly identification.

In addition, we construct a novel method based on our frame-
work to improve its robustness to erroneous feedback, that is,
feedback that includes incorrect information. The framework
allows approximate labeling by users, thereby reducing the
cost to users of providing precise feedback. In practice, our
novel method, a so-called rank ensemble method inspired by
(Parikh, Saluja, Dyer, & Xing, 2014), evaluates the low-rank
representation of the normal part of the data. We observed
that if the feedback is incorrect, the corresponding model rep-
resentation based on such feedback tends to be inconsistent
with the data distribution. Our method averages between low-
and high-rank representations to obtain a new representation
that expresses only the data that is consistent with both the
data distribution and user feedback. Thus, the method is able
to adaptively ignore only inconsistent parts. The experimen-
tal results demonstrate that our framework improves the ac-
curacy of anomaly identification, even if the user feedback
includes incorrect information. In addition, a case study us-
ing real vehicle data demonstrates the use of our framework
by an analyst.

The remainder of this paper is structured as follows. Related
studies are first described in Section 2. The problem setting
presented in Sections 3 and 4 summarizes anomaly identifi-
cation using a sparse low-rank method that forms the basis of
our framework. In Section 5, the method is extended to pro-
pose a novel framework that accepts user feedback, and the
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rank ensemble method to process erroneous feedback is in-
troduced. Experiments are described in Section 6 to demon-
strate the improvements achieved with the feedback and the
robustness against user feedback that includes incorrect in-
formation. A case study experiment using real driving data is
presented in Section 7 to demonstrate the use of our frame-
work in a realistic setting. Finally, conclusions and future
work are provided in Sections 8 and 9, respectively.

2. RELATED WORK

This section summarizes the published work related to anomaly
identification methods.

In the machine-learning community, methods to identify the
occurrence of an anomaly have been proposed for a num-
ber of applications, such as anomaly, novelty, fault, change,
fraud, and intrusion detection (see (Chandola et al., 2009)
and references therein). The methods include, for example,
level-set estimation methods ((Scott & Nowak, 2006), (Hero,
2007), (Zhao & Saligrama, 2009), and (Sricharan & Hero,
2011)), local density-based methods ((Breunig, Kriegel, Ng,
& Sander, 2000), (Papadimitriou, Kitagawa, B. Gibbons, &
Faloutsos, 2003), and (Kriegel, Kröger, Schubert, & Zimek,
2009)), and discriminative methods ((Schölkopf, Platt, Shawe-
Taylor, Smola, & Williamson, 2001) and (Tax & Duin, 2004)).
Usually, these methods find samples in a low-density region
and detect them as anomalies. Although they are typically
nonparametric models with the ability to detect the existence
of anomalies in a complex data structure, they cannot identify
the features that contributed to the anomalies. This makes it
difficult for users to interpret why the detected samples are
considered anomalies.

Reconstruction-based methods have been proposed to simul-
taneously identify when anomalies occur and which features
contribute to them. They are usually methods based on di-
mensionality reduction such as principal component analysis
(PCA), a mixture of probabilistic PCA (Yairi et al., 2017)(Tipping
& Bishop, 1999), robust PCA(Candès et al., 2011)(Lin, Chen,
& Ma, 2010), and neural networks(Subba, Biswas, & Kar-
makar, 2016)(Tagawa, Tadokoro, & Yairi, 2015). These meth-
ods first learn a low-dimensional representation of normal
data, which is provided in addition to data with observed
anomalies. The extent to which the sample deviates from
normal behavior is represented by the distance between the
learned representation and the sample, and those samples with
a large distance are detected as anomalies. The distance is
also obtained for each feature, and features with a large dis-
tance can be considered candidates for the causes of the anoma-
lies. However, such methods require normal data, which are
costly to obtain as human experts must verify the normality
of the data.

Certain methods, such as matrix completion(Sindhwani, Bu-
cak, Hu, & Mojsilovic, 2010)(Hsieh, Natarajan, & Dhillon,

2014), collaborative filtering(Su & Khoshgoftaar, 2009), and
network traffic anomaly detection(Mardani, Mateos, & Gi-
annakis, 2013b)(Mardani, Mateos, & Giannakis, 2013a), are
able to utilize users’ knowledge. However, they require pre-
cise information such as the correct labeling of all elements
(an element value is either missed or not missed) or the net-
work structure of the system. Such information is difficult
to obtain with a complex black-box system, for which only
ambiguous information is available.

Several methods proposed by the natural language process-
ing community, such as (Raghavan, Madani, & Jones, 2006),
(Elahi, Ricci, & Rubens, 2014), and (Settles, 2011), rely on
interactive processes to utilize user knowledge. These meth-
ods iteratively select and require users to provide labels for
the selected samples (items) and features (attributes) that are
expected to improve the accuracy of the classification model
the most. However, these methods are based on active learn-
ing methodologies; thus, they select and ask for labels for the
samples and features that are the most uncertain in terms of
the classification model. In contrast, the anomaly identifica-
tion process aims to find anomalies but not uncertainties.

Among the above-mentioned studies, there are no methods
capable of overcoming all three drawbacks introduced in Sec-
tion 1. Therefore, to the best of our knowledge, this study is
the first to propose a framework to overcome these drawbacks
simultaneously.

3. PROBLEM SETTING

Let d = {d1, . . . , dK}T ∈ RK be K-dimensional features,
and let D = {d1, . . . ,dN} be a K × N observation data
matrix with N samples. For simplicity, we denote Dij as the
ith feature di of the jth sample dj , where i ∈ 1, . . . ,K, and
j ∈ 1, . . . , N . For example, in the case of a vehicular system,
the K features data sampled over time by the vehicle’s speed
sensor, the engine rotation speed sensor, or the fuel economy
metric (e.g., kilometers per liter). The observation dataset D
is standardized such that each feature has a zero mean and a
unit variance with respect to the N samples.

As described in Section 1, we focus on a situation where an
analyst notices anomalous behavior in a target system and
logs the data at the approximate time when the anomalies
were supposed to be observed. Thus, given a datasetD logged
from a system by observing unknown anomalies, it is as-
sumed that D includes several anomalies. The problem to
be solved is formulated as follows.

Problem: Given a dataset D containing unknown observed
anomalies, identify the samples that include the anoma-
lies, as well as the features that contributed to the anoma-
lies.

Expressed differently, let ID = {(i, j)|, where the ith feature
of the jth sample is the anomaly}, and the problem requires
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ID to be identified accurately. We refer to this problem as an
anomaly identification problem. The following two assump-
tions are given with the problem:

Assumption 1: Anomalies exist in only a few samples and
features within the data, i.e., (|ID| � |D|).

Assumption 2: Anomalies deviate from the normal behav-
ior of the data.

Assumption 1 holds because if anomalies were dominant in
D, they would be easy to identify by humans; hence, a data-
driven analysis would be unnecessary. In addition, if As-
sumption 2 does not hold, it would no longer be possible to
distinguish anomalous behavior from normal behavior based
on deviations between anomalous and normal samples over
feature space d of the data. The next section provides a de-
tailed definition of deviation. Assumptions 1 and 2 are there-
fore fundamental in data-driven anomaly detection (Chandola
et al., 2009).

4. OVERVIEW OF SPARSE AND LOW-RANK
REPRESENTATION-BASED ANOMALY IDENTIFICATION

Considering the related work introduced in Section 2, we in-
fer that among the existing methods, the robust PCA method
(Candès et al., 2011) is the most compatible with our problem
setting introduced in Section 3 for the following reasons. The
method assumes that the anomalous part of the data is sparse
(i.e., |ID| � |D|); thus, the method is compatible with As-
sumption 1. The method also assumes a low-rank property for
the normal part of the data. This property is based on the fun-
damental principle of dimensionality reduction methods that
assumes normal data to be distributed on a low-dimensional
subspace; thus, it is acceptable. The method is based on an in-
exact augmented Lagrange multiplier optimization with guar-
anteed convergence (Lin et al., 2010) and is computationally
efficient for identifying anomalies. Although the method as-
sumes linearity on the low-dimensional subspace, it is still
acceptable as the given data are logged only at the approxi-
mate time that the anomalies occurred, the size of the dataset
is not arbitrarily large, and it does not exhibit very strong non-
linearity. In addition, the method can accept label information
to address the matrix completion problem, although the infor-
mation must be correct and assigned to all the elements (Lin
et al., 2010).

Based on this method, we constructed a novel framework ca-
pable of accepting user knowledge in an exploratory and in-
teractive manner, as introduced in Section 5. In this section,
we summarize the so-called sparse and low-rank representa-
tion method according to (Candès et al., 2011) and (Lin et al.,
2010).

4.1. Sparse and Low-Rank Representation

GivenD, including a few anomalies indicated by ID, a sparse
and low-rank method modelsD = A+E, whereA ∈ RK×N

is a low-rank matrix of rank(A) ≤ r � min(K,N) with
r ∈ N, and E ∈ RK×N is a sparse matrix with the (i, j)th
element Eij 6= 0 if (i, j) ∈ ID, or Eij = 0 otherwise. As
A represents the normal part of D, A is assumed to be a low-
rank matrix. The matrix E represents an anomalous part of
the matrix D and contains data that deviate from the normal
part, A. According to Assumption 1, the (i, j)th element Ei,j
has a nonzero value only if (i, j) ∈ ID; otherwise, Eij = 0.
Note that our goal in anomaly identification is to appropri-
ately estimate E to enable identification of ID.

The estimation of the two matrices A and E from data D re-
quires the following optimization problem to be solved (Candès
et al., 2011).

min
A,E
‖E‖0, (1)

s.t. rank(A) ≤ r, D = A+ E,

where ‖ · ‖0 is the l0 norm. This problem requires the min-
imization of ‖E‖0 to obtain the sparse matrix E while pre-
serving the low-rank property rank(A) ≤ r. As problem (1)
is difficult to solve, the following proximal problem is solved
instead, according to (Candès et al., 2011)(Lin et al., 2010).

min
A,E
‖A‖∗ + λ‖E‖1 (2)

s.t. D = A+ E,

where ‖ · ‖∗ is the nuclear norm, ‖ · ‖1 is the l1 norm, and λ
is a tradeoff parameter.

4.2. Finding the Sparse MatrixE Based on an Augmented
Lagrange Multiplier Method

Several methods have been proposed to solve the proximal
problem (2) (refer to (Candès et al., 2011) and references
therein). The inexact augmented Lagrange multiplier method
(Lin et al., 2010), which can efficiently obtain A and E with
a valid convergence guarantee, is adopted in this study. The
method is summarized as follows.

Algorithm 1 shows the process of optimizing the two matrices
A andE. A(t) andE(t) represent the updated values ofA and
E at each iterative step t, respectively. λ, {µ(0)} ∈ R, α > 1
are the parameters to be set beforehand. The algorithm itera-
tively updates the matrices A(t) and E(t) until convergence is
reached.

At line 4, A(t+1) is calculated based on the following opti-
mization with singular value decomposition (SVD) and the
soft-thresholding operator Sε[x], which is defined in (5) of
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Algorithm 1 Inexact Augmented Lagrange Multiplier
Method (IALM) (Lin et al., 2010)

Require: D,λ, α > 1, {µ(0)}.
1: Initialize A(0) = O,E(0) = O, t = 0.
2: repeat
3: WA = D − E(t) + Y (t)/µ(t).
4: A(t+1) = LA(D,E(t), µ(t),WA).
5: WE = D −A(t+1) + Y (t)/µ(t).
6: E(t+1) = LE(D,A(t+1), µ(t),WE).
7: Y (t+1) = Y (t) + µ(t)(D −A(t+1) − E(t+1)).
8: µ(t+1) = αµ(t).
9: t = t+ 1.

10: until A(t), E(t) converge.
11: return A = A(t), E = E(t).

(Lin et al., 2010).

LA(D,E(t), µ(t),WA)

= arg min
X∈RK×N

1

µ(t)
‖X‖∗ +

1

2
‖X −WA‖2F , (3)

= US1/µt
[S]V T , (4)

USV T = WA, (5)

where U, S, and V are the left singular vector matrix, di-
agonal singular value matrix, and right singular vector ma-
trix of WA, respectively. The optimization provides A(t+1),
which corresponds well with WA while preserving the low-
rank constraint ‖X‖∗.

In the next step (line 6), the matrixE(t) is updated as follows:

LE(D,A(t+1), µ(t),WE)

= arg min
X∈RK×N

1

µ(t)
‖X‖1 +

1

2
‖X −WE‖2F , (6)

= Sλ/µt
[WE ], (7)

where ‖ · ‖F is the Frobenius norm. LE yields E(t+1), which
corresponds well with WE while preserving the sparsity con-
straint ‖X‖1.

4.3. Limitations of Algorithm 1

Although Algorithm 1 obtains A and E efficiently with a
valid convergence guarantee, it continues to present difficul-
ties because the result still contains identification errors. This
limited performance is mainly attributed to it being difficult to
achieve a global optimum solution using Algorithm 1, that is,
to ensure that the nonzero part of E completely indicates ID.
The reasons for this are that sparse and low-rank assumptions
do not always completely fit an arbitrary data distribution,
and the data often include noisy samples that deviate from a
normal distribution even though they are not anomalous.

In this regard, users’ domain-specific knowledge helps to over-
come such problems. However, incorporating such knowl-

edge usually requires the costly manual construction of a model.
Instead, we propose a novel framework to automatically mod-
ify the model to include domain-specific knowledge based on
iterative user feedback.

5. PROPOSED INTERACTIVE FRAMEWORK FOR ANOMALY
IDENTIFICATION

This section proposes a framework that utilizes user feedback
to interactively improve the accuracy of anomaly identifica-
tion. Our framework is based on the sparse and low-rank
model introduced in Section 4. The proposed model is au-
tomatically refined by incorporating user feedback to provide
improved anomaly identification estimates to the user in the
next step. We also propose a method to improve the model
performance with incorporated feedback that may contain in-
correct information but can be easily provided by users.

This process inherits interactiveness because it exchanges in-
formation with users as follows: 1) our model provides in-
formation about anomaly candidates to users given the user
feedback thus far, and 2) users provide feedback to our model
given insights from datasets via our model estimations. This
interactive process continues to improve our model estima-
tions and users’ understanding of anomalies until the user
completes the analysis.

5.1. Outline of Our Framework

Algorithm 2 outlines our framework. The details are described
in the following sections and here we briefly describe the
framework. Assume that an analyst observed unknown anoma-
lies in a target system and logged data at the approximate
time that the unknown anomalies were supposed to have oc-
curred, or a large-scale anomaly detection method, for exam-
ple, (Pham, Venkatesh, Lazarescu, & Budhaditya, 2014), de-
termines the approximate time at which an anomaly occurred.
Our framework operates offline and accepts the logged data

Algorithm 2 Interactive Framework With Expert Knowledge
Feedback

Require: D,λ, α > 1, {µ(0)},M
1: Let k = 0 and initialize Â(0), Â(0) by the output A,E of

Algorithm 1.
2: repeat
3: A set of (i, j) elements, the labels of which are un-

known, with the top M values of |Ê(t)
ij | is presented to

users as anomaly candidates.
4: The users provide labelsLn, La indicating whether the

M elements are normal, abnormal, or unknown.
5: Obtain Â(t+1), Ê(t+1) by the output A,E of Algo-

rithm 1 constrained by Ln, La (see 5.2.1 and 5.2.2 for
details).

6: t = t+ 1.
7: until user stops analysis
8: return Â = Â(t), Ê = Ê(t).
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as input interactively to identify the actual timing and cause
of the anomalies. Let D be the input data with observed
anomalies, and let Â(t), Ê(t) be the estimations of normal
and anomalous parts of D at the tth iteration of Algorithm 2.
The process first initializes Â(0), Ê(0) by the output A,E of
Algorithm 1 (line 1). Recall that Ê(t) represents a deviation
from normal behavior. We assume that the larger |Ê(t)

ij | is, the
higher the likelihood of the ith feature of the jth sample being
an anomaly. Therefore, we use |Ê(t)

ij | as the anomaly rate of
the ith feature of the jth sample. Our framework adopts a set
of (i, j) elements containing the top M ∈ N values of |Êij |
as candidates for anomalies (line 3). The value of M is set
manually.

GivenM candidates, users can provide label matricesLn, La ∈
{0, 1}K×N defined as follows:

Ln,ij =

{
1, if (i, j) is labeled normal
0, otherwise,

(8)

La,ij =

{
1, if (i, j) is labeled an anomaly
0, otherwise,

(9)

whereLn,ijandLa,ij denote the (i, j)th element ofLnandLa,
respectively. According to the feedback Ln, La, we can ob-
tain Â(t+1), Ê(t+1) by introducing a novel optimization method
that extends Algorithm 1 and utilizes the user feedbackLn, La
as constraints (line 5). The new Â(t+1), Ê(t+1) is used to con-
duct the next iteration of anomaly identification until the users
complete their analysis.

Our framework shows the users the top M anomalous ele-
ments to conduct anomaly identification and simultaneously
to elicit their feedback for model refinement. We assume that
users do not ignore the presented M anomaly candidates and
conclude whether they are actually anomalies. Thus, it is
cost-effective to also request feedback according to the con-
clusion. However, users are not restricted from providing
feedback other than for the top M elements.

5.2. Method to Incorporate Complete Feedback

In this section, we introduce user feedback Ln,ij and La,ij to
refine Â(t), Ê(t) to Â(t+1), Ê(t+1). For simplicity, this sec-
tion only considers complete feedback that never includes in-
correct information. Although this setting may be unrealistic,
it yields several insights into how user knowledge can be uti-
lized to improve the accuracy of anomaly identification in our
proposed framework. Section 5.3 considers a more natural
setting in which the user feedback includes incorrect infor-
mation.

Figure 2. Conditions under which the two patterns of anoma-
lies are emphasized based on their signs, where Aij , Eij and
A′ij , E

′
ij are the outputs of Algorithm 2 without and with the

constraints by La, respectively, sign(x) = 1 if x ≥ 0, and
sign(x) = −1 otherwise.

5.2.1. Updating A With the Feedback of Anomaly Label
La

This section introduces a strategy for incorporating user feed-
back on anomalies according to La. The strategy is to con-
strain Algorithm 1 to ensure that (i, j) elements satisfying
La,ij = 1 have a larger anomaly rate |Eij |. Constraining
these labeled elements can affect the overall output A,E be-
cause the computation is based on SVD, as shown in Sec-
tion 4. The estimated E has a large |Eij | if the (i, j) ele-
ment shows a pattern similar to the anomalies denoted by the
user feedback La. Therefore, a strategy that incorporates user
feedback by encouraging the detection of anomalous patterns
given by La improves the accuracy of anomaly identification.

We categorize the anomalies that satisfy La,ij = 1 according
to the signs of Aij and Eij , and explain how to emphasize
them. Figure 2 shows the two patterns of anomalies for the
(i, j)th element. Let A,E and A′, E′ be the outputs of Al-
gorithm 1 without and with the constraints by La, and let
sign(x) = 1 if x ≥ 0, and sign(x) = −1 otherwise. Pat-
tern (a) represents the case when sign(Aij) = sign(Eij).
Enlarging |Eij | with this pattern, we must satisfy at least
|A′ij | < |Aij | to obtain the corresponding E′ij that satisfies
|E′ij | > |Eij |. The second pattern (b) represents the case
when sign(Aij) 6= sign(Eij). Enlarging |Eij | with this pat-
tern, we must satisfy at least |A′ij | > |Aij | to obtain the cor-
responding E′ij that satisfies |E′ij | > |Eij |.

For the first pattern (a), our strategy sets |Eij | = |Dij |, i.e.,
Aij = 0. It is sufficient to satisfy the conditions to emphasize
anomalies by |E′ij | > |Eij |. Although |E′ij | could be infinite,
and thereby satisfy the conditions, this would be unrealistic
and result in extreme outputs. As we assume each feature to
have a zero mean and unit variance, A′ij = 0 represents the
mean value of the ith feature; thus, this is a realistic value

6
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that also satisfies |E′ij | > |Eij |. Eventually, we modify (5) to
obtain A′ij ≈ 0.

USV T = WA � (1− L′a), (10)

L′a,ij =

{
1, if La,ij = 1 ∧ sign(A

(t)
ij ) = sign(E

(t)
ij ),

0, otherwise,
(11)

where � is the element-wise product. The (i, j) elements
of WA that satisfy L′a,ij = 1 are set to zero before SVD is
applied. Thus, (10) yields A′, where A′ij ≈ 0 if L′a,ij = 1.
E = D−A can emphasize unknown anomaly elements |Eij |
that have similar anomalous patterns to those given by La.

The second pattern (b), where sign(Aij) 6= sign(Eij), can-
not yield |A′ij | < |Aij | by setting Aij = 0. This pattern
requires |A′ij | > |Aij | to obtain |E′ij | > |Eij |. Although it
is difficult to determine the most realistic value that satisfies
|A′ij | > |Aij |, we ensure that A′ij at least satisfies the con-
straint. Thus, after updating A using (10), if |A′ij | > |Aij | is
not satisfied, we set Aij = A′ij .

5.2.2. Updating E With the Feedback of Normal Label
Ln

In this section, we follow the approach used in the matrix
completion problem in Section 3.2 of (Lin et al., 2010) to
update E with the normal label Ln. All that remains is to
modify (7) as follows.

E(t+1) = Sλ/µ(t) [WE � (1− Ln)]. (12)

This operation sets Eij = 0 of (i, j) to satisfy Ln,ij = 1 such
thatAij = Dij . By definition, the normal elements should be
represented with the normal part A; thus, the constraint such
that Aij = Dij is consistent.

5.2.3. Risks of Overfitting

Our strategies adopt strong constraints because they directly
modify the value of certain elements of A and E. Imposing
these strong constraints is expected to significantly improve
the accuracy of anomaly identification. However, this poses
the risk of overfitting to the constraints and/or utilizing incor-
rect user feedback information.

In addition, labels are used to encourage the model to de-
tect anomalies similar to those in the labeled elements. This
carries the risk of confirmation bias since the updated model
would not detect anomalies dissimilar to the labeled anoma-
lies. Fortunately, this bias will be reduced as the number of
feedback labels increases. The biased model tends to produce
a greater number of false positives as the amount of feedback
increases because the predictions would be inconsistent with
the data, and are therefore likely to be wrong. Providing feed-
back in response to such false positives cancels the biases.
However, the small amount of feedback still poses a risk to

our framework.

The above risk is efficiently alleviated by the method intro-
duced in Section 5.3.

5.3. Method to Incorporate Erroneous Feedback

In the previous section, we assumed that users can provide
complete feedback that never includes incorrect information.
However, in practice, users often provide erroneous feedback
that is ambiguous and includes incorrect information. The
risk of using erroneous feedback is its adverse effect on the
representation model’s learning process, i.e., the model would
not be able to improve its performance by utilizing the feed-
back. In this section, we propose a novel approach known as
the rank ensemble method, inspired by (Parikh et al., 2014),
to enable our framework to utilize erroneous feedback. This
proposed method, which is based on the consistency assump-
tion, is introduced in the following section, and it adaptively
ignores incorrect elements in the feedback.

5.3.1. Consistency Assumption

The rank ensemble method is based on the following assump-
tion:

Consistency assumption: A good correspondence should
exist between the data and the label feedback, but the in-
formation should be provided from different viewpoints.

This assumption is supported by the following two terms.
First, consider a model learned from Algorithm 1 with the
given data. If the obtained anomaly identification model is
a global optimum for the data, we assume that the achieved
nonzero part of |E| identifies |ID| properly. However, a model
trained by only considering the data would not easily attain
the global optimum. Thus, we aim to leverage label infor-
mation to improve optimality. Here, we say that the more
closely the trained model approximates the global optimum,
the greater the consistency of the model with the data.

Second, consider a model trained by Algorithm 2 with data
and user feedback. We have feedback from a user indicating
that a few (i, j)th elements are normal (or anomalous). As
introduced in Section 5.2, we impose certain values of Aij
and Eij according to the feedback. Therefore, the trained
model should satisfy the label feedback to an acceptable ex-
tent. Here, we say that the greater the extent to which the
model satisfies the label feedback, the greater the consistency
of the model with the user feedback.

According to the consistency assumption, we assume that
the above two notions of consistency simultaneously hold.
Therefore, the greater the extent to which the model is con-
sistent with the label feedback, the greater the consistency of
the model with the data. This implies that, based on the con-
sistency assumption, the data and the label feedback should

7
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correspond, but the information should be acquired from dif-
ferent perspectives. The next section introduces our novel
rank ensemble method based on the consistency assumption.

5.3.2. Rank Ensemble

As noted in Section 5.2.3, several risks violate the consis-
tency assumption. Thus, we aim to adaptively ignore user
feedback that does not follow the consistency assumption by
considering it to be incorrect information. We achieve this
goal by estimating how well the data and label feedback fol-
low the consistency assumption by evaluating the structure of
A and E. Label feedback that is inconsistent with the data is
adaptively ignored using our novel rank ensemble approach
inspired by (Parikh et al., 2014).

Let A,E be Â(t), Ê(t) obtained from the tth step of Algo-
rithm 2, where rank(A) = r � min(K,N). From SVD,
A = USV T , where U, S, V are K × r, r× r, and K × r ma-
trices, respectively. S is a diagonal singular value matrix and
is set to have mth singular value σm to an element (m,m)
in descending order, i.e., σ1 ≥ . . . ≥ σm ≥ . . . ≥ σr. Let
Al =

∑l
m=1 umσmv

T
m be a low-rank representation using

up to the lth singular vectors, where um and vm are the corre-
sponding left and right singular vectors to σm, El = D−Al,
A = Ar, E = Er, rank(Al) = l, and l = 1, . . . , r. El is a
residual and represents the part ofD that cannot be expressed
by Al.

Suppose we have feedback from a user, indicating that sev-
eral (i, j)th elements are normal. As introduced in Section
5, we impose Ar,ij = Aij = Dij , Er,ij = Eij = 0 for
(i, j) satisfying Ln,ij = 1. In this situation, if l � r, Al
has less representation power than Ar and only the principal
components shared across the data and feedback information
can be expressed. This type of representation is known as
a low-granularity representation (Parikh et al., 2014). Con-
versely, if l ≈ r, Al achieves a high-granularity represen-
tation and can even follow incorrect and inconsistent feed-
back given by Ln. In particular, if l = r, A = Al, and
Al,ij = Aij = Dij , El,ij = Eij = 0 for (i, j) satisfying
Ln,ij = 1. Note that the same can be said for anomaly feed-
back La.

According to the consistency assumption, if the data and the
label feedback are consistent, we can assume that the low-
granularity representation also has an improved ability to sat-
isfy the imposed constraints. However, if inconsistent labels
are provided, these constraints are only satisfied by the high-
granularity representation. Thus, we conjecture that only in-
consistent labels would drastically change the representation
between low- and high-granularity. To alleviate this effect,
we use an ensemble of |El| as follows to estimate the anoma-

Figure 3. Relations between the size of |Eij | and the rank of
Al. The solid and broken lines denote that the label given to
element (i, j) is correct and incorrect, respectively. Incorrect
labels are not consistent with the corresponding data and the
difference in |El,ij | between l� r and l ≈ r would be large.

lous elements.

Ē =
1

r

r∑
l=1

|El| =
1

l

r∑
l=1

|D −Al|. (13)

We refer to this as the rank ensemble. If the user feedback
for element (i, j) is incorrect, that is, the user either labels
anomalies as normal or labels normal elements as anomalies,
the values of Al,ij , El,ij change more drastically than if the
user feedback regarding element (i, j) is correct (Figure 3).
Because of this effect, Ēij becomes large if an incorrect nor-
mal label is given to element (i, j) (or Ēij becomes small if
an incorrect anomaly label is given to element (i, j)). This
indicates that Ē can adaptively ignore incorrect labels. How-
ever, note that Ē also alleviates the effect of correct labels;
thus, its performance is poorer than when using |Er| if all
the user feedback is correct. Finally, we use Ē for anomaly
identification in line 3 of Algorithm 2.

6. EXPERIMENT WITH BENCHMARK DATASETS

The numerical experiments described in this section evalu-
ated the ability of our framework to utilize erroneous user
feedback to improve the accuracy of anomaly identification.
The experiments were conducted with various parameter set-
tings and with or without the rank ensemble method. Overall,
the experiments indicated that at various settings, our frame-
work with the rank ensemble method works well with erro-
neous feedback. In particular, increasing the amount of feed-
back is important to promote a significant improvement in
anomaly identification, and this is enabled by accepting erro-
neous feedback. Overfitting due to an insufficient amount of
feedback resulted in a biased model and failed to improve the
performance, whereas increasing the amount of feedback or
using the rank ensemble method successfully overcame this
problem.

For the computational environment, we used Windows 7 (64-
bit) with an Intel(R) Core(TM) i7-3970X CPU @ 3.50 GHz
and 64 GB memory. All implementations were performed
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Table 1. Benchmark datasets1.

Dataset K Nn Na KNn Cn Ca
Pageblocks 10 4941 532 49410 2 3
Arrhythmia 274 257 176 70418 4 9

Letter 16 9940 10060 159040 13 13
Optdigits 62 2822 2798 174946 5 5

Mfeat 649 1000 1000 649000 5 5
1 K: # of features, Nn: # of normal samples, Na: # of anomaly samples,
Cn: # of normal classes, Ca: # of anomaly classes.

using MATLAB R2012b.

6.1. Datasets

Table 1 summarizes the datasets used in the experiments. The
datasets were obtained from the UCI machine-learning repos-
itory (Dua & Graff, 2017), a collection of datasets used by the
machine learning community. We adopted multiclass datasets:
Pageblocks(Malerba, 1995), Arrhythmia(Guvenir, Acar, & Mud-
errisoglu, 1998), Letter(Slate, 1991), Optdigits(Alpaydin &
Kaynak, 1998), and Mfeat(Duin, n.d.). They enabled us to
select some of the classes as normal data and the remaining
classes as anomalous data. Note that the anomalous data se-
lected from the multiclass datasets represent anomalies of a
diverse nature. More information is available through the ci-
tations of the datasets. The datasets were standardized such
that each feature had a zero mean and a unit variance. For
computational reasons, some datasets containing more than
40,000 samples were randomly subsampled to 40,000 sam-
ples in total by using uniform distribution random sampling.
Samples were subsampled per class such that the resulting
subsampled 40,000 samples preserve the original class distri-
bution over samples.

6.2. Experimental Parameters

We evaluated our novel framework shown in Algorithm 2 us-
ing each of the datasets introduced in the previous section.
The parameters were varied with respect to the number and
variety of anomalies, the amount of feedback, the rate of erro-
neous feedback, and whether the experiment was conducted
with or without the rank ensemble method. The following
sections explain how we set the number and variety of anoma-
lies, amount of feedback, and rate of erroneous feedback.

6.2.1. Anomalies |ID|

The given datasets require the corresponding anomaly indices
ID to simulate user feedback and to evaluate the accuracy of
anomaly identification. We determined ID by subsampling
the anomaly datasets as follows, according to (Emmott, Das,
Dietterich, Fern, & Wong, 2013) and (Siddiqui, Fern, Diet-
terich, & Wong, 2019). Recall thatD is aK×N data matrix,
and let ν = |ID|/(KN) be the ratio of anomalies included
in the data represented by D. As |ID| = (

√
νN)(

√
νK), for

simplicity, we subsampled
√
νN samples from the anomaly

Table 2. Simulated analyst models to determine ID.

Model Parameters
Principal component analysis (PCA) dp

Random forest (RF) cf

Table 3. Values of M and |ID| according to ν and β, where
the average number of normal elements is Z = 266748.

β or ν 0.005 0.010 0.050
M = βZ or |ID| = νZ 1334 2668 13337

dataset and then designated the
√
νK features of each se-

lected sample as anomaly elements to create ID. Since |ID|
depends on ν and |D| (especially Nn), the number of Nn
should be fixed; thus, this enables us to determine only the
effect of varying |ID| with fixed |D| and vice versa. Al-
though a change in ν also affects the size |D|, we approxi-
mately fix |D| by replacing the number of normal elements
KNn with the average among the normal datasets shown in
Table 1, which is Z = 266748. Thus, |ID| = νKN =
νZ/(1−

√
ν) is independent of the size of each normal dataset

and vice versa. In the case where N = Nn +
√
νN ,
√
νN =√

νZ/(K−K
√
ν) samples are subsampled for an anomalous

dataset. To subsample from the anomaly dataset, we followed
(Emmott et al., 2013) and used a kernel logistic regression
(KLR) model (Keerthi, Duan, Shevade, & Poo, 2005) to rank
and subsample the top anomalous samples from each class,
on the condition that the class distribution was preserved.
Note that KLR cannot subsample features, but only samples
in datasets. Therefore, it cannot be used as an anomaly iden-
tification method and is unrelated to our framework itself.

As the datasets do not provide anomaly labels at the feature
level, we must artificially determine the anomalous features.
Given the subsampled anomaly dataset, according to a sim-
ulated analyst model introduced in (Siddiqui et al., 2019),
a regularized random forest method was previously used to
rank and determine the actual anomalous features for each
anomaly sample. In contrast, we ensured the variability by
using several methods listed in Table 2 as simulated analyst
models to determine the

√
νK features as anomalous ele-

ments. Each method can rank features with respect to the
anomaly rate and determine the top anomalous features from
each sample and

√
νK in total.

The parameters of the models were determined as follows.
Principal component analysis (PCA) is a linear dimension-
ality reduction method, and the number of principal compo-
nents dp is determined by max d, subject to

∑d
i=1 pi/

∑K
i=1 pi ≤

0.7, where pi is the ith principal component. PCA maps the
dataset D to a learned low-dimensional representation to re-
construct A, and obtain E = D − A, the size of which (|E|)
can be used as the anomaly rate. Random forest (RF) is a
regression-tree-based ensemble method in which we set the
number of trees in the ensemble as cf = 50. The difference in
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the regression errors between the experiment with and with-
out a feature is used as the anomaly rate of the feature for RF,
according to (Siddiqui et al., 2019).

6.2.2. Amount of Feedback

Let β = M/|D|. We varied β to determine the amount of
feedback, M . Note that |D| is maintained as a constant by Z
and fixing ν similarly as introduced in the previous section;
thus, the variation in β only shows the effect of M .

6.2.3. Erroneous Feedback

According to Algorithm 2, with every iteration, we have M
new labels denoting whether certain elements are normal or
anomalous, as indicated byLn, La. Erroneous feedback leads
to the assignment of incorrect labels with Ln, La; for anoma-
lous elements, Ln,ij = 1, and for normal elements, La,ij =
0. We introduce an error rate ρ ∈ [0, 1] to capture the extent of
mislabeling. Let M (t)

n be the amount of feedback for normal
labels, and letM (t)

a be the amount of feedback for anomalous
labels for the tth iteration, whereM = M

(t)
n +M

(t)
a . In every

iteration, ρM (t)
n of the normal label feedback and ρM (t)

a of
the anomalous label feedback are randomly assigned to incor-
rect labels. Note that if ρ = 0, we assume complete feedback
that never includes incorrect information. The robustness of
the rank ensemble method is then evaluated by varying ρ.

6.3. Experimental Setting and Evaluation

Recall that β = M/|D|, ν = |ID|/|D|, and |D| is a con-
stant maintained by the average number of normal elements
KNn among the datasets, that is, Z = 266748, to deter-
mine the actual values of M and ID. For each dataset with
ID determined by each simulated analyst, we tested cases,
in which β = {0.005, 0.05} with fixed ν = 0.01, and ν =
{0.005, 0.05}with β = 0.01 fixed, to determine the effects of
varying β and ν. For each combination of β and ν, we tested
the error rate for ρ = {0, 0.2, 0.4}. Table 3 shows the corre-
sponding size of M and |ID|. Using these settings, our goal
is to train a model to be capable of finding a good solution
to Problem 2; thus, the area under the curve (AUC) of the re-
ceiver operating characteristic (ROC) based on Ê(t) is used as
an evaluation criterion: AUC shows the extent to which Ê(t)

of the tth iteration successfully indicates appropriate anomaly
elements ID.

To reduce the number of combinations, we only test the val-
ues.

We also compared our framework with Algorithm 1 without
utilizing user feedback to estimate E. In every iteration of
Algorithm 2, we fixed E and selected every other M candi-
date in descending order of the value of |Eij |. Note that the
accuracy of E is the baseline and we aim at least to obtain
results that improve on the baseline.

The processing time of our framework is also important to
allow it to be used interactively because computational ineffi-
ciency would require the user to wait longer and decrease its
usability. We therefore evaluated the average computational
time to output the prediction of each step, i.e., the time re-
quired to process line 5 of Algorithm 2 is evaluated for each
dataset.

6.4. Results

Table 4 provides the obtained results, with a focus on selected
datasets and the experimental conditions described in Sec-
tion 6.3. Owing to the page limitation, each value in the ta-
bles shows the achieved AUC of only the fifth iterative cycle.
If the amount of feedback reaches 50% of the data or AUC
reaches 1, we stop the iteration and show the AUC of that
point.

Table 5 lists the average computational time required to out-
put the prediction of each step, i.e., the time to process line 5
of Algorithm 2.

6.4.1. Without the Rank Ensemble Method

In this section, we discuss the results obtained without using
the rank ensemble method, as shown in the columns under
”Without ensemble” in Table 4 as well as the processing times
shown in Table 5.

Our framework without the ensemble largely succeeded in
improving the AUCs with ρ = 0 compared to having no feed-
back. Few experiments, such as the Pageblocks dataset with
the RF simulated analyst, yielded slightly worse results. This
can be explained by overfitting to the user feedback, which
causes a model to diverge from the data distribution and pro-
duce more false-positive estimates. The improvements here
suggest that even for users who do not know about the model
itself, user feedback alone is sufficient to improve the model’s
performance. Hence, the framework presents a cost-effective
approach that achieves improvements on a wide variety of
datasets and anomalies.

When ρ increases, the performance of our framework with-
out the ensemble decreases drastically. This is understand-
able because our method adopts update strategies that strictly
follow the constraints imposed by the user feedback. There-
fore, without the rank ensemble, our framework is vulnerable
to incorrect feedback. For large values of ρ, in most of the
experiments, the AUCs were worse than those without feed-
back. This vulnerability to incorrect feedback is alleviated by
using the rank ensemble method.

Even if ρ is small, the results such as β = 0.005, ν = 0.01 of
the Pageblocks dataset with the RF simulated analyst, failed
to improve the AUC. This is considered to be caused by the
confirmation bias influencing the feedback, as discussed in
Section 5.2.3. Our framework aims to strongly follow the
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Table 4. AUC at the 5th iteration.

Simulated Dataset β: ratio of M , Without ensemble With ensemble No
Analyst ν: ratio of anomalies ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 feedback

β = 0.005, ν = 0.01 0.9994 0.9512 0.8950 0.9961 0.9964 0.9921 0.9921
Pageblocks β = 0.05, ν = 0.01 0.9999 0.9295 0.8678 0.9993 0.9977 0.9928 0.9921

β = 0.01, ν = 0.005 1.0000 0.9490 0.8906 0.9963 0.9958 0.9935 0.9921
β = 0.01, ν = 0.05 0.9956 0.9363 0.8749 0.9926 0.9878 0.9849 0.9661
β = 0.005, ν = 0.01 0.8399 0.798 0.7648 0.8837 0.8777 0.8730 0.8181

Arrhythmia β = 0.05, ν = 0.01 0.9313 0.8701 0.8049 0.9116 0.9025 0.8879 0.8181
β = 0.01, ν = 0.005 0.8987 0.8443 0.8012 0.9308 0.9266 0.9118 0.8584
β = 0.01, ν = 0.05 0.7791 0.7362 0.6980 0.7950 0.7904 0.7896 0.7232

PCA β = 0.005, ν = 0.01 0.9306 0.9048 0.8785 0.9374 0.9315 0.9252 0.9110
Letter β = 0.05, ν = 0.01 0.9883 0.9213 0.8561 0.9824 0.9683 0.9509 0.9110

β = 0.01, ν = 0.005 0.9775 0.9256 0.8738 0.9798 0.9710 0.9601 0.9472
β = 0.01, ν = 0.05 0.8341 0.8141 0.7953 0.8437 0.8369 0.8299 0.8201
β = 0.005, ν = 0.01 0.9455 0.9061 0.8702 0.9602 0.9540 0.9503 0.9187

Optdigits β = 0.05, ν = 0.01 0.9835 0.9209 0.8575 0.9841 0.9743 0.9628 0.9187
β = 0.01, ν = 0.005 0.9754 0.9168 0.8610 0.9847 0.9810 0.9726 0.9393
β = 0.01, ν = 0.05 0.8620 0.8386 0.8124 0.8781 0.8755 0.8692 0.8354
β = 0.005, ν = 0.01 0.9122 0.8802 0.8570 0.9374 0.9289 0.9223 0.9049

Mfeat β = 0.05, ν = 0.01 0.9422 0.8821 0.8208 0.9694 0.9572 0.9432 0.9049
β = 0.01, ν = 0.005 0.9461 0.8995 0.8564 0.9651 0.9555 0.9449 0.9367
β = 0.01, ν = 0.05 0.8076 0.7809 0.7570 0.8451 0.8372 0.8289 0.7834
β = 0.005, ν = 0.01 0.7563 0.7340 0.7032 0.8789 0.8833 0.8716 0.7696

Pageblocks β = 0.05, ν = 0.01 0.9126 0.8524 0.8157 0.9196 0.9114 0.8915 0.7494
β = 0.01, ν = 0.005 0.8436 0.7894 0.7656 0.8632 0.8427 0.8586 0.7793
β = 0.01, ν = 0.05 0.8270 0.7770 0.7193 0.8768 0.8478 0.8875 0.7595
β = 0.005, ν = 0.01 0.5286 0.5251 0.5113 0.5357 0.5374 0.5329 0.5038

Arrhythmia β = 0.05, ν = 0.01 0.6974 0.6542 0.6294 0.6017 0.5843 0.5701 0.5123
β = 0.01, ν = 0.005 0.5723 0.5610 0.5408 0.5677 0.5579 0.5450 0.5138
β = 0.01, ν = 0.05 0.5800 0.5619 0.5443 0.5536 0.5433 0.5416 0.5055

RF β = 0.005, ν = 0.01 0.6103 0.6003 0.5956 0.6182 0.6138 0.6064 0.5640
Letter β = 0.05, ν = 0.01 0.7330 0.6973 0.6517 0.6724 0.6622 0.6498 0.5704

β = 0.01, ν = 0.005 0.6394 0.6222 0.6085 0.6525 0.6449 0.6356 0.5885
β = 0.01, ν = 0.05 0.5554 0.5467 0.5378 0.5069 0.5044 0.5019 0.4706
β = 0.005, ν = 0.01 0.5896 0.5796 0.5754 0.6075 0.6036 0.6034 0.5709

Optdigits β = 0.05, ν = 0.01 0.7008 0.6633 0.6278 0.6404 0.6288 0.6245 0.5633
β = 0.01, ν = 0.005 0.6166 0.6042 0.5898 0.6395 0.6364 0.6298 0.5864
β = 0.01, ν = 0.05 0.5667 0.5584 0.5494 0.5565 0.5543 0.5515 0.5347
β = 0.005, ν = 0.01 0.5311 0.5252 0.5178 0.5724 0.5726 0.5773 0.5454

Mfeat β = 0.05, ν = 0.01 0.5773 0.5680 0.5464 0.5965 0.5981 0.5904 0.5468
β = 0.01, ν = 0.005 0.5368 0.5291 0.5344 0.5823 0.5881 0.5850 0.5531
β = 0.01, ν = 0.05 0.5310 0.5266 0.5248 0.5518 0.5514 0.5518 0.5230

feedback by forcing the corresponding value to beEij = 0 or
Aij = 0. Thus, the obtained model may overfit the imposed
feedback and tend to diverge from the global optimum. As
such, the model detects anomaly candidates similar to the la-
beled anomaly elements. The next section shows that the use
of the rank ensemble method successfully avoids such biases.

A comparison of the values obtained for β, which represents
the value of M , shows that a larger value of M results in a
greater improvement in the AUC. However, to increase M ,
there is a tradeoff in terms of the feedback cost: achieving
a high value for M requires the value of ρ to be large and
vice versa. The next section shows that the rank ensemble
method can alleviate the effect of ρ; thus, a large M value
with a reasonable ρ value is probably the preferable choice in
practice.

The differences between the values of ν, which represents the

number of anomalies, show that the larger ν is, the worse the
initial AUC (iteration #1) tends to be. This is because a large
number of anomalies could include various anomalies that are
difficult to detect. In addition, the results with a smaller ν
value are more vulnerable to incorrect feedback. This is be-
cause, with a small number of anomalies, a large proportion
of anomalies can be easily missed by even a slightly inappro-
priate modification of the anomaly identification model.

According to the processing times shown in Table 5, despite
a longer time being taken with a large dataset such as Mfeat,
the processing times were essentially short enough for users
not having to wait long for the next prediction. Note that the
computational time depends not only on the data size but also
on the convergence speed, which varies with the experimental
conditions.
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Table 5. Average computational time [s].

Dataset Average computational time [s]
Pageblocks 0.2370
Arrhythmia 5.5643

Letter 0.9698
Optdigits 1.4230

Mfeat 30.61

6.4.2. With the Rank Ensemble Method

Comparing the results obtained by our framework for ρ > 0
with and without incorporating the rank ensemble method,
the rank ensemble method clearly improved the performance
when using incorrect labels. Therefore, the use of our frame-
work in combination with the rank ensemble method is highly
successful because it is capable of achieving accurate anomaly
identification with erroneous feedback. In practice, situations
such as these commonly occur.

When ρ = 0, results such as β = 0.05, ν = 0.01 of the
Arrhythmia dataset with the RF simulated analyst perform
worse than the framework without the rank ensemble method.
This is because the rank ensemble method also smooths the
constraints provided by even the correct labels. These results
are acceptable because requiring feedback with a low error
rate would be difficult, costly, and thus unrealistic.

Interestingly, for certain other datasets such as β = 0.005, ν =
0.01 of the Mfeat dataset with the PCA simulated analyst our
framework achieved improved AUCs with the rank ensem-
ble method than without the rank ensemble method, even
if ρ = 0. As explained in Sections 5.2.1 and 5.2.2, our
update strategies strongly follow the given label constraints.
This may cause extreme results including confirmation bias;
hence, these strategies do not achieve the greatest improve-
ment in the AUC, even if the given labels are correct. The
rank ensemble method smooths the constraints such that the
negative impact is countered and the performance is improved.

Comparing datasets of different sizes, β and ν, the results
have tendencies similar to those of our framework without the
rank ensemble method, as explained in Section 6.4.1. Thus,
the rank ensemble method has little effect on these parame-
ters, except for ρ.

7. EXPERIMENT WITH VEHICLE DRIVING DATA

We conducted a case study using real vehicle driving data
with a specific feature set and a scenario to demonstrate how
our framework supports operators in analyzing unknown anoma-
lies. The problem considered here involves an analysis of
the changes between two driving environments. The exper-
iment demonstrates that our framework’s predictions can be
improved by user feedback and can assist users in identifying
the true causes of anomalies.
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With erroneous feedback

Without feedback

Engine
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True cause
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Figure 4. Left: the proportion of anomalies detected Pt.
Right: categorical proportion of the top M anomalous can-
didates.

Table 6. Categories of attributes. The speed control category
includes three true causes.

Categories # of attributes
Engine control 17
Speed control 7
Lateral control 6

Others 7
Total 37

7.1. Datasets and Anomalies ID

The fault diagnosis equipment recorded data from the vehi-
cle engine and control systems containing 37 attributes with
sampling rates of 0.5-–1.0 s. Table 6 presents a summary of
these attributes by category.The data were recorded under two
conditions. First, under flat-road conditions, the vehicle was
driven on the same flat road on several occasions with con-
stant acceleration and deceleration to obtain 1450 samples as
the normal dataset. Second, we used the same flat-road condi-
tions with slower acceleration and deceleration to obtain 737
samples as the changed dataset. For preprocessing, the sam-
pling rate was adjusted to a constant of 0.5 s using linear in-
terpolation. We combined the normal and changed datasets
into a single dataset. The combined dataset was normalized
for each attribute of the normal data to have a mean value of
0 with unit variance.

The driver inputs, specifically Accelerator Position (repre-
senting acceleration) and Stroke Sensor 1 & 2 (representing
deceleration), were changed between the two datasets. Thus,
the causes of the change (anomaly features) are Stroke Sen-
sor 1 & 2 (representing deceleration) and Accelerator Posi-
tion, which belong to the speed control category. In addi-
tion, the changed behavior was observed only when the driver
accelerated or decelerated, and thus the Accelerator Position
or Stroke Sensor 1 & 2 elements with nonzero values in the
changed dataset were designated as anomaly ID. In addition
to the true causes, the throttle position and engine speed sen-
sors, which belong to the engine control category, were also
incorrectly labeled as anomalies in all the samples.

12
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7.2. Erroneous Feedback

We follow the setup in Section 6.2.3 except for randomly in-
serting incorrect labels. Instead, we introduce an approxi-
mately realistic rough labeling scheme. This scheme assumes
that the user has only approximate information about a situa-
tion and executes as follows: 1. The test driver feels a change
affecting the speed and provides approximate feedback to the
model predictions. 2. The driver selects some attributes re-
lated to speed and simply labels them all as anomalous. The
rough labeling scheme requires neither precise information
nor labeling and, therefore, has practical utility.

7.3. Experimental Setting and Evaluation

We used a different metric from Section 6 to focus on and
improve the interpretability of this specific case study. The
user’s prime objective is to identify anomalies with minimum
effort. Thus, instead of the AUC, which is an abstract mea-
sure based on both false and true positives, that was used in
Section 6, we simply evaluated the proportion of anomaly el-
ements correctly estimated for all true anomalies, denoted as
Pt. If Pt is large with less user feedback, that is, a smaller
number of repeated steps, this indicates success in identifying
anomalous elements effectively with our interactive frame-
work. We tested how well Pt is improved by user feedback.
In this experiment, we set ν = 0.01 to determine the value of
M .

We also evaluate how the prediction of our framework changes
according to user feedback. Based on the categories intro-
duced in Table 6, we monitored the top M anomalous ele-
ments based on E at each step to determine how a category
proportion changes.

7.4. Results

The plot on the left side of Figure 4 shows Pt over the feed-
back iterations. The figure indicates that our framework in-
creases the proportion of anomalies detected to a greater ex-
tent with user feedback. This implies that our framework is
efficient and useful for users.

The plot on the right side of Figure 4 shows the proportion
of the top M anomalous elements by category at each step
to determine the extent to which the model changes a predic-
tion according to user feedback. In the initial step, the model
detected many elements belonging to the engine control cat-
egory, which is indirectly related to the true cause because
changing the acceleration or deceleration patterns affects en-
gine behavior. However, the initial model failed to detect the
true causes. Conversely, in the latter step, when the model
was used in conjunction with erroneous feedback, the model
predicted elements belonging to the speed control category,
which, largely, included the true causes. A large portion of
the estimates of the topM candidates in the latter step denotes

the true causes. This information provides useful insight for
users to surmise that attributes in the speed category, rather
than the engine category, are suspicious. Thus, our frame-
work successfully incorporated erroneous feedback to detect
the true causes correctly, whereas it avoided the detection of
elements belonging to the engine category based on the feed-
back information.

8. CONCLUSION

This paper proposes a novel anomaly identification frame-
work that can utilize user knowledge and feedback to im-
prove performance interactively. Our framework is based on
a sparse and low-rank model capable of identifying anoma-
lies as well as the features responsible for causing the anoma-
lies. We overcame the limitations associated with the accu-
racy of anomaly identification by utilizing user knowledge to
improve accuracy. Instead of modifying the model structure
manually, our framework obtains user knowledge as feed-
back in response to the estimation provided by the model,
according to which the model is then modified automatically.
The process continues interactively and is thus in agreement
with the exploratory nature of procedures used to identify
unknown anomalies. The experimental results demonstrated
that our framework achieved consistent improvements in anomaly
identification accuracy on several datasets. In addition, we
propose a method to improve the accuracy of anomaly iden-
tification with erroneous feedback, that is, feedback that in-
cludes incorrect information. Based on the consistency as-
sumption, we constructed a rank ensemble method that adap-
tively ignores incorrect information. The experiments per-
formed using erroneous feedback confirmed that the use of
our framework combined with the rank ensemble method con-
tinued to improve the accuracy, even when the user feedback
included incorrect information.

9. FUTURE WORK

Our future work will include proposing the optimal condi-
tions under which to update A,E using label feedback to
achieve the largest improvement in anomaly identification ac-
curacy. As only a sufficient condition was used to improve
the accuracy in this work, that is, by increasing |Eij |, there
is scope to obtain greater improvement using the optimum
condition. To derive the condition, the perturbation theory
of SVD(Stewart, 1991) is expected to be useful for analyz-
ing how the low-rank representation (SVD) is affected by the
outliers. An extension to a nonlinear model, such as a low-
rank subspace model (Liu et al., 2013), is also important for
improving the accuracy.
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