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ABSTRACT 

This paper presents methods for the 2019 PHM Conference 

Data Challenge developed by the team named "Angler". This 

Challenge aims  to estimate the fatigue crack length of a type 

of aluminum structure using ultrasonic signals at the current 

load cycle and to predict the crack length at multiple future 

load cycles (multiple-step-ahead prediction) as accurately as 

possible. For estimating crack length, four crack-sensitive 

features are extracted from ultrasonic signals, namely, the 

first peak value, root mean square value, logarithm of 

kurtosis, and correlation coefficient. An ensemble linear 

regression model is presented to map these features and their 

second-order interactions with the crack length. The Best 

Subset Selection method is employed to select the optimal 

features. For predicting crack length, variations of the Paris’ 

law are derived to describe the relationships between the 

crack length and the number of load cycles. The material 

parameters and stress range of Paris’ law are learned using 

the Genetic Algorithm. These parameters will be updated 

based on the previous-step predicted crack length. After that, 

the crack length corresponding to a future load cycle number 

for either the constant amplitude load case or variable 

amplitude load case is predicted. The presented methods 

achieved a score of 16.14 based on the score-calculation rule 

provided by the Data Challenge committees, and was ranked 

third best among all participating teams.  

1. INTRODUCTION 

Fatigue cracks are a common type of faults in structural 

systems. They contribute to about 90% of the failures of 

metallic structures (Campbell, 2018). If fatigue cracks are not 

detected and addressed early, they will jeopardize the long-

term durability and reliability of structural systems (Wang, 

He, Guan, Yang, & Zhang, 2018). For example, the Eschede 

train accident was caused by a fatigue crack in one of the train 

wheels (Esslinger, Kieselbach, Koller, & Weisse, 2004). 

Therefore, it is vital to detect, estimate, and predict the crack 

progression in structural systems. 

Ultrasonic signals are sensitive to crack initiation and 

propagation and are widely employed in structural health 

monitoring (Qing, Li, Wang, & Sun, 2019). The occurrence 

of cracks and different crack levels will exhibit different 

ultrasonic signatures. Courtney, Drinkwater, Neild, and 

Wilcox (2008) found that a fatigue crack will increase the 

nonlinearity of the bispectral responses of ultrasonic signals. 

They applied this finding to detect cracks in a steel steering 

actuator bracket. Lim, Sohn, DeSimio, and Brown (2014) 

isolated the crack-induced spectral sidebands of ultrasonic 

signals using time-frequency (TF) analysis. Isolated 

sidebands could be used to detect cracks in an aircraft fitting-

lug under various temperatures and load conditions.  

However, the abovementioned techniques cannot estimate 

crack length quantitatively. To address this problem, 

currently, data-driven methods are widely used. Typically, 

crack-sensitive features will be extracted from ultrasonic 

signals via signal processing techniques, and then be mapped 

to crack length estimations using data-driven models. For 

examples, Liu et al. (2013) extracted a feature named the 
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energy ratio change from ultrasonic signals. This feature was 

fed into an artificial neural network (ANN) to diagnose the 

crack length and location of plates.  Lim, Sohn, and Kim 

(2018) also utilized an ANN to quantify the fatigue crack 

length of aluminum specimens by inputting two features 

extracted from ultrasonic signals and the specimen thickness 

as well as elapsed fatigue cycles to the ANN. 

Data-driven methods usually face a trade-off between model 

complexity and data amount. Simpler data-driven models 

often perform better when the data amount is limited. For 

example, He et al. (2013) built a linear regression model 

based on three features extracted from ultrasonic signals to 

quantify the crack length of riveted lap joints. For the 2019 

PHM Conference Data Challenge, for which the data amount 

is limited, simple linear regression models may perform 

better than complex models to estimate the crack length.  

In the above literature, the current or past crack length is 

estimated. We wish to further predict future crack length so 

that proper maintenance strategies could be scheduled in 

advance. The effect of load cycle number on crack 

propagation must be known to predict crack lengths for future 

load cycle numbers. In the last century, the famous Paris’ 

Law was developed to describe the growth rate of fatigue 

crack under specific load conditions (Paris, 1961; Paris & 

Erdogan, 1963; Pook & Frost, 1973). Using the Paris’ Law 

model and its variations can predict crack growth under 

constant or variable amplitude load if the material parameters 

are known. For constant-amplitude-load scenarios, it is easy 

to determine the stress intensity factor range in the Paris’ Law 

model. To name a few, an extension of Paris’ Law 

considering the Wohler SN curve (Cui, 2002) was developed 

for predicting fatigue crack growth (Pugno, Ciavarella, 

Cornetti, & Carpinteri, 2006). Rajabipour and Melchers 

(2015) adopted a variation of Paris’ Law for estimating the 

growth rate of metal crack in hydrogen-assisted fatigue cases. 

For variable-amplitude-load cases, it is difficult to determine 

the range of the stress intensity factor. Beretta and Carboni 

(2011) conducted a fatigue crack growth study for railway 

axles under variable load based on Paris’ Law. However, the 

variable load was discretized into different load blocks in 

which the load was still treated as a constant. Such 

discretization may induce relatively big error into the 

predicted crack length (Huang, Torgeir, & Cui 2008). For the 

abovementioned studies, the material parameters in the Paris’ 

Law model were assumed to be known. But this is not the 

actual case since material parameters have uncertain 

properties and may vary across experimental objects. 

Therefore, in this study, an optimization framework based on 

the Genetic Algorithm (GA) is proposed to obtain the optimal 

material parameters and equivalent effect of the variable 

amplitude load, which enables the Paris’ Law model to 

predict crack lengths under variable load scenarios. 

The rest of the paper is organized as follows. The tasks of the 

2019 PHM Conference Data Challenge are formulated in 

Section 2. Models for crack length estimation and prediction 

are detailed in Section 3 and Section 4, respectively. 

Conclusions are drawn in the Section 5. 

2. PROBLEM DESCRIPTION 

For the 2019 PHM Conference Data Challenge, a fatigue 

experiment is conducted to investigate the crack propagation 

property of aluminum plates. Eight aluminum plate 

specimens (named from T1 to T8) of the same type are used. 

For each specimen, a cyclic mechanic load is applied to 

generate fatigue cracks. Among these specimens, T1-T7 are 

subjected to the same load with a constant amplitude, while 

T8 is subjected to a different load with a variable amplitude. 

The frequencies of the constant and variable amplitude loads 

are both 5 Hz.  

During the experiment, for each specimen, ultrasonic signals 

are collected at several different load cycles. To measure the 

ultrasonic signals, the mechanical load is paused and then 

immediately resumed after measurement. Two tests, named 

Run 1 and Run 2, are conducted under each cycle. A 

schematic illustration of the sensing mechanism for 

ultrasonic signals is shown in Figure 1 (an actuator and a 

receiver form a sensing pair). The actuator sends out a wave 

(actuated ultrasonic signal), which is measured by the 

receiver (received ultrasonic signal). When collecting the 

ultrasonic signals, an optical microscope is intermittently 

used to identify the location of cracks and to measure crack 

length. That is, each time ultrasonic signals are collected, real 

crack lengths are also measured. 

The goal of the data challenge is to estimate and predict the 

crack length at specific cycles. Data (i.e., ultrasonic signals, 

real crack, and load profiles) from six specimens (T1–T6) 

among the eight total specimens will be used as training 

datasets. The data from the two remaining specimens (T7 and 

T8) are used for validation. Only the first few ultrasonic 

measurements of T7 and T8 are available for training. Two 

specific tasks are to (a) estimate the crack length at the current 

cycle and (b) predict the crack length for future cycles. 

The major challenges for accomplishing these tasks include:  

(a) Limited data amount. The training set only contains 37 

(cycles/run) × 2 (runs) = 74 data samples. With such 

limited data, some powerful but complex models, like 

deep learning models (Goodfellow, Bengio, & Courville, 

2016), may not perform well. To tackle this challenge, 

expert knowledge of ultrasonic signals and crack-

propagation mechanisms must be employed to develop 

proper data-driven methods.  

(b) Variable and different load conditions. The load applied 

to T8 (variable amplitude load) is different from that 

applied to T1–T7 (constant amplitude load). This means 

the model trained with the data under constant load 

conditions will be tested under variable load conditions, 

which bring challenges to the generalization ability of 
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the developed models. To tackle this challenge, in the 

crack length estimation task, load variation independent 

features will be used for T8. For the crack prediction 

task, the variable amplitude load will be converted to an 

equivalent constant amplitude load. 

3. CRACK LENGTH ESTIMATION 

The flowchart of the developed method for estimating crack 

length is shown in Figure 2. Firstly, the ultrasonic signals are 

denoised with a band-pass filter. Then, the first wave package 

(FWP) will be truncated out from the filtered signals for 

feature extraction. Four features, namely, the first peak value, 

root mean square value, logarithm of kurtosis, and correlation 

coefficient, will be extracted from the FWP. Based on these 

features, a crack-detection algorithm is proposed to detect 

whether a crack has occurred at a specific cycle. If the crack 

does not occur, the crack length will be zero. If a crack 

occurs, an ensemble linear regression model will be 

employed to estimate the crack length. The cycle number 

serves as an additional feature when building the crack length 

estimation model for T7 in particular. 

3.1. Band-Pass Filtering 

A band-pass filter is applied to suppress white noise and 

unwanted impulses in the raw ultrasonic signals. A finite 

impulse response (FIR) filter is used to avoid phase distortion 

of ultrasonic signals. The specifications of the filter are 

selected to retain outstanding frequency components and 

eliminate as much noise as possible. After analyzing the 

spectra of all ultrasonic signals, the following specifications 

were selected for the band-pass filter: first stop frequency 

𝑓𝑠1 = 50 kHz, first pass frequency 𝑓𝑝1 = 100 𝑘𝐻𝑧, second 

pass frequency 𝑓𝑝2 =  500 kHz, and second stop frequency 

𝑓𝑠2 = 1000 kHz. Note that the sampling frequency is 𝑓𝑠 =
20 MHz.  

A sample ultrasonic signal of specimen T2 before and after 

filtering is shown in Figure 3. Figure 3 shows that unwanted 

impulses and noise are filtered out after applying the band-

pass filter. Note that after filtering, the signals from Run 1 

and Run 2 are in good agreement. 

 

 
Figure 1. Schematic of the crack-sensing mechanism (PHM 

Society, 2019) 

 

Figure 2. Flowchart of the proposed method for estimating 

crack length 

 

 

Figure 3. Received ultrasonic signals of specimen T2 at 

Cycle 50,000. Upper: raw; bottom: filtered 

3.2. Truncating 

The received ultrasonic signals contain three informative 

three parts, as shown in Figure 4: the synchronization part, 

the FWP, and the rest. The synchronization part is the 

synchronization signal of the actuated signal and is 

independent from the crack. The FWP contains the waves 

transmitted through the crack. The rest contains both the 

transmitted waves and reflected waves. Only the FWP will be 

used in the following procedures, such as the feature 

extraction. 

The length of the FWP equals the actuation signal (also the 

synchronization part). The location of the first peak (LFP) is 
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used to locate the FWP. Specifically, 150 sample points 

before and 200 points after the LFP will be identified as the 

FWP of a received ultrasonic signal. The start and end 

locations of the FWP can be determined as: 

   Start location = LFP – 150 

   End location = LFP + 200 

3.3. Feature Extraction 

While ultrasonic waves travelling through a structure, 

reflection and scattering will happen when encountering 

cracks (Lim, Sohn, DeSimio, & Brown, 2014; He, Huo, 

Guan, & Yang, 2020). Due to the reflection and scattering of 

ultrasonic waves at the crack location, a part of the wave 

energy will be dispersed. The longer the crack is, the more 

energy will be dispersed (Wang, He, Guan, Yang, & Zhang, 

2018; He, Huo, Guan, & Yang, 2020). As a result, the energy 

of the received ultrasonic signals will decrease as the crack 

size increases. The wave peak value and the root mean square 

value are features to measure the energy of the received 

ultrasonic signals but in different aspects. The wave peak 

value reveals the peak energy, while the root mean square 

value reveals the average energy.  

The structure discontinuity caused by crack would distort the 

wave shapes of the ultrasonic signals (He et al., 2013). The 

kurtosis reflects the peakedness of the received signals. As 

crack length increases, more abrupt jumps may be caused by 

the wave distortion, and thus the kurtosis is expected to 

increase accordingly. Also due to the wave distortion, the 

correlation coefficient between the baseline signal (received 

signals without crack) and the received signals with cracks 

will change (He et al., 2013). As the crack size increases, the 

distortion would increase, and consequently the correlation 

coefficient is expected to decrease. 

 

Figure 4. Filtered received ultrasonic signal of Run 1 of the 

first cycle of T2 

Based on the above knowledge, four crack-sensitive features, 

namely, the first peak value (𝑣1), root mean square value (𝑣2), 

logarithm of kurtosis (𝑣3), and correlation coefficient (𝑣4), 

are extracted from the truncated FWPs. The extracted 

features of specimens T1–T6 with respect to crack length are 

shown in Figure 5.  

Figure 5(a) shows the first peak values, i.e., the amplitude of 

the first peak of the FWP (as shown in Figure 4). The first 

peak values show a decreasing trend as crack length 

increases, except for some distorted cycles (i.e., the fourth 

cycle of T1 and fifth cycle of T6). 

Figure 5(b) shows the root mean square values of the FWP. 

These values also show a decreasing trend, except for a 

distorted value at the fourth cycle of T1. 

Figure 5(c) illustrates the logarithm of kurtosis of the FWP. 

The reason to take the logarithm of kurtosis is to scale the 

kurtosis values of different specimens to a similar range. The 

definition is as follows: 

𝑣3 = log ∑ (𝑠𝑖 − 𝜇)4/𝜎4𝐿
𝑖=1                               (1) 

where 𝜇 and 𝜎 are the mean and standard derivation of the 

FWP, respectively, L is the length of the truncated signal s, 

and 𝑠𝑖  denotes the ith data point of the truncated signal. 

Figure 5(c) shows that the logarithm of kurtosis increases as 

the crack length increases except a distorted value at the 

fourth given cycle of T1. 

Figure 5(d) displays the correlation coefficients of FWPs 

with the corresponding FWP of the last zero crack cycle of a 

specimen. The last zero-crack cycle means that the crack 

length is zero before it and that the crack is initiated 

afterward. The correlation coefficients show a decreasing 

trend, except for a distorted value at the fourth cycle of T5. 

3.4. Crack Detection 

Figure 5 shows that when the crack length increases from 

zero, the features 𝑣1  and 𝑣2  decrease while the feature 

𝑣3 increases. When the crack is not initiated, the features 𝑣1 

and 𝑣2  increase and the feature 𝑣3  decreases as the cycle 

number grows (Observed from specimens T3 and T5. For 

other specimens, only one data sample with zero crack is 

provided, and thus we have no chance to observe this trend). 

To further support this observation, the relationship between 

features (𝑣1, 𝑣2, 𝑣3) and cycles of specimens T3 and T5 are 

plotted in Figure 6. The crack lengths of first few cycle 

numbers are also marked in Figure 6. From Figure 6, we can 

clearly observe that the feature values of 𝑣1 and 𝑣2 increase 

before crack initiation and decrease after, and vice versa for 

𝑣3 . From this observation, a crack-detection algorithm is 

proposed, as shown in Table 1. Using this algorithm, the 

crack of specimen T7 is detected at load Cycle 36,001; for 

specimen T8, the crack is detected at load Cycle 70,000. 
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(a) First peak value (𝑣1) 

 

(b) Root mean square value (𝑣2) 

 

(c) Logarithm of kurtosis (𝑣3) 

 

(d) Correlation coefficient (𝑣4) 

Figure 5. Extracted features of specimens T1–T6 

3.5. Crack Length Estimation 

An ensemble linear regression model is built to estimate the 

crack length when crack is detected. The diagram of the 

proposed model is shown in Figure 7. Firstly, all the features 

are normalized to suppress the derivations of different 

specimens. To normalize the features, the first zero cycle of 

each specimen is selected as the reference for that specimen. 

Features 𝑣1, 𝑣2,  and 𝑣3  are normalized by dividing the 

corresponding feature values of the first zero cycle. Feature 

𝑣4  is normalized inherently because the correlation 

coefficient is calculated with respect the first zero cycle.  

In addition to features extracted from ultrasonic signals, the 

cycle number is a natural feature for crack length estimation 

(Rajabipour, & Melchers, 2015). The cycle number will then 

be taken as the fifth feature (named 𝑣5 ) to estimate crack 

length, for T7 only while not for T8. Because the load applied 

to T7 at each cycle is the same as that of T1–T6, but T8 is 

different. The cycle number 𝑣5 is normalized in the following 

way: 𝑣5  =  (𝑣5 –  𝑣50)/25,000. Here, 𝑣50  means the cycle 

number of the last zero crack. For T8, only features 𝑣1– 𝑣4 

will be used, which are independent of the load conditions. 

When the features are normalized, six linear regression 

models are built based on the normalized features and their 

intersections. In these models, one of specimens T1–T6 is 

taken as the validation set, and the rest are used as the training 

set. While building these models, the Best Subset Selection 

(BSS) method (James, Witten, Hastie, & Tibshirani, 2013) is 

used to select effective features in each model. Three of the 

six models will be selected and grouped as an ensemble to 

estimate the crack length for T7 and T8. For each model in 

the ensemble, two (Run 1 and Run 2) crack lengths will be 

obtained for each cycle. The average of the larger lengths 

from each model will be the final estimated crack length for 

this cycle. The larger estimation is used to ease the 

asymmetric penalty (PHM Society, 2019). Please be advised 
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that as the load conditions applied to specimens T7 and T8 

are different, separate models will be built for them but 

following the same diagram, as shown in Figure 7.  

 

 

(a) First peak value (𝑣1) 

 

(b) Root mean square values (𝑣2) 

 

(c) Logarithm of kurtosis (𝑣3) 

Figure 6. Features versus cycles of specimens T3 and T5 

 

Table 1. Crack detection algorithm 

Step 1: Calculate feature values 𝑣11, 𝑣21, and 𝑣31 of the first cycle, 

where the crack length 𝑐1 = 0 

Step 2: For a new cycle, calculate feature values 𝑣12 , 𝑣22, and 𝑣32 

          if 𝑣12 < 𝑣11, 𝑣22 < 𝑣21, 𝑣32 > 𝑣31 

              Crack occurs, crack length 𝑐2 > 0; 

              end algorithm 

          else if  𝑣12 > 𝑣11, 𝑣22 > 𝑣21, 𝑣32 < 𝑣31 

              Crack does not occur; 

              𝑣11 = 𝑣12, 𝑣21 = 𝑣22, 𝑣31 = 𝑣32; 
       go to Step 3 

          else  

              Beyond scope of the algorithm 

          end 

Step 3: Update the new cycle when ultrasonic data are newly 

measured, repeat Step 2 

 

The six linear regression models built for T7 are shown in 

Table 2. Here, the validation error is the mean absolute 

percentage error. Using Model 1 as an example, the detailed 

steps of building these models are listed below: 

Step 1: Split training and validation sets. For Model 1, the 

training set includes T2-T6 and the validation set is T1.  

Step 2: Organize features. Features (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 ) and 

their intersections (𝑣1𝑣2, 𝑣1𝑣3, 𝑣1𝑣4, 𝑣1𝑣5, 𝑣2𝑣3, 𝑣2𝑣4, 𝑣2𝑣5, 
𝑣3𝑣4, 𝑣3𝑣5, 𝑣4𝑣5) will be used to build models. In total 𝐾 =
 15 features. 

Step 3: Build models. For 𝑘 =  1, 2, … , 𝐾 

(a) Fit (
𝐾
𝑘

) linear regression models with different 

combinations of  𝑘 features (from all 𝐾 features)  

(b) Pick the model with the smallest validation error 

among these (
𝐾
𝑘

) models, and call it 𝑀𝑘 

Step 4: Select models. Select a single best model (that with 

the smallest validation error) among 𝑀1, 𝑀2, … , 𝑀𝐾 . The 

selected best model will be the Model 1. 

Please note that Step 3 and Step 4 are to conduct BSS (James, 

Witten, Hastie, & Tibshirani, 2013). In Model 1, the selected 

best feature set is (𝑣4, 𝑣4𝑣5), as shown in Table 2.  

Repeating the above four steps but with different training and 

validation sets, other five models (for T2-T6 respectively) 

will be obtained accordingly, as shown in Table 2. Please be 

advised that, as the crack may not grow linearly with load 

cycles (Pugno et al., 2006), the optimal order of 𝑣5 is also 

selected from 0 to 1 with a step size of 0.02 while 

implementing BSS. 

In Table 2, the regression statistics, i.e., R-square and p-

value, are also displayed to reveal how well these models are. 

As the R-square values of these models are larger than 0.81 

and the p-values are smaller than 2.2e-16, we believe that the 

patterns in the training data are well captured by these 

models.  

Among these models, Models 1, 3, and 4, which have smaller 

validation errors, will be selected to estimate the crack length 

of T7. Model 5 is not selected though its validation error 

(11.19%) is smaller than that of Model 1 (13.14%). The 

reason is that the validation set of Model 5 contains only two 

effective data samples (crack length > 0, see Figure 5). Such 

a small validation set would make Model 5 bias to T5, and 

may perform poorly when generalized to T7. Further 

following the diagram in Figure 7, the crack length of T7 is 

obtained, as shown in Table 4.  

For specimen T8, the same strategy as T7 is taken and the 

obtained six linear regression models and their statistics (i.e., 

R-square values and p-values) are shown in Table 3. 

Correspondingly, three models with much smaller validation 
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errors, i.e., Models 1, 3, and 4, are selected to estimate the 

crack length for T8. Compared to T7, the validation errors for 

the selected models of T8 are generally larger. This makes 

sense because one more independent feature (𝑣5) is utilized 

for T7. The final estimated crack length for T8 is also given 

in Table 4. 

Table 4 shows that estimated crack length is generally close 

to the real crack length, except during Cycle 40,167 of T7 and 

Cycle 70,000 of T8. For these two cycles, the real crack 

length is zero, which means the crack-detection algorithm 

outputs false alarms at these two cycles. This is possible 

because the crack-detection algorithm (Table 1) is developed 

based on extremely limited data (only a few data samples 

from two specimens, T3 and T5). 

4. CRACK LENGTH PREDICTION 

Based on the estimated crack lengths for the current load 

cycle numbers in Section 3, the crack length for the future 

load cycle numbers will be predicted using the Paris’ Law. 

This section firstly introduces the formula of Paris’ Law. 

Next, two variations of its formula are derived to describe the 

relationships between crack length and load cycle number. 

Based on the first derived formula, the material parameters of 

the specimen are estimated using the GA (Lee, 2018). The 

crack length corresponding to a specific load cycle number 

can be predicted using the estimated specimen material 

parameters and the second derived formula.  

 

 

Figure 7. Diagram of the proposed ensemble linear regression model for crack length estimation 

 

Table 2. Linear regression models for T7 

Model # 
Training 

set 

Validation 

set 
Linear regression model 

Validation 

error 

R-

square 
p-value 

1 
T2, T3, 

T4, T5, T6 
T1 𝑐7 = 7.67 − 7.60𝑣4 + 5.99𝑣4𝑣5 13.14% 0.84 <2.2e-16 

2 
T1, T3, 

T4, T5, T6 
T2 𝑐7 = 7.55 − 7.93𝑣1 + 12.03𝑣1𝑣5 − 4.98𝑣4𝑣5 41.44% 0.81 <2.2e-16 

3 
T1, T2, 

T4, T5, T6 
T3 

𝑐7 = −31.50 + 89.71𝑣1 + 21.64𝑣3 − 56.50𝑣1𝑣3 

−34.52𝑣1𝑣4 + 6.84𝑣1𝑣5
0.88 + 11.11𝑣3𝑣4 

5.66% 0.93 <2.2e-16 

4 
T1, T2, 

T3, T5, T6 
T4 

𝑐7 = −18.70 +  10.26𝑣1 + 13.03𝑣4 − 12.27𝑣1𝑣4 

+4.86𝑣1𝑣5 + 7.64𝑣2𝑣3 + 2.27𝑣3𝑣5 
11.19% 0.92 <2.2e-16 

5 
T1, T2, 

T3, T4, T6 
T5 

𝑐7 = −0.80 + 12.36𝑣1 − 11.58𝑣1𝑣4 

+4.41𝑣3𝑣5
0.66 

11.19% 0.92 <2.2e-16 

6 
T1, T2, 

T3, T4, T5 
T6 

𝑐7 = −4.44 − 48.52𝑣4 + 6.99𝑣5 + 

17.85𝑣2𝑣3 + 35.21𝑣3𝑣4 
22.66% 0.93 <2.2e-16 
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Table 3. Linear regression models for T8 

Model # 
Training 

set 

Validation 

set 
Linear regression model 

Validation 

error 

R-

square 
p-value 

1 
T2, T3, T4, 

T5, T6 
T1 𝑐8 = 7.05 − 6.21𝑣2𝑣4 16.81% 0.75 <2.2e-16 

2 
T1, T3, T4, 

T5, T6 
T2 

𝑐8 = −42.59 + 35.04𝑣1 + 27.20𝑣3 + 50.63𝑣4 

−43.61𝑣1𝑣4 − 26.45𝑣3𝑣4 
24.12% 0.92 <2.2e-16 

3 
T1, T2, T4, 

T5, T6 
T3 

𝑐8 = −67.93 + 229.06𝑣1 − 42.36𝑣2 + 47.21𝑣3 

+13.14𝑣4 − 29.43𝑣1𝑣2 − 146.21𝑣1𝑣3 − 55.42𝑣1𝑣4

+ 31.03𝑣2𝑣3 + 16.98𝑣2𝑣4 + 4.01𝑣3𝑣4 

15.63% 0.93 <2.2e-16 

4 
T1, T2, T3, 

T5, T6 
T4 𝑐8 = 7.49 − 6.66𝑣2𝑣4 16.48% 0.74 4.85e-15 

5 
T1, T2, T3, 

T4, T6 
T5 

𝑐8 = −49.57 + 158.57𝑣1 + 33.68𝑣3 + 19.82𝑣4 

−18.61𝑣1𝑣2 − 96.89𝑣1𝑣3 − 46.71𝑣1𝑣4 
44.89% 0.93 <2.2e-16 

6 
T1, T2, T3, 

T4, T5 
T6 𝑐8 = 7.22 − 6.42𝑣2𝑣4 32.30% 0.76 <2.2e-16 

 

Table 4. Detected/estimated crack length for T7 and T8 

T7 

Load cycle number 36,001 40,167 44,054 47,022 49,026 51,030 53,019 55,031   

Estimated crack (mm) 0* 1.09 2.00 2.73 - - - -   

Real crack (mm) 0 0 2.07 3.14 3.56 4.13 5.05 7.22   

T8 

Load cycle number 40,000 50,000 70,000 74,883 76,931 89,237 92,315 96,475 98,492 100,774 

Estimated crack (mm) 0* 0* 1.76 2.32 2.66 - - - - - 

Real crack (mm) 0 0 0 1.94 2.50 3.71 3.88 4.61 4.96 5.52 

* Crack length is determined by the crack detection algorithm in Table 1; - will be predicted in the next section. 

 

4.1. Crack Propagation Stages 

The relationship between crack growth rate and stress 

intensity factor can be divided into three stages, namely 

Stages 1, 2, and 3, as shown in Figure 8. Here, 𝑑𝑎 𝑑𝑁⁄  is the 

crack growth rate, and ∆𝐾 is the stress intensity factor range. 

In Figure 8, Stage 1 is the crack initiation stage, during which 

the crack grows slowly. In Stage 2, crack growth occurs at a 

medium rate, and the relationship between crack growth rate 

and stress intensity factor range can be represented with the 

Paris’ Law model. In Stage 3, the crack grows at a high rate 

since it is near to a complete fracture. In many engineering 

applications, crack propagation and growth are mostly 

assumed to occur in Stage 2. For the data challenge, we also 

assume the crack is within Stage 2. 

4.2. Paris’ Law 

Paris’s Law (Paris, & Erdogan, 1963) describes the 

relationship between crack growth rate and stress intensity 

factor range and it can be expressed with Eq. (2):  

𝑑𝑎/𝑑𝑁 = 𝐶(∆𝐾)𝑚                              (2) 

where a is the crack length, N is the number of load cycles, 

𝑑𝑎 is the fatigue crack length increment, 𝑑𝑁 is the increase 

of number of load cycles, 𝑑𝑎/𝑑𝑁 denotes the crack-growth 

rate, ∆𝐾 is the stress intensity factor range, and C and m are 

material parameters of the specimens. How to obtain ∆𝐾, C, 

and m is detailed later. 

4.2.1. Stress Intensity Factor Range 

The stress intensity factor range ∆𝐾 can be calculated by the 

following equation: 

∆𝐾 = 𝑌∆𝜎√𝜋𝑎                               (3) 

where Y is the geometric factor of the specimen, which is 

usually assumed as 𝑌 = 1, and ∆𝜎 is the applied stress range.  

For specimens T1 to T7, the applied fatigue load has a 

constant amplitude spectrum, while for specimen T8, it is 

subjected to a variable amplitude load. The schematic of 

these two kinds of load spectra are shown in Figure 9. 

From Figure 9, for the case of constant amplitude load, the 

stress range can be calculated using the following equation: 

∆𝜎𝑐 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 = (100.21 − 4.77)𝑀𝑃𝑎 = 95.44 𝑀𝑃𝑎   

(4)          
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For the variable amplitude load, the stress intensity factor 

range cannot be calculated in the same way as its constant 

counterpart. But an equivalent stress range, namely ∆𝜎𝑣𝑒 , can 

be adopted to represent the equivalent effect caused by the 

given variable amplitude load (Huang, Torgeir, & Cui 2008). 

How to calculate the equivalent stress range will be explained 

later.  

4.2.2. Specimen Material Parameters 

The material parameters C and m of the two specimens have 

the property of uncertainty, but they actually vary in specific 

ranges. Specifically, for metallic materials, m varies between 

2 and 4, and C varies from 1 × 10−13  to 1 × 10−11  (Li, 

Wang, & Gong, 2012). Exact values of C and m may differ 

by specimens. How to determine the values of C and m will 

be introduced in Section 4.3. 

4.2.3. Derived Formulae of Paris’ Law 

To estimate the material parameters C and m, one must resort 

to using Paris’ Law since C and m are two main parameters 

in the formula. Based on the original formula of Paris’ Law 

as shown in Eq. (2), it is difficult to obtain C and m since the 

accurate value of the crack growth rate 𝑑𝑎/𝑑𝑁 is hard to be 

estimated from the experimental fatigue crack data. 

However, it is feasible to obtain the load cycle numbers and 

their corresponding crack lengths from experiments. To 

estimate material parameters C and m with the load cycle 

numbers and their corresponding crack lengths, the original 

formula of Paris’ Law should be changed into its variations 

that describe the load cycle numbers and their corresponding 

crack lengths. To this end, based on the Paris’ Law in Eq. (2) 

and the calculation formula for ∆𝐾 in Eq.(3), the relationship 

between load cycle number increment ∆𝑁0𝑓 and crack length 

is obtained by modifying the original Paris’ Law model, 

which is shown in Eq. (5): 

∆𝑁0𝑓 = ∫ 𝑑𝑁
𝑁𝑓

𝑁0
=

1

𝐶(𝑌∆𝜎√𝜋)
𝑚 (

1
𝑚

2⁄ −1
) [

1

𝑎0
𝑚

2⁄ −1 −
1

𝑎𝑓
𝑚

2⁄ −1]    (5)       

where 𝑎0 is the initial crack length, 𝑁0 is the corresponding 

load cycle number, 𝑎𝑓 is an arbitrary crack length, 𝑁𝑓 is the 

corresponding load cycle number, and ∆𝑁0𝑓  is the cycle 

number increment from 𝑁0 to 𝑁𝑓.  

Based on Eq. (5), the following Eq. (6) is derived to calculate 

an arbitrary crack length 𝑎𝑓 if the initial crack length 𝑎0 and 

the load cycle number increment ∆𝑁0𝑓 are known: 

𝑎𝑓 = 𝑒

−ln ([
1

𝑎0
𝑚

2⁄ −1
−∆𝑁0𝑓∗(𝑚

2⁄ −1)∗(𝐶(𝑌∆𝜎√𝜋)
𝑚

)])

(𝑚
2⁄ −1)           (6) 

Equation (6) shows that if material parameters C and m and 

the load cycle increment ∆𝑁0𝑓  are known, then the crack 

length 𝑎𝑓 corresponding to a specific load cycle number 𝑁𝑓 

can be predicted. On this basis, Eq. (6) will be adopted to 

predict crack length. 

 

Figure 8. Schematic of typical fatigue crack growth curve 

(Pugno et al., 2006) 

 

 

  (a) Constant amplitude load    

 

 (b) Variable amplitude load 

Figure 9. Two kinds of cyclic load 
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4.3. Crack Length Prediction 

For crack length prediction, there are two cases: constant 

amplitude load (specimens T1 to T7) and variable amplitude 

load (specimen T8). How to predict crack length for these two 

cases will be introduced separately. 

4.3.1. Constant Amplitude Load Case 

The procedure for crack length prediction with a constant 

amplitude load is shown in Figure 10. In total, 𝐼 crack lengths 

𝑎𝑖(𝑖 = 1,2, … , 𝐼) must be predicted at load cycle numbers 

𝑁𝑖 (𝑖 = 1,2, … , 𝐼). The crack lengths are predicted one by 

one. The predicted crack length 𝑎𝑖 for load cycle number 𝑁𝑖 

will be used to predict the crack length for load cycle 𝑁𝑖+1.  

Firstly, the data are preprocessed to determine the initial 

dataset, namely the load cycle number N and crack length a. 

They will be used for predicting crack length for specimen 

T7.  

The 𝑁 and 𝑎 values of specimens T1–T6 are shown in Figure 

11. Because specimens T1-T7 were made by the same 

manufacturing process and they were subjected to the same 

load conditions in the fatigue test, it is reasonable to assume 

that their crack progression trajectories are similar to each 

other. From Figure 11, it is seen that the longest crack length 

observed is 7.46 mm, and the T4 dataset contains most 

thorough information about crack length growth in terms of 

load cycle numbers. We believe that T4 can characterize the 

most complete crack progression process of these specimens, 

and assume that the relationship curve for the load cycle 

number and crack length of specimen T7 follows the same 

pattern as that of specimen T4 upon its crack occurrence since 

they are subjected to same load conditions. This will 

contribute to estimating the load cycle number of T7 

corresponding to the maximum crack length of 7.46 mm.  

Based on the estimated crack length of T7 shown in Table 4, 

the load cycle subjected to T7 is calculated when its crack is 

7.46 mm. Figure 12 shows the corresponding calculation 

method.  

Polynomials are used to fit the known T4 data, and the 

coordinates of points A and B can be obtained according to 

the fitting curve of T4. Here, point A denotes the coordinates 

of 2 mm crack length and its corresponding load cycle 

number for the fitted curve of T4, while point B denotes the 

coordinates for a 7.46 mm crack length and its corresponding 

load cycle number. We assume that the crack variation with 

load cycle of T7 is consistent with that of T4, for example, 

the crack of T4 should propagate according to the equidistant 

curve A’B’ of T7’s fitting curve AB. In this way, the 

vertical coordinate difference between points B and B’ is 

equal to that between points A and A’. Therefore, the vertical 

ordinate value of B' (i.e., the load cycle number for a 7.46 mm 

crack length) is obtained. The coordinates of B' are calculated 

as Cycle 54,795 and crack length 7.46 mm. 

The point (54,795, 7.46) is now used as a data point and 

added to the estimated dataset for specimen T7 (shown in 

Table 4). Based on our study, the first two pieces of the 

estimated dataset of specimen T7 should be discarded since 

they greatly deviate from the relationship curve between the 

load cycle number and crack length of specimen T7. The 

initial dataset used for predicting crack length in T7 is shown 

in Table 5. 

 

 

Figure 10. Flowchart of the procedure for predicting the 

crack length of specimen T7 

 

 

Figure 11. Relationship between crack length and load cycle 

number of specimens T1–T6 
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Figure 12. Calculation schematic diagram of the load cycle 

for T7 at crack length of 7.46 mm 

 

Table 5. Initial dataset for T7 crack length prediction 

Load cycle number Crack length (mm) 

44,054 2.00 

47,022 2.73 

54,795 7.46 

 

Because C and m have the property of uncertainty, we adopt 

the GA to estimate their values. The data available to conduct 

the GA are very limited. To augment the data amount, we fit 

the relationship curve between load cycle number 𝑁  and 

crack length 𝑎 for specimen T7. Polynomial curve fitting is 

employed. After that, a dataset containing the load cycle 

increment ∆𝑁 and crack length 𝑎 is obtained and further used 

to estimate C and m. 

Based on Eq. (5), the optimization problem to be solved with 

the GA for estimating C and m can be formulated as shown 

in Eq. (7): 

�̂� = 𝑎𝑟𝑔 min
𝑝

‖∆𝑁 −
1

𝐶(𝑌∆𝜎√𝜋)
𝑚 (

1

𝑚/2−1
) [

1

𝑎0
𝑚/2−1 −

1

𝑎𝑚/2−1
]‖

2

     

(7) 

where 𝑝 = (𝐶, 𝑚) is the parameter vector to be estimated, 

∆𝑁  is the load cycle increment, and 𝑎0  is the initial crack 

length.  

After solving the above optimization problem, the estimated 

values of C and m are substituted into Eq. (6). Then, the crack 

length corresponding to a specific load cycle number can be 

predicted. Table 6 gives the predicted crack length of T7 

under different load cycles. 

4.3.2. Variable Amplitude Load Case 

The procedure for predicting crack length of the variable 

amplitude load case (specimen T8) is shown in Figure 13. 

The major difference between the procedure for T8 and that 

for T7 is that the equivalent stress range due to variable load 

needs to be determined. 

Likewise, the first step is to determine the initial dataset for 

predicting the crack length of specimen T8. Based on the 

provided data of 𝑁 and 𝑎 of specimens T1–T6, the maximum 

crack length considered in the provided data is 7.46 mm. 

Because T8 has a variable amplitude load spectrum, which is 

different from those of specimens T1–T7, the relationship 

curve between the load cycle number and crack length of 

specimen T8 will definitely not follow the same patterns as 

those of the specimens with constant load spectra. Therefore, 

the relationship curve for load cycle number and crack length 

of specimen T8 should be built based on its own given data. 

The estimated crack length for T8 at the first several cycles 

is presented in Table 4 in Section 3. When the first crack 

length of T8 is 1.76 mm, the corresponding number of load 

cycles is 7,000. When the first cracks appear in T1–T6, the 

load cycle is generally less than or almost equal to 6,000. The 

load cycles of T8 are relatively larger than those of T1–T6. 

According to the typical a-N curve (Pugno et al., 2006),  

when the load cycle is very large, the crack will grow rapidly 

at a nearly linear rate. Therefore, it is reasonable to assume 

that the crack length of T8 will linearly increase from the first 

two crack lengths to 7.46 mm. The load cycle corresponding 

to a crack length of 7.46 mm can be obtained by linear 

interpolation from any two of these three data points: {(7,000, 

1.76); (74,883, 3.2.32); (76,931,2.66)}. The calculated load 

cycle of T8 for a crack length of 7.46 mm is 113,896. 

The estimated load cycle number corresponding to the 

maximum crack length 7.46 mm will serve as a part of the 

dataset. It will be integrated into the data in Table 4 for 

specimen T8. The integrated dataset will be used as the initial 

dataset for estimating the material parameters C and m and 

the equivalent stress range ∆𝜎𝑣𝑒. The initial dataset used for 

predicting crack length of T8 is tabulated in Table 7. 

The GA is adopted to estimate C, m, and ∆𝜎𝑣𝑒. Firstly, the 

relationship curve between 𝑁 and 𝑎 is fitted for specimen T8 

via polynomial curve fitting. Then, a dataset containing the 

load cycle number increment ∆𝑁  and crack length 𝑎  is 

obtained. 

Table 6. Predicted crack length for specimen T7 

Load cycle number Crack length (mm) 

49,026 3.375 

51,030 4.270 

53,019 5.691 

55,031 8.080 
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Figure 13. Flowchart of the procedure for predicting the 

crack length of specimen T8 

 

Table 7. Initial dataset for T8 crack length prediction 

Load cycle number Crack length (mm) 

70,000 1.76 

74,883 2.32 

76,931 2.66 

113,896 7.46 

Based on Eq. (5), the optimization problem to be solved with 

the GA for estimating C, m, and ∆𝜎𝑣𝑒 can be formulated as 

shown in Eq. (8): 

�̂� = 𝑎𝑟𝑔 min
𝑝

‖∆𝑁 −
1

𝐶(𝑌∆𝜎𝑣𝑒√𝜋)
𝑚 (

1

𝑚/2−1
) [

1

𝑎0
𝑚/2−1

−
1

𝑎𝑚/2−1
]‖

2

  (8) 

where 𝑝 = (𝐶, 𝑚, ∆𝜎𝑣𝑒)  is the parameter vector to be 

estimated, ∆𝑁  is the load cycle increment, and 𝑎0  is the 

initial crack length. 

After solving the above optimization problem, the estimated 

values of C, m, and 𝛥𝜎𝑣𝑒 are substituted into Eq. (6). Then, 

the crack length corresponding to a specific load cycle 

number can be predicted. Table 8 gives the predicted crack 

length of T8 under different load cycles using the GA 

method. 

Table 8. Predicted crack length for specimen T8 

Load cycle number Crack length (mm) 

89,237 3.612 

92,329 3.763 

96,475 4.585 

98,492 5.013 

100,774 5.871 

5. SUMMARY AND CONCLUSION 

To overcome the challenges of limited data amount and 

variable load conditions for structure crack length estimation 

and prediction, models based on physical knowledge and 

data-driven methods were proposed. For estimating crack 

length, four crack-sensitive and load variation independent 

features were extracted based on the understanding of the 

ultrasonic signals. Linear ensemble models were then built to 

estimate the crack length of test specimens. For predicting 

crack length, the modified Paris’s Law, a physical model, was 

employed to predict the crack length based on historical data. 

The GA learns the parameters (e.g., the material parameters) 

of the model.  

The estimated, predicted, and real crack lengths are 

summarized and listed in Table A in the Appendix. The 

estimated and predicted crack lengths are close to the real 

crack values and obtain a score of 16.14 using the data 

challenge score calculation rule (PHM Society, 2019). The 

proposed methods, based on ensemble linear regression and 

Paris’ Law, provide a good reference for monitoring 

structural health given limited data and variable operation 

conditions.  

In this work, a simple crack detection algorithm based on 

limited observation was employed. It made some false alarms 

when applied to T7 and T8. In the future, a better crack 

detection algorithm may be explored, like TF analysis 

(Courtney, Drinkwater, Neild, & Wilcox, 2008; Lim, Sohn, 

DeSimio, & Brown, 2014). Moreover, the accuracy of the 

proposed models can be improved if more training data could 

be obtained. Also, if more training data are available, other 

models, e.g., ANN, Time series models, and Support Vector 

Regression (SVR) (James, Witten, Hastie, & Tibshirani, 

2013; Goodfellow, Bengio, & Courville, 2016) could be 

explored to further improve the crack estimation accuracy. 

Finally, the least absolute shrinkage and selection operator 

(LASSO) (Chen, Liang, & Zuo, 2019) can also be explored 

for feature selection in the ensemble modeling. 
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APPENDIX A 

Table A. Estimated and predicted crack lengths for the 2019 PHM Conference Data Challenge 

T7 

Load cycle number 36,001 40,167 44,054 47,022 49,026 51,030 53,019 55,031   

Estimated/predicted 

crack (mm) 
0 1.09 2.00 2.73 3.38 4.27 5.69 8.08   

Real crack (mm) 0 0 2.07 3.14 3.56 4.13 5.05 7.22   

T8 

Load cycle number 40,000 50,000 70,000 74,883 76,931 89,237 92,315 96,475 98,492 100,774 

Estimated/predicted 

crack (mm) 
0 0 1.76 2.32 2.66 3.61 3.76 4.59 5.01 5.87 

Real crack (mm) 0 0 0 1.94 2.50 3.71 3.88 4.61 4.96 5.52 

 


