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ABSTRACT 

The article provides a methodology for assessing the 
trustworthiness of health monitoring the dismounted avionics 
systems with automated test equipment (ATE). The 
indicators include the probabilities of false-positive, false-
negative, true-positive, and true-negative. For the first time, 
we introduced into consideration the instability of the source 
of stimulus signal (SSS), the random and systematic 
component of the measuring channel error, and the reliability 
characteristics of the systems themselves. We consider a 
specific case of an exponential distribution of permanent 
failures and intermittent faults and derive formulas for 
calculating the trustworthiness indicators. Numerical 
calculations illustrate how the probabilities of correct and 
incorrect decisions depend on accuracy parameters. We show 
that the probabilities of false-positive and false-negative 
increase much faster than the probabilities of true-positive 
and true-negative decrease when the standard deviation of 
stimulus signal increases. For a Very High-Frequency Omni-
Directional Range (VOR) receiver, we demonstrate that even 
with a zero random error generated by the source of the 
stimulus signal, the probabilities of false-positive and false-
negative are different from zero. 

1. INTRODUCTION 

Currently, many airlines and air-force bases worldwide use 
ATE for monitoring and diagnostics of avionics systems. 
Examples of such systems are ATEC Series 7 manufactured 
by Spherea (2017), eCASS – electronic Consolidated 
Automated Support System made by Lockheed Martin 
(2020), ATE IRIS 2000/IRS 1200 system manufactured by 

Aeroflex (2005), and many others. The main goal of using 
ATE is to reduce maintenance costs over the lifetime of 
avionics, which depends on solving the following major 
tasks: increasing ATE versatility (an increase in the number 
of types of tested avionics systems) and improves the validity 
of operability checking and troubleshooting. For instance, the 
eCASS is compatible with more than 550 sets of test 
programs that test avionics systems on multiple platforms. 
Modern ATE are built on a modular principle using interface 
PXI bus and standard digital interface for programmable 
instrumentation IEC-60488-1 (2004) and IEC-60488-2 
(2004). There are two primary directions of ATE 
development: generality and openness (Ma et al., 2013); the 
main aspects of these directions investigated by (Droste & 
Guilbeaux, 2009), (Evlanov, 1979), and (Stora & Droste, 
2003). 

At the stages of the design and operation of ATE for avionics 
systems, the task of assessing the trustworthiness indicators 
of health monitoring is highly topical. Indeed, inspection 
errors such as false-positive and false-negative can lead to 
economic losses and flight safety reduction. 

Let us look at how false-positive and false-negative events 
affect the cost of avionics maintenance and flight safety. 
Modern digital avionics systems present modular units with 
high requirements for testability and maintainability (eCASS, 
2020). An avionics system usually consists of one or several 
line-replaceable units (LRU) or line-replaceable modules 
(LRM). Each LRU or LRM comprises a set of shop 
replaceable units (SRU) representing a printed circuit board 
assemblies (PCB). Based on the three-component level of 
avionics systems (LRU, SRU, nonrepairable element), the 
following three levels of maintenance are composed: 
organizational maintenance (O-level), intermediate 
maintenance (I-level), and depot maintenance (D-level). The 
O-level maintenance targets the isolation of defected LRU at 
the aircraft parking. I-level maintenance performs isolation 
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of the LRU failure with depth to SRU. At I-level, specialized 
ATE automates most of the test procedures. D-level 
maintenance performs isolation of failure with depth to 
nonrepairable elements. The specialized repair centers or 
original equipment manufacturers typically conduct D-level 
maintenance. As has been shown (Bao et al., 2006; Raza et 
al., 2017; Raza & Ulansky, 2018; Ross, 2003), the 
maintenance system may comprise all three levels or consist 
of the two if the only O- and I-levels or O- and D-levels are 
applicable. 

As is well known (Raza, 2018; Raza & Ulansky, 2020), any 
two or three-level maintenance options must check the 
operability of the dismantled LRU or LRM. We illustrate this 
statement by the diagram presented in Figure 1 for two-level 
maintenance, including O- and I-level. As we can see in 
Figure 1, the dismounted LRU can be judged as operable or 
inoperable by the results of testing with the help of ATE. 
Since the flow of dismounted LRU includes both inoperable 
and operable units, one of four incompatible events may 
occur according to the checking results: true-positive, false-
positive, true-negative, or false-negative. When a true-
positive or false-negative event occurs, the unit is shipped to 
the warehouse of spare LRU. On the other hand, when a true-
negative or false-positive event occurs, the unit is delivered 
to the manufacturer or outsourcing company for repair. 

 
Figure 1. Diagram of an LRU circulation for a two-level 
maintenance option comprising O- and I-level 

Thus, from the diagram in Figure 1, the occurrence of a false-
negative (undetected failure) when checking the LRU will 
ultimately lead to installing a faulty unit onboard the aircraft 
that may have an impact on flight safety. An example of such 
an onboard safety-related avionics system is the Instrument 
Landing System (ILS), which usually comprises three and 
sometimes even more identical receivers with a k-out-of-n 
reliability structure (Rausand & Hoyland, 2003). However, 
the appearance of a false-positive event will lead to shipping 
the operable LRU to the manufacturer or outsourcing 
company for repair, which we associate with economic 
losses. 

 

Let us consider the most significant publications in this area. 
(Breitgand et al., 2011) developed a specific algorithm for 
controlling the rate of false-positive and false-negative. (Ho 
et al., 2012) proposed a false-positive and false-negative 
assessment mechanism that collects corresponding errors 
from real-world traffic and statistically analyzes these cases. 
(Mane et al., 2004) considered a capture-recapture-based 
method to estimate false-negatives when using two or more 
independent classifiers. (Foss & Zaiane, 2008) proposed an 
algorithm for computation true-positive and false-positive 
rates using a statistical error rate algorithm. (Ebrahimi, 2008) 
considered the problem of determining thresholds controlling 
both false-positives and false-negatives by using a specific 
risk function. (Scott, 2007) proposed performance measures 
to evaluate and compare classifiers concerning minimizing 
the probability of false-negative whereas restricting the 
probability of a false positive. (Evlanov, 1979; Kudritsky et 
al., 1977; Ulansky, 1992) considered analytical methods for 
calculating the probabilities of false-positive and false-
negative. The measurement result includes the actual value of 
the monitoring parameter and additive random noise in these 
studies. 

Note that all the cited studies do not consider the specifics of 
health monitoring the avionics systems. We should also note 
that the metric F1 score, widely used in binary classification 
and statistical analysis (Chen, 2019; Hossin & Sulaiman, 
2015; Manning et al., 2008; Sokolova et al., 2006), is 
impractical to use for assessing the trustworthiness of 
monitoring avionics systems for two reasons. Firstly, it gives 
equal importance to precision and recall, but in practice, 
different types of classification errors lead to various losses 
(Hand & Christen, 2018). Secondly, there is only a statistical 
formula for calculating the F1 score. Hence, to assess the 
increase or decrease in trustworthiness when changing the 
testing procedure is possible only through numerous tests, 
which leads to high costs. 

Therefore, this study provides a methodology for calculating 
the trustworthiness indicators of the health monitoring of 
avionics systems on the example of navigation and landing 
systems; we consider the instability of the SSS, the accuracy 
characteristics, and the reliability of the systems themselves. 
We examine the primary sources of measurement errors in 
detail when testing VOR receivers and formulate the events 
that lead to the correct and incorrect decisions. We derive the 
generalized expressions of trustworthiness indicators and 
specific formulas for the case of an exponential distribution 
of permanent failures and intermittent faults. Next, we 
illustrate the dependence of the probabilities of correct and 
incorrect decisions when testing VOR receivers versus 
different accuracy parameters. Finally, we consider an 
example of assessing the trustworthiness indicators when 
testing ILS with ATE. 
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2. TRUSTWORTHINESS ASSESSMENT METHODOLOGY 

The following section outlines the general methodology of 
assessing the health monitoring trustworthiness of avionics 
systems on the example of a navigation system. 

2.1. Block Diagram of VOR Receiver Health 
Monitoring 

Let us determine the trustworthiness indicators of the health 
monitoring of the onboard VOR radio receiver, which 
represents a typical avionics LRU. Onboard equipment VOR 
provides aircraft navigation on land lighthouses VOR. This 
equipment allows to solve the following navigation tasks: 

• Determine the magnetic bearing of the VOR 
ground-based radio beacon; 

• Determine the location of the aircraft using the 
magnetic bearings of two VOR radio beacons; 

• Determine the drift angle in flight. 

According to Aeronautical Information Manual (2017), an 
error of ± 1° usually characterizes the accuracy of 
determining VOR radio beacons' bearings using onboard 
equipment. When checking the VOR receiver's operability 
with the help of ATE, the tested parameter is the error of 
azimuth measurement. 

Figure 2 shows a block diagram of monitoring the health of 
an airborne VOR receiver. A specific stimulus signal of 
magnitude A must be applied to the VOR receiver to monitor 
azimuth measurement error. Therefore, the controller applies 
a control signal to the SSS, which, acting on the 
corresponding controls, sets the required shape and 
magnitude of the stimulus signal at its output. 

 
Figure 2. Block diagram of VOR receiver health monitoring 

Since the SSS has finite stability, instead of the required value 
of the stimulus signal A, it applies a signal of magnitude A + 
Γ to the input of the VOR receiver, where Γ is the random 
component of the SSS error. Further, we assume that the 
systematic component of the SSS error was eliminated as a 

result of planned calibrations; therefore, we do not consider 
it. In turn, the VOR receiver introduces the error Θ + Ξ into 
the signal A applied to its input, where Θ and Ξ are, 
respectively, the systematic and random components of the 
error of azimuth measurement. Then, by the signal from the 
controller, the memory feeds the value of signal A to the 
subtractor. Thus, we can represent the difference signal at the 
output of the subtractor as follows: 

Y = 4+; +*  (1) 

Signal Y feeds into the comparator that uses the following 
decision rule. If |y| ≤ |Δ|, then it makes the decision "the error 
of the azimuth measurement in the tolerance" (comparator 
output 1 in Figure 2), where Δ is the limit of the permissible 
error of azimuth measurement by the VOR receiver and y is 
the realization of the random variable Y. If |y| ˃ |Δ|, then it 
makes the decision "the error of the azimuth measurement is 
out of the tolerance" (comparator output 2 in Figure 2). Since 
both the subtractor and comparator are microprocessor 
devices, we can neglect the errors of the subtraction and 
comparison operations. 

The random errors in Equation (1) are not correlated with 
each other. Therefore, between the random variables Γ, Θ, 
and Ξ, there is an additive relationship. Indeed, the random 
error Г is not dependent on Θ and Ξ because it is generated 
by the external source of stimulus signal. Further, for a 
specific VOR receiver, the systematic measurement error Θ 
is not a random variable, but a constant value, which depends 
on the accuracy of the initial setup of the measuring path of 
the VOR receiver at the manufacturer. The measuring 
channel of the VOR receiver receives, filters, amplifies and 
demodulates high-frequency signals from the antenna, as 
well as converts analog low-frequency signals into a digital 
code, which is transmitted to the onboard computer. In the 
process of converting a high-frequency signal into a digital 
code, a significant number of different operations (analog and 
digital) are performed, which cause the appearance of a 
random component of the azimuth measurement error Ξ. The 
random component Ξ fluctuates around some constant value, 
which is the systematic component of the azimuth 
measurement error. Moreover, for different VOR receivers 
with varying values of the systematic component, the 
standard deviations of these fluctuations are practically the 
same. Due to these reasons, it is assumed that there is an 
additive relationship between the random variables Θ and Ξ. 

2.2. Formalization of Incompatible Events Based on 
Decision-making when Monitoring the Health of 
VOR Receiver 

Due to the presence of a random component Z = Ξ + Γ in the 
difference signal Y, the decisions made by the comparator 
may turn out to be erroneous. In this case, incorrect decisions 
such as false-positive (SFP) and false-negative (SFN) take 
place accordingly when the following complex events occur: 
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^ `FPS Z= 4 d ' 4 + ! '  (2) 

^ `FNS Z d= 4 ' 4 +! '  (3) 

where ∩ is the symbol of the intersection of different events. 

Event (2) means that the systematic error of azimuth 
measurement is within the tolerance, but its measured value 
is out of tolerance. Event (3) implies that the systematic error 
of azimuth measurement is out of tolerance, but its measured 
value is within the tolerance.  

On the other hand, the comparator can make the correct 
decisions, such as true-positive (STP) and true-negative (STN). 

^ `TPS Z= 4 d ' 4 + d '  (4) 

^ `TNS Z= 4 ' 4 +! ! '  (5) 

Event (4) means that the systematic error of azimuth 
measurement and its measured value is within the tolerance. 
Event (5) implies that the systematic error of azimuth 
measurement and its measured value is out of tolerance. 

As we can see from relations (2)–(5), events SFP, SFN, STP, and 
STN represent a group of mutually exclusive events; the sum 
of their probabilities is unity. 

2.3. Determination of Probabilities of Correct and 
Incorrect Decisions 

Figure 3 shows the graph of decision-making when checking 
the VOR receiver, where P is the a priori probability of the 
VOR receiver operability and q(θ) is the probability density 
function (PDF) of the systematic component of the azimuth 
measurement error over the set of the same VOR receivers. 

 
Figure 3. The graph of decision-making when checking the 
VOR receiver operability 

According to the graph of decision-making in Figure 3, we 
can write the following obvious equations: 

( ) ( )FP TPP P S P S= +  (6) 

1 ( ) ( )FN TNP P S P S− = +  (7) 

We show the expressions for the prior probabilities P and 1 – 
P on the edges of the decision-making graph in Figure 3. 

Since the random variable Z is the sum of two independent 
continuous random variables Ξ and Γ, its PDF g(z) can be 
represented as a composition of the PDF of these random 
variables, i.e., 

( ) ( ) ( )γ φ γ γg z f z d
f

−f
= −³  (8) 

where f(ξ) and φ(γ) are PDF of random variables Ξ and Γ, 
respectively. 

Using the theorems of addition and multiplication of 
probabilities and considering Equation (8), we determine the 
probabilities of events (2)–(5) as follows: 

- the probability of false-positive 

( ) ( )

( ) ( ) ( )
θ

θ

( ) θ θ

θ γ φ γ γ θ

FP TP q

q

P S P P S d

f z d dzd

'

− '

' ' − f

− ' − ' − −f

= = −³

−³ ³ ³

−

 
(9) 

 

- the probability of false-negative 

( ) ( ) ( ) ( )

( ) ( ) ( )

θ

θ

θ

θ

θ γ φ γ γ θ+

θ γ φ γ γ θ

FN q

q

P S f z d dzd

f z d dzd

− ' ' − f

−f − ' − −f

' −f f

' − ' − −f

= −³ ³ ³

−³ ³ ³

 
(10) 

- the probability of true-positive 

( ) ( ) ( ) ( )
θ

θ
θ γ φ γ γ θTP qP S f z d dzd

' ' − f

− ' − ' − −f
= −³ ³ ³  

 

 

(11) 

- the probability of true-negative 

( ) ( ) ( ) ( )

( ) ( ) ( )

θ

θ

θ γ φ γ γ θ+

θ γ φ γ γ θ

TN q

q

P S f z d dzd

f z d dzd

− ' − ' − f

−f −f −f

f f f

' ' − −f

= −³ ³ ³

−³ ³ ³

 

 

(12) 
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2.4. Case of Sudden Failures 

ATE checks the health of VOR units rejected during 
operation by built-in test equipment (BITE) and dismounted 
from the boards of the aircraft fleet. In the flow of dismounted 
units, we can observe VOR receivers with permanent failures 
and receivers removed from the aircraft boards due to 
intermittent faults registered by BITE. Indeed, according to 
(Ilarslan & Ungar, 2016; Khan et al., 2014), the rate of 
intermittent faults for avionics is from 20 % to 50 % of the 
total percentage of removals. Due to the presence in the flow 
of dismounted units, both operable and failed (i.e., with 
permanent failures) VOR receivers, all the formulated events 
(2)–(5) are possible. 

At the initial stage of equipment operation, the laws of 
degradation of monitoring parameters are generally 
unknown. Therefore, the calculation of reliability is carried 
out for the exponential distribution law of permanent failures. 
So, further, we will assume that only sudden failures occur in 
VOR receivers. 

The systematic component of the azimuth measurement error 
depends on the accuracy of the initial setup of the measuring 
path of the VOR receiver and the presence of defects in it. By 
defects, we mean breaks, short circuits in the electrical 
circuitry of the dismounted VOR receiver, and other 
quantitative changes in the properties of the components, 
leading to a sudden exit of the systematic part of the azimuth 
measurement error beyond tolerance. 

Thus, we can present the systematic error of azimuth 
measurement as follows: 

0

1

Θ , if an intermittent fault occurs in the VOR 
      receiver, resulting in dismounting it from 
      the aircraft board
Θ , if a permanent defect occurs in the VOR 
      receiver, resulting in a reduc4 =

2

tion in systematic 
      error below the permissible limit
Θ , if a permanent defect occurs in the VOR 
      receiver, leading to an increase in systematic 
      error over the permissible limit

­
°
°
°°
®
°
°
°
°̄

 

The following apparent conditions are met: |Θ0| ≤ |Δ|, |Θ1| ˃ 
|Δ|, and |Θ2| ˃ |Δ|. These conditions mean that in the absence 
of permanent failure in the VOR receiver, all possible values 
of the systematic error lie within tolerance. In the presence of 
permanent failure, the value of the systematic component is 
out of tolerance. 

Figure 4 shows the graph of transitions of the VOR receiver 
to states leading to dismounting from the aircraft. In Figure 
4, λ0 is the rate of intermittent faults transferring the VOR 
receiver to the state D0, in which it is dismounted from the 
aircraft board not having any permanent failure, λ1 and λ2 are 
the rates of permanent failures that transfer the VOR receiver 
from the operable state to inoperable states D1 and D2, 

corresponding to a decrease and increase in systematic error 
by an amount higher than permissible. 

 
Figure 4. The graph of transitions of VOR receiver from the 
board of an aircraft 

Thus, the VOR receiver that does not have a permanent 
failure can be dismounted from an aircraft due to one or more 
intermittent faults recorded by the BITE during flight (state 
D0). According to Figure 1, ATE will test the dismounted unit 
at the I-level maintenance and with probability P(STP) does 
not confirm the existence of a permanent failure. Moreover, 
conventional ATE will not also detect the root of intermittent 
faults (Anderson, 2014). 

Inoperable states D1 and D2 correspond to situations when a 
permanent failure occurs during flight and BITE detects it. 

As we can see in Figure 4, at the exponential failure 
distribution, the total transition rate is 

0 1 2λ λ λ/ = + +  (13) 

Based on the above reasoning, we can present the PDF of the 
systematic error in measuring the azimuth of the VOR 
receivers coming to the health monitoring as follows: 

( ) ( ) ( ) ( )0 1 2
0 1 2

λ λ λ
θ θ θ θq q q q= + +

/ / /
 (14) 

where q0(θ), q1(θ), and q2(θ) are, respectively, the PDF of the 
systematic component of the azimuth measurement error in 
the absence and presence of permanent failures. 

Considering Equation (14) and the fact that random variables 
Θ0, Θ1, and Θ2 have non-overlapping intervals of existence, 
we transform the probabilities (9)–(12) to the following form: 

- the probability of false-positive 
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( )

( )

( ) ( ) ( )

0

0

θ

0
θ

θ θ

λ

θ γ φ γ γ θ

FP

q

q

d

P S

f z d dzd

'

− '

' ' − f

− ' − ' − −f

ª º
« »
« »
« »
« »
« »
« »
« »
« »¬ ¼

−³

=
/

−³ ³ ³

 (15) 

- the probability of false-negative 

( ) ( ) ( ) ( )

( ) ( ) ( )

θ
1

1
θ

θ
2

2
θ

λ θ γ φ γ γ θ +

λ θ γ φ γ γ θ

FN

q

P S q f z d dz d

f z d dz d

− ' ' − f

−f − ' − −f

' −f f

' − ' − −f

ª º
« »=
« »
¬ ¼

ª º
« »
« »
¬ ¼

−³ ³ ³/

−³ ³ ³/

 (16) 

- the probability of true-positive 

( ) ( ) ( ) ( )
θ

0
0

θ

λ θ γ φ γ γ θTP qP S f z d dzd
' ' − f

− ' − ' − −f
= −³ ³ ³/

ª º
« »¬ ¼

 (17) 

- the probability of true-negative 

( ) ( ) ( ) ( )

( ) ( ) ( )

θ
1

1

2
2

θ

λ θ γ φ γ γ θ +

λ θ γ φ γ γ θ

qTN

q

P S f z d dz d

f z d dz d

− ' − ' − f

−f −f −f

f f f

' ' − −f

ª º
« »
« »¬ ¼

ª º
« »
« »
¬ ¼

= −³ ³ ³/

−³ ³ ³/

 (18) 

We can assume that the random variable Θ0 has a normal PDF 
since the distribution of Θ0 depends on the accuracy of tuning 
the channel for measuring the azimuth of the VOR receiver 
at the manufacturer. When setting up the measuring channels 
of electronic devices, the rule of three sigmas usually has a 
place. Since |Θ0| ≤ |Δ|, it is evident that the random variable 
Θ0 has a truncated normal distribution with the mean square 
deviation of σθ = |Δ|/3 and mathematical expectation E(Θ0) = 
0. 

In the design and early stages of VOR receives' operation, 
engineers do not know the mathematical expectation and the 
standard deviation of the systematic component of the error 
in measuring the azimuth by the failed VOR receivers. 
However, it is usually possible to determine the boundary 
values of this error from the operational algorithm of the 
VOR receiver. A uniform distribution has the maximum 
entropy with the known boundaries of the systematic 
measurement error (Lisman & van Zuylen, 1972). Therefore, 
we assume that the random variables Θ1 and Θ2 have a 
uniform distribution. 

Substituting into Equation (14) the values of the PDF of 
random variables Θ0, Θ1, and Θ2, we obtain 

( ) ( )
( ) ( )

2 2
θ0 1 2

θ

λ exp θ 2σ λ λ
θ

2πσ l h
q

c −
= + +

/ −' −' / ' −' /
 (19) 

where Δl and Δh are, respectively, the lower and upper 
boundaries of the systematic component of the error in 
azimuth measurement in the presence of defects in the VOR 
receiver, and c is the normalization constant. 

( )
1

2 2
θ

θ

1
exp θ 2σ θ

2πσ
c d

−
'

− '
= −³
ª º
« »
¬ ¼

 (20) 

Substituting Equations (19) and (20), and the PDF of the 
random errors Ξ and Γ into Equations (15)–(18) after 
corresponding transformations we obtain the following 
formulas: 

( ) ( )

( ) ( )

( )

θ

θ

θ
2 2
ξ γθ

θ
2 2θ ξ γ

θ

θ

σ
0 2

σ

σ

σ σσ
2 2

σ
σ σ σ

1

σ
2

σ

1exp 2
2π

λ

2π

exp 2 exp 2

1
exp 2

2π

FP

x

x

x dxP S

x u dudx

x dx

'

− '

' −'
+

− ' − ' −

+

−'

− '

ª
«
« − − u³«
«
¬

=
/

− − u³ ³

−³

º
»
»
»
¼

ª º
« »
« »
« »¬ ¼

 (21) 

( ) ( ) ( )

( ) ( )

2 2
ξ γ

2 2
ξ γ

2 2
ξ γ

2 2
ξ γ

σ σ
21

σ σ

σ σ
2 2

σ σ
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2π

λ
exp 2

1
l

h

x

FN
l x

x

xh

P S u dudx

u dudx

' −

+− '

− ' −'
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' −

+'

' − ' −

+

ª
«
«
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«
«
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− +³ ³−' − '/
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' − '

º
»
»
»
»¼

 (22) 
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( )
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(23) 

( ) ( )
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2
2

σ σ

2

2

λ exp
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3. RESULTS AND DISCUSSION 

Example 1. Let us consider an example of calculating the 
trustworthiness indicators when monitoring the health of 
dismounted VOR receivers. The tested VOR equipment 
operates in the frequency range 108.0–117.975 MHz. There 
are 160 fixed frequencies (channels) for work with VOR 
beacons. Azimuth measurement error is no more than 0.5°. 
We use the following initial data: |Δ| = 0.00873 rad, Δh = – Δl 
= 0.04365 rad, σξ = σθ = 0.00291 rad, and σγ = 0.00175 rad. 

Table 1 illustrates the dependence of trustworthiness 
indicators on the fraction of VOR receivers with intermittent 
faults arriving for health monitoring using ATE when λ1/Λ = 
λ2/Λ = (1 – λ0/Λ)/2. The fraction of VOR receivers 
dismounted from the aircraft due to intermittent faults (λ0/Λ) 
corresponds to the operable units that do not have permanent 
failures. 

As we can see in Table 1, the probability of false-positive 
increases, and the probability of false-negative decreases 
with an increase in the fraction of operable VOR receivers. 
At the same time, the probability of true-positive increases, 
and true-negative decreases. 

To explain this behavior of trustworthiness indicators, we 
should consider their dependence on the ratio λ0/Λ 
determined by the following equations: 

 

Table 1. Trustworthiness indicators versus the fraction of 
VOR receivers that do not have permanent failures 

Trustworthiness 
indicator 

The fraction of operable VOR 
receivers, λ0/Λ 

 0.2 0.4 0.6 0.8 

Probability of  
false-positive 

0.010 0.020 0.030 0.040 

Probability of  
false-negative 

0.031 0.023 0.016 0.008 

Probability of  
true-positive 

0.190 0.380 0.570 0.760 

Probability of  
true-negative 

0.769 0.577 0.384 0.192 

 

( ) ( ) 0λFP TPP S P S+ = /  (25) 

( ) ( ) ( )1 201 λ λ λFN TNP S P S+ = − / = + /  (26) 

As we can see in Equations (25) and (26), with an increase in 
the ratio λ0/Λ, the sum of the probabilities of false-positive 
and true-positive increases and the sum of the probabilities of 
false-negative and true-negative decreases. Since we did not 
change the accuracy characteristics of the measuring channel 
when making calculations, the dependencies in Table 1 are 
linear. 

Let us investigate the dependence of the trustworthiness 
indicators of health monitoring on the accuracy 
characteristics of the measuring channel when λ0/Λ = 0.4 and 
λ1/Λ = λ2/Λ = 0.3. 

Figures 5 and 6 show the dependence of the probabilities of 
false-positive and true-positive versus standard deviation of 
the systematic component of the azimuth measurement error. 

From Figures 5 and 6, we can see that the probability of false-
positive increases from 0.4 % to 5.4 %, and the probability of 
true-positive decreases from 39.5 % to 34.5 % with 
increasing the standard deviation of the systematic 
component of the azimuth measurement error in the interval 
(0, 0.01) rad. Thus, in the interval of σθ variation, the 
probability of a false-positive increases by 1250 %, and the 
probability of a true-positive decreases only by 12.7 %. 
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Figure 5. Dependence of the probability of false-positive 
versus standard deviation of the systematic component of the 
azimuth measurement error 

  
Figure 6. Dependence of the probability of true-positive 
versus standard deviation of the systematic component of the 
azimuth measurement error 

Figures 7 and 8 show the dependence of the probabilities of 
false-positive and true-positive versus standard deviation of 
the random error generated by the SSS. 

Analyzing Figures 7 and 8, we can make the following 
conclusions. The probability of false-positive is very much 
dependent on the standard deviation of the random error 
generated by the SSS. Indeed, when σγ changes from 0 to 0.01 
rad, the probability P(SFP) increases from 2 % to 17 %. 

The probability of true-positive decreases when the standard 
deviation of the random error generated by the SSS increases. 
When σγ changes from 0 to 0.01 rad, the probability P(STP) 
decreases from 38 % to 23 %. 

 

Figure 7. Dependence of the probability of false-positive 
versus standard deviation of the random error generated by 
the source of the stimulus signal 

 
Figure 8. Dependence of the probability of true-positive 
versus standard deviation of the random error generated by 
the source of the stimulus signal 

Figures 9 and 10 show the dependence of the probabilities of 
false-negative and true-negative versus standard deviation of 
the random error generated by the SSS. 

From Figures 9 and 10, we can conclude that the probability 
of false-negative increases and the probability of true-
negative decreases with a rise in the standard deviation σγ 
from 0 to 0.01 rad. However, the impact of the standard 
deviation of the random error generated by the SSS on 
probabilities P(SFN) and P(STN) is less than on probabilities 
P(SFP) and P(STP). Indeed, when σγ changes from 0 to 0.01 
rad, the probability P(SFN) increases from 2 % to 7.5 %, and 
the probability P(STN) decreases from 57.8 % to 53 %. 
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Figure 9. Dependence of the probability of false-negative 
versus standard deviation of the random error generated by 
the source of the stimulus signal 

 
Figure 10. Dependence of the probability of true-negative 
versus standard deviation of the random error generated by 
the source of the stimulus signal 

Figures 11–14 show the dependences of the probabilities of 
false-positive, true-positive, false-negative, and true-negative 
on the standard deviation of the random component of the 
azimuth measurement error σξ when σγ = 0. Analyzing 
Figures 11–14, we can make the following conclusions: 1) 
even with a zero random component of the SSS error (Γ = 0), 
the probabilities of P(SFP) and P(SFN) are different from zero 
due to the presence of a random component of the azimuth 
measurement error Ξ created by the VOR receiver, 2) the 
dependence of the trustworthiness indicators on the standard 
deviation of the random component of the azimuth 
measurement error σξ is similar to that of σγ. However, the 
dependence of the probabilities P(SFN) and P(STN) on the 
standard deviation σξ is linear when σγ = 0. Moreover, the 

indicators reach their extreme values, P(SFP) = P(SFN) = 0, 
P(STP) = λ0 /Λ, and P(STN) = (λ1 + λ2)/Λ at σξ = 0. 

  
Figure 11. Dependence of the probability of false-positive 
versus standard deviation of the random component of the 
azimuth measurement error 

  
Figure 12. Dependence of the probability of true-positive 
versus standard deviation of the random component of the 
azimuth measurement error 

Example 2. Let us consider an example of calculating the 
trustworthiness indicators when monitoring the health of 
dismounted LRU, which is an onboard ILS designed to land 
aircraft using ILS beacons of the meter range. Two main 
parameters of the dismounted LRU are tested: course channel 
centering error and glissade channel centering error. We use 
the following initial data. For course channel centering error: 
|Δ| = 0.0077 DDM (the difference in the depth of 
modulation), Δh = – Δl = 0.155 DDM, σθ = 0.0025 DDM, σξ 
= 0.0023 DDM, and σγ = 0.0015 DDM. For glissade channel 
centering error: |Δ| = 0.014 DDM, Δh = – Δl = 0.175 DDM, 
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σθ = 0.00469 DDM, σξ = 0.0042 DDM, and σγ = 
0.0017 DDM. As in the case of Example 1, we assume that 
λ0/Λ = 0.4 and λ1/Λ = λ2/Λ = 0.3. 

  
Figure 13. Dependence of the probability of false-negative 
versus standard deviation of the random component of the 
azimuth measurement error 

 
Figure 14. Dependence of the probability of true-negative 
versus standard deviation of the random component of the 
azimuth measurement error 

Table 2 shows the calculated values of the trustworthiness 
indicators. As we can see in Table 2, the trustworthiness of 
health monitoring ILS using ATE is relatively high. The 
probability of a false-positive and a false-negative does not 
exceed 1.5 % and 0.67 %, respectively. 

The probability of correct testing of the ILS receiver by two 
parameters, we calculate by the formula of Kudritsky et al. 
(1977): 

( ) ( )
2

1
0.9621 FP FNi ii

D P S P S
=

== − −� ª º¬ ¼  (27) 

where P(SFP)i and P(SFN)i are, respectively, the probabilities 
of false-positive and false-negative when testing i-th 
parameter. 

Table 2. Calculated trustworthiness indicators of tested ILS 
LRU 

Trust-
worthiness 
indicator 

Tested parameter 

Course channel 
centering error 

Glissade channel 
centering error 

Probability of  
false-positive 

1.5 × 10−2 1.2 × 10−2 

Probability of  
false-negative 

4.5 × 10−3 6.7 × 10−3 

Probability of  
true-positive 

0.3850 0.3880 

Probability of  
true-negative 

0.5955 0.5933 

4. CONCLUSION 

This paper has developed a new mathematical model for 
assessing the trustworthiness indicators of health monitoring 
the dismounted avionics systems, which include the 
probabilities of false-positive, false-negative, true-positive, 
and true-negative. Using the designed block diagram of the 
VOR receiver health monitoring, we have formulated the 
corresponding decision rule. Based on the decision rule, we 
have derived general equations for computing the 
probabilities of correct and incorrect decisions when 
monitoring the health of dismounted avionics systems by 
ATE. The proposed equations are applicable at arbitrary 
distributions of monitoring parameters and measurement 
errors. 

We specifically considered the case of an exponential 
distribution of permanent failures and intermittent faults; 
then, we derived formulas for calculating the trustworthiness 
indicators since usually there is statistical information for this 
distribution. By numerical calculations, we have shown that 
the probability of false-positive increases, and the probability 
of true-positive decreases when the standard deviation of the 
stimulus signal increases. Besides that, the probability of 
false-positive has a much stronger dependence than that of 
true-positive. Indeed, the first one rises from 2 % to 17 % 
when the standard deviation increases from 0 to 0.01 rad, 
whereas the second one decreases from 38 % to 23 %. We 
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have shown that the probability of false-negative increases 
and the probability of true-negative decreases with a rise in 
the standard deviation of the stimulus signal. However, this 
dependence is not as strict as for probabilities of false-
positive and true-positive. We also demonstrated that even 
with a zero error generated by the source of the stimulus 
signal, the probabilities of false-positive and false-negative 
are different from zero; this is due to the presence of a random 
component of the azimuth measurement error created by the 
VOR receiver. Numerical calculations have shown that the 
trustworthiness of health monitoring the ILS LRU is high 
enough because a false-positive and a false-negative 
probability does not exceed 1.5 % and 0.67 %, respectively. 

Our future work will include developing effectiveness 
criteria of health monitoring the dismounted avionics systems 
that affect flight safety or flight regularity. We also plan to 
elaborate methods for increasing the trustworthiness of health 
monitoring through repeated measurements and control 
tolerances. 

NOMENCLATURE 

A actual value of the stimulus signal 
Г deviation of the stimulus signal 
Θ systematic error of azimuth measurement 
Ξ the random component of the error of azimuth 

measurement 
Y random input signal of the comparator 
Δ limit of the permissible error of azimuth 

measurement by the VOR receiver 
y realization of the random variable Y 
SFP false-positive event 
SFN false-negative event 
STP true-positive event 
STN true-negative event 
Z sum of two independent random variables Ξ 

and Γ 
g(z) probability density function of random 

variable Z 
f(ξ) probability density function of random 

variable Ξ 
φ(γ) probability density function of random 

variable Γ 
q(θ) probability density function of random 

variable Θ 
P(SFP) probability of false-positive 
P(SFN) probability of false-negative 
P(STP) probability of true-positive 
P(STN) probability of true-negative 
Θ0 systematic error of azimuth measurement 
Θ1 systematic error of azimuth measurement 

when a permanent failure occurs, resulting in 
a reduction of systematic error below the 
permissible limit 

Θ2 systematic error of azimuth measurement 
when a permanent failure occurs, resulting in 

an increase of systematic error over the 
permissible limit 

λ0 rate of intermittent faults transferring the 
VOR receiver to the state in which it is 
dismounted from the aircraft board, not 
having any permanent failure 

λ1 rate of permanent failures that transfer VOR 
receiver from the operable state to inoperable 
state corresponding to a decrease in 
systematic error by an amount higher than 
permissible 

λ2 rate of permanent failures that transfer VOR 
receiver from the operable state to inoperable 
state corresponding to an increase in 
systematic error by an amount higher than 
permissible 

Λ total transition rate 
q(θ) probability density function of systematic 

component of the azimuth measurement error 
over the set of the same VOR receivers 

q0(θ) probability density function of systematic 
component of the azimuth measurement error 
in the absence of permanent failures 

q1(θ) probability density function of systematic 
component of the azimuth measurement error 
when a permanent failure occurs, resulting in 
a reduction of systematic error below the 
permissible limit 

q2(θ) probability density function of systematic 
component of the azimuth measurement error 
when a permanent failure occurs, resulting in 
an increase of systematic error over the 
permissible limit 

σξ standard deviation of random variable Ξ 
σγ standard deviation of random variable Γ 
σθ standard deviation of random variable Θ 
D0 state of VOR receiver in which it is 

dismounted from the aircraft board not having 
any permanent failure 

D1 state of VOR receiver in which it is 
dismounted from the aircraft board due to a 
permanent failure corresponding to a decrease 
in systematic error by an amount higher than 
permissible 

D2 state of VOR receiver in which it is 
dismounted from the aircraft board due to a 
permanent failure corresponding to an 
increase in systematic error by an amount 
higher than permissible 

Δh higher boundary of the systematic component 
of the error in azimuth measurement in the 
presence of defects in the VOR receiver 

Δl lower boundary of the systematic component 
of the error in azimuth measurement in the 
presence of defects in the VOR receiver 

c normalization constant 
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ABBREVIATIONS 

ATE Automated test equipment 
BITE Built-in test equipment 
D-level Depot maintenance 
eCASS electronic Consolidated Automated 

Support System 
IEC International Electrotechnical 

Commission 
I-level Intermediate maintenance 
ILS Instrument landing system 
LRM Line-replaceable module 
LRU Line-replaceable unit 
O-level Organizational maintenance 
PDF Probability density function 
PXI Peripheral component interconnect 

extension for instrumentation 
SRU Shop replaceable unit 
SSS Source of stimulus signal 
VOR Very High-Frequency Omni-

Directional Range 
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