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ABSTRACT 

The aim of this paper is to propose a comprehensive approach 

for the predictive maintenance of complex equipment. The 

approach relies on a physics of failure (PoF) model based on 

expert knowledge and data. The model can be represented as 

a multi-state Petri Net where different failure mechanisms 

have been discretized using physical degradation states. Each 

physical state can be detected by a unique combination of 

symptoms that are measurable using diagnostic tools. Based 

on actual diagnostic information, a diagnostic algorithm is 

used to identify active failure mechanisms and estimate their 

propagation using the Petri Net technique. Specific 

maintenance actions and their potential effects on the system 

can be associated with target states. A prognostic algorithm 

using a colored Petri Net propagates active failure 

mechanisms through the target physical states. A predictive 

maintenance approach is therefore proposed by allowing 

specific maintenance actions to be determined in a reasonable 

timeframe. A case study is presented for an actual hydro-

generator. Finally, model limits are discussed and potential 

areas for further research are identified. 

1. INTRODUCTION 

Predictive maintenance is a discipline that allows the 

planning of maintenance actions based on prognostic models. 

From an organization’s perspective, it is an integral part of 

the asset management process defined as a set of coordinated 

activities of an organization to realize value from assets 

(ISO, 2014). Unlike preventive maintenance or reliability-

based maintenance approaches, predictive maintenance 

approaches take into account the dynamic and individual 

aspects of each asset’s data. Prognostic models predict the 

occurrence of equipment failure modes taking into account 

their condition, operation and environment loads and their 

related uncertainties (Atamuradov, Medjaher, Dersin, 

Lamoureux, & Zerhouni, 2017; Goebel et al., 2017). The 

predicted information is updated as new asset health 

information becomes available. Maintenance actions are then 

proposed in advance to avoid occurrence of the predicted 

failure modes. Different aspects also need to be taken into 

account to optimize maintenance planning so as to ensure 

strategic planning within the fleet. Those aspects include 

equipment criticality, operational resource constraints and 

organizational objectives, to name  just a few (IAM, 2015). 

For the last decade, the development of prognostic models 

has been an intensive research topic from both an academic 

and operational point of view. In the literature, the vast 

majority of prognostics research to date has been focused on 

the prediction of the remaining useful life (RUL) of 

individual components (Atamuradov et al., 2017; M. 

Chiachío, Chiachío, Sankararaman, Andrews, & Target:, 

2017). Moreover, much of this research focuses on the 

propagation of a single mechanism leading to a single failure 

mode.  

However, industrial complex equipment can have concurrent 

multi-failure modes and multi-failure mechanisms leading to 

them involving various components and sub-components 

(Atamuradov et al., 2017; Blancke, Amyot, Hudon, 

Lévesque, & Tahan, 2015; Blancke, Tahan, et al., 2018). The 

propagation of failure mechanisms may also involve several 

components, and various diagnostic tools can be used to 

detect and track them at different system scales. Once 

predetermined degradation thresholds are reached, specific 

maintenance actions should be taken to avoid a system 

failure. Depending on the types of active failure mechanisms 
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and their progression, maintenance actions may not have the 

same effect to stop or slow down their propagation towards 

their related failure modes. It is therefore important to 

understand past and future mechanism propagation when we 

want to apply specific maintenance tasks to extend the RUL 

of complex equipment. 

This paper focuses on how to suggest specific maintenance 

tasks based on prognostic models. The optimization of these 

tasks within the fleet will not be considered here. Thus, the 

aim of this paper is to propose a comprehensive approach for 

the predictive maintenance of complex equipment. The 

approach relies on a Physics of Failure (PoF) model based on 

expert knowledge and is dynamic since it also uses incoming 

diagnostic data. The main contributions of this paper are: (1) 

to propose a system-level prognostic model that is used to 

predict intermediate states of degradation; (2) to integrate 

expert knowledge and diagnostic data into a dynamic model; 

(3) to suggest specific maintenance tasks and to predict the 

time interval when they can be actionable depending on 

active failure mechanisms and their kinetics.  

The paper is organized as follows. Section 2 proposes a brief 

overview of prognostic models in the context of predictive 

maintenance. The proposed prognostic model identified as a 

failure mechanism propagation model is presented in Section 

3, and its application to predictive maintenance is explained 

in Section 4. Then, a case study is presented for a real hydro-

generator in Section 5. Finally, model limits are discussed 

and potential areas for further research are identified in the 

last section. 

2. PROGNOSTIC MODELS IN THE CONTEXT OF PREDICTIVE 

MAINTENANCE: AN OVERVIEW OF THE LITERATURE 

Several classifications of prognostic approaches are proposed 

in the literature. In this paper, we suggest using the 

classification proposed by Elattar et al. (Elattar, Elminir, & 

Riad, 2016). Prognostics approaches can be classified into 

four types: (1) reliability-based approach, (2) physics-based 

approach, (3) data-driven approach and (4) hybrid approach. 

As explained in the introduction, knowledge about the 

physics of degradation is needed to identify specific 

maintenance tasks that may have a positive effect on the 

system. Consequently, this work will focus on a physics-

based approach.  

2.1. Physics of Failure (PoF) Prognostic Models 

Physics-based approaches focus on the equipment 

degradation process. They aim to model the propagation of 

equipment failure mechanisms by taking into account 

knowledge of the physics of degradation and feedback from 

domain experts (Gu & Pecht, 2008; Kulkarni, Biswas, 

Celaya, & Goebel, 2013). In such approaches, diagnostic data 

are often used to update initial conditions and to fine- tune 

model parameters (J. Chiachío, Chiachío, Sankararaman, 

Saxena, & Goebel, 2015; Corbetta, Sbarufatti, Manes, & 

Giglio, 2014; Javed, Gouriveau, & Zerhouni, 2017). As one 

of its main advantages, the PoF approach is applicable even 

if data is scarce because it takes advantage of the knowledge 

gained. A generic methodology has been proposed by Gu and 

Petch (Gu & Pecht, 2008) for PoF prognostic models (Figure 

1 presents an adapted illustration of the proposed 

methodology). 

 

Figure 1. PoF-based PHM methodology (Kwon, 

Hodkiewicz, Fan, Shibutani, & Pecht, 2016) 

The methodology is based on the identification of failure 

modes as in the case of the FMEA, but it also identifies the 

failure mechanisms that can lead to them. Once identified, 

prognostic models can be applied to critical failure 

mechanisms. As mentioned previously, complex equipment 

may have various failure modes and many failure 

mechanisms. Various diagnostic tools can then be used to 

detect their state of evolution. For this purpose, Amyot et al. 

(Amyot et al., 2014) proposed an extension of the FMMEA 

by discretizing the mechanisms using physical states of 

degradation. Each physical state can be detected by a unique 

combination of symptoms obtainable with diagnostic tools. 

The proposed model has been developed through different 

publications (Amyot et al., 2014; Blancke et al., 2015; 

Blancke, Combette, et al., 2018; Blancke, Tahan, et al., 

2018). It consists of a causal graph where the nodes are 

physical states and the edges represent all the identified 

failure mechanisms. Failure mechanisms propagate from a 

root cause to their related failure mode through a succession 

of physical states as shown in Figure 2. A methodology has 

been proposed to discretize failure mechanisms (Blancke et 

al., 2015). As a physical state can be present in different 

failure mechanisms, the causal graph enables failure 

mechanisms to share physical states. Thus, Amyot et al. 

(Amyot et al., 2014) have introduced an algorithm to detect 

active failure mechanisms based on a combination of active 

and inactive physical states. These algorithms will be detailed 

in this paper and integrated into the proposed prognostic 

model. 

The dynamic causal graph model proposed by Amyot et al. 

(Amyot et al., 2014) is used to aggregate various diagnostic 
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data from different diagnostic tools at a system level. In order 

to make it evolves towards predictive maintenance, the 

temporal aspects of causality must be introduced. 

 

Figure 2. Causal graph model illustrating failure 

mechanisms 

Chemweno et al. (Chemweno, Pintelon, Muchiri, & Van 

Horenbeek, 2018) have proposed a review of dependability 

modeling approaches in the context of risk assessment. Based 

on this review, two main approaches seem to be applicable to 

causal graphs in a stochastic propagation process: Dynamic 

Bayesian Networks and Stochastic Petri Nets (SPN). In this 

paper, the formalism of SPN has been chosen mainly because 

of the variety of extensions that it contains. 

2.2. Petri Nets in Prognostic and Predictive Maintenance 

Models  

Petri Nets (PNs) were initially introduced by Carl Adam Petri 

in 1966 (Petri, 1966). PNs are bipartite direct graphs used 

mainly to model multi-state dynamic systems in various 

disciplines. Graphs of a PN consist of two types of nodes:  

transitions and places linked by arcs or edges. A place can 

be used to specify the current state of a system and is visited 

by tokens that propagate from place to place as defined by 

the PN. Transitions represent the dynamic behavior of the 

system. They comprise time transitions from one place to 

another (M. Chiachío et al., 2017). For further information, 

several references present the formalism of PN (M. Chiachío 

et al., 2017; Murata, 1989; Peterson, 1981). 

In the literature, various authors have used PN in the context 

of predictive maintenance. Zhouhang et al. (Zhouhang, 

Maen, & H., 2014) have proposed an application of PN to 

model the reliability and maintenance analysis of multi-state 

and multi-unit systems. The approach considers three 

degradation states: healthy, degraded and failed. The PN 

model simulates the transition between those states in 

different components. A fault tree model allows different 

degraded or failed components to be integrated into the 

system behavior. It also takes into account maintenance 

operator availability and the maintenance process. In this 

work, the model does not suggest specific maintenance tasks 

but focuses more on the operational aspects of predictive 

maintenance.  

Ammour et al. (Ammour, Leclercq, Sanlaville, & Lefebvre, 

2016) proposed a fault prognosis approach of stochastic 

discrete event systems. The PN is used to model the system 

and its sensors. Measurements have been attached to some 

places in the PN and an incremental approach identifies sets 

of consistent trajectories based on historical measurement 

data. Then, based on those time-measurement trajectories, the 

PN model estimates the current state of the system and the 

occurrence probability of future states. In this approach, 

historical data have been chosen to identify failure 

mechanism trajectories. However, feedback from domain 

experts has not been taken into account. The approach ends 

at fault prognosis and does not identify any specific 

maintenance action.  

Finally, Chiachío et al. (M. Chiachío et al., 2017) have 

proposed a mathematical framework for prognostic modeling 

at a system level based on Plausible Petri Net (PPN) 

formalism.  The model integrates maintenance actions, 

various prognostic information from different components, 

expert knowledge and resource availability.  , Two 

interacting sub-net forms are introduced to do this: symbolic 

sub-net (integer moving units) and numerical sub-net (states 

of information). The model predicts the End of Life (EOL) of 

different components by taking into account the overall 

process. In this approach, the model relies on expert 

knowledge and diagnostic data. Maintenance tasks can be 

suggested and component failure can be predicted. However, 

the approach cannot identify physical failure mechanisms 

that lead to the predicted failure of components. 

A review of the literature to date seems to show that no 

predictive maintenance approach using PN has been 

proposed to predict specific maintenance actions based on the 

active failure mechanisms detected in equipment through a 

failure mechanism propagation model. 

The model presented in this paper is based on the Failure 

Mechanisms and Symptom Analysis (FMSA)  approach 

proposed by Amyot et al. (Amyot et al., 2014). Blancke et al. 

(Blancke, Tahan, et al., 2018) recently published papers on 

the development of the failure mechanism propagation model 

to predict failure modes of complex equipment. In another 

publication, Blancke et al. (Blancke, Combette, et al., 2018) 

proposed a failure mechanism propagation algorithm that can 

predict remaining physical states and an applicability 

timeframe for specific maintenance tasks. This paper is a 

journal extension of the previous conference paper (Blancke, 
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Combette, et al., 2018). It combines both predictions of 

remaining physical states and failure mode occurrence. 

In this paper, the predictive maintenance approach aims to 

forecast the occurrence of some specific target physical 

degradation states where some maintenance actions can be 

implemented and will start to affect the system. Furthermore, 

the approach predicts the applicability time interval for 

maintenance tasks based on the predicted occurrence of 

resulting failure modes through the propagation of related 

failure mechanisms. In this section, we present the failure 

mechanism propagation model that predicts target 

degradation states and failure mode occurrence. Section 3 

presents the model for moving from failure mechanism 

propagation to predictive maintenance. Section 4 describes 

how to apply predictive maintenance based on the 

propagation of these mechanisms. 

2.3. Model Assumptions 

Before applying the formalism of PNs to the causal graphs 

introduced by Amyot et al. (Amyot et al., 2014), an expert 

group identified propagation model assumptions based on 

their experience. No mathematical constraint was initially 

imposed. The proposed assumptions are defined for all types 

of complex equipment that have competing failure 

mechanisms leading to one or more failure modes. For more 

details on the identification of these hypotheses, Blancke et 

al. (Blancke, Tahan, et al., 2018) presented the hypotheses 

governing the discretization and propagation of the failure 

mechanisms that compete in complex equipment. The 

hypotheses proposed above are based on this work. 

Assumptions have been classified into the categories 

presented below. 

• Assumptions on degradation states 

Physical states denoted 𝑣𝑒𝑖 , are considered as discrete events 

constituting failure mechanisms 𝐹𝑀𝑗. They are detected by a 

unique combination of symptoms acquired from diagnostic 

tools. When not detected, their evidence ε at a discrete time 

of prediction 𝑘𝑝 is considered as unknown (𝑣𝜀
𝑒𝑖(𝑘𝑝) = ∅). 

When they become detectable by appropriate diagnostic 

tools, they can be active (𝑣𝜀
𝑒𝑖(𝑘𝑝) = 1) or inactive 

(𝑣𝜀
𝑒𝑖(𝑘𝑝) = 0). 

• Assumptions on the causal graph 

The causal graph G identifies all possible failure mechanisms 

𝐹𝑀𝑗 that could occur within the system. A failure mechanism 

is considered as a possible path identified by experts and is a 

single sequence of physical states 𝑣𝑒𝑖  starting from a root 

cause 𝑣𝑅𝐶𝑎  and leading to a failure mode 𝑣𝐹𝑏  (𝐹𝑀𝑗 =<
𝑣𝑅𝐶𝑎 , 𝑣𝑒1 , … , 𝑣𝑒𝑖 , 𝑣𝐹𝑏 >). If none of its physical states can be 

detected at a discrete time of prediction 𝑘𝑝, the failure 

mechanism activity is defined as unknown (𝐹𝑀𝜀
𝑗
(𝑘𝑝) = ∅). 

This means that none of the diagnostic tools could detect the 

relevant symptoms identifying any physical states. If at least 

one of its physical states can be detected, the failure 

mechanism is identified as active or inactive (𝐹𝑀𝜀
𝑗
(𝑘𝑝) =

0 𝑜𝑟 1) depending on the relative symptom intensity 

threshold to meet. 

• Assumptions on failure mechanism propagation 

Even if failure mechanisms are interrelated by propagating 

through some common degradation state, their propagation is 

considered independent. Thus, failure mechanisms are non-

mutually exclusive (they can evolve in parallel to reach their 

corresponding failure modes), and they are independent (their 

progression is considered to be uninfluenced by other 

mechanisms). In addition, failure mechanism propagation is 

considered a stochastic process with memory. Thus, 

transition times from one physical state to the other within a 

failure mechanism have a probability distribution that may be 

influenced by the failure mechanism history. 

The state of a failure mechanism at a discrete time of 

prediction is considered to be its last active state within the 

sequence of physical states denoted in 𝐹𝑀𝑒𝑥 
𝑗

(𝑘𝑝). 

For this paper, the influence of duty cycle, operating 

environment and regular maintenance actions were not 

considered. 

• Assumptions on target state occurrence 

Failure mechanisms are considered to be in competition. The 

first failure mechanism to reach a target state defines its 

occurrence probability (pessimistic assumption).  

• Assumptions on predictive maintenance 

Maintenance is considered to have a positive effect on the 

system once a specific degradation threshold is reached. This 

maintenance task 𝑀𝑛 could be considered specific to a 

physical state occurrence 𝑣𝑒𝑖  and is denoted 𝑣𝑀𝑛

𝑒𝑖 .The 

maintenance task 𝑣𝑀𝑛

𝑒𝑖  must be performed before the 

occurrence of a related failure mode 𝑣𝐹𝑏. 

Based on these assumptions, the causal graph G introduced 

by Amyot et al. (Amyot et al., 2014) could be considered as 

a PN where physical states are places (also called vertices 

(V)) identified by specific detection algorithms, and 

transitions are the different stochastic transition times 

𝑇
𝐹𝑀𝑗
𝑒𝑢 ,  𝑒𝑣 . A colored PN can be considered a generic model for 

the fleet. This type of PN makes it possible to represent all 

possible failure mechanisms 𝐹𝑀𝑗 in a causal graph which is 

a specific path from one root cause 𝑣𝑅𝐶𝑎  to a failure mode 

𝑣𝐹𝑏 . 

To simplify the graph in the proposed approach, visual 

representations of PN will not illustrate transition nodes as 

rectangles as defined in PN formalism.  
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2.4. Diagnostic Algorithm 

2.4.1. Fault Detection: Active Physical State Detection 

Algorithms 

Fault detection consists of detecting physical state evidence 

𝜀 at a discrete time of prediction 𝑘𝑝, denoted as 𝑣𝜀
𝑒𝑖(𝑘𝑝). For 

each physical state, a detection algorithm has been defined by 

experts using a rule-based combination of symptoms. A 

physical state can be identified as unknown, inactive or 

active. If the physical state is detected as active, an activation 

interval 𝑣𝜀𝐾𝐸

𝑒𝑖 (𝑘𝑝) is estimated based on the measurement or 

inspection interval that can detect the physical state. Figure 3 

presents the physical state detection algorithm. The detection 

algorithm is performed for each prediction date required. In 

this paper, the detection approach is similar to the one 

described by Blancke et al.  (Blancke, Tahan, et al., 2018). 

 

Figure 3. Physical state detection algorithms based on 

symptom analysis (Blancke, Tahan, et al., 2018) 

2.4.2. State Estimation: Active Failure Mechanism 

Detection Algorithm 

Following fault detection, the state estimation consists of 

estimating the actual state of the system for a specific 

prediction date 𝑘𝑝. In our case, the state estimation consists 

of identifying active failure mechanisms (𝐹𝑀𝜀
𝑗
(𝑘𝑝) = 1) 

based on active and inactive physical states and in estimating 

their propagation through the PN. In this paper, Algorithms 

2.4.2.a and 2.4.2.b are also similar to the algorithm 

introduced by Blancke et al. (Blancke, Tahan, et al., 2018). 

The failure mechanism detection algorithm analyzes each 

physical state sequence. If at least one physical state is active, 

the failure mechanism is detected as active. However, if 

inactive physical states are located before some active 

physical states in the sequence, the whole failure mechanism 

is detected as inactive in order to eliminate incoherent failure 

mechanisms. 

 

 

 

Algorithm 

2.4.2.a 
Active failure mechanism detection for a 

discrete time of prediction 𝑘𝑝 (Blancke, Tahan, 

et al., 2018) 
1:  Input: 𝑘𝑝,[𝐹𝑀1,…, 𝐹𝑀𝑗],[𝑣𝜀

𝑒1(𝑘𝑝),…, 𝑣𝜀
𝑒𝑖(𝑘𝑝)], [𝐹𝑀𝑒𝑥 

1 (𝑘𝑝),…,  

      𝐹𝑀𝑒𝑥 
𝑗

(𝑘𝑝)] 

2:  Output: [𝐹𝑀𝜀
1(𝑘𝑝),…, 𝐹𝑀𝜀

𝑗
(𝑘𝑝)] 

3:  for 𝑎 = 1 to j do: 

4:     if 𝑣𝜀
𝑒𝑢(𝑘𝑝) = 1 not exist in 𝐹𝑀𝑎 and 𝑣𝜀

𝑒𝑣(𝑘𝑝) = 0 not exist in 

         𝐹𝑀𝑎 then 

5:           𝐹𝑀𝜀
𝑎(𝑘𝑝) = ∅ 

6:     else if 𝑣𝜀
𝑒𝑢(𝑘𝑝) = 1 exist in 𝐹𝑀𝑎 and 𝑣𝜀

𝑒𝑣(𝑘𝑝) = 0 with     

        rank(𝑣) < 𝑟𝑎𝑛𝑘(𝑢) not in 𝐹𝑀𝑎 then 

7:           𝐹𝑀𝜀
𝑎(𝑘𝑝) = 1 

8:     else 

9:         𝐹𝑀𝜀
𝑎(𝑘𝑝) = 0 

10:   end if 
11: end for 

State isolation relies on the assumption that the last active 

physical state of active failure mechanisms defines that state. 

As the last active physical state has been detected based on 

periodic measurement or inspection, its detection date is 

considered interval-censored. Thus, state isolation of an 

active failure mechanism is also considered interval-censored 

and follows a specific distribution. Algorithm 2.4.2.b 

presents the state estimation algorithm based on detected 

active failure mechanisms (𝐹𝑀𝜀
𝑗
(𝑘𝑝) = 1) and active 

physical states (𝑣𝜀
𝑒𝑖(𝑘𝑝) = 1) at a discrete time of 

prediction 𝑘𝑝. 

Algorithm 

2.4.2.b 
Active failure mechanism state isolation for a 

discrete time of prediction 𝑘𝑝 (Blancke, Tahan, 

et al., 2018) 
1:  Input: 𝑘𝑝, [𝐹𝑀𝑒𝑥 

1 (𝑘𝑝),…,𝐹𝑀𝑒𝑥 
𝑗

(𝑘𝑝)],[𝑣𝜀𝐾𝐸

𝑒1 (𝑘𝑝),…, 𝑣𝜀
𝑒𝑖(𝑘𝑝)],  

     [𝐹𝑀𝜀
1(𝑘𝑝),…, 𝐹𝑀𝜀

𝑗
(𝑘𝑝)] 

2:  Output: [𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝),…, 𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝)] 

3:  for 𝑎 = 1 to j do: 

4:     if 𝐹𝑀𝜀
𝑎(𝑘𝑝) = 1 then 

5:        𝐹𝑀𝑇𝑥
𝑎 (𝑘𝑝)~𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝐹𝑀𝑒𝑥 

𝑎 (𝑘𝑝) [𝑣𝜀𝐾𝐸

𝑒𝑥 (𝑘𝑝)]) 

6:     end if 
7:  end for 

In Figure 4, physical state and failure mechanism detection 

and isolation algorithms have been performed for the 

prediction dates 𝑘𝑝=2015 and 𝑘𝑝=2016. In 2015, based on 

available symptoms of asset X, one physical state was 

detected as active (orange node) and four as inactive (green 

nodes). Thus, three failure mechanisms were detected as 

active. In 2016, three physical states were detected as active 

and four as inactive. Thus, nine failure mechanisms were 

detected as active. The state estimation is shown in Figure 4. 

The path of the active failure mechanisms is represented in 
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bold. It is possible to see how far failure mechanisms have 

progressed for each prediction date. 

 

Figure 4. Asset-specific state estimation process based on 

active failure mechanism detection and isolation algorithms 

2.5. Failure Mechanism Propagation Algorithm 

The formalism of PNs has been chosen in order to propagate 

active failure mechanisms. However, from the basic PN 

model including homogenous Markovian process to the 

customized model that fit with all expert assumptions, 

different extensions and rules have been defined in the 

algorithm. Figure 5 illustrates evolution of the algorithm. 

 

Figure 5. From basic Petri Net model to complex PN model 

satisfying expert assumption 

Transition times 𝑇
𝐹𝑀𝑗
𝑒𝑢 ,  𝑒𝑣  from physical state 𝑣𝑒𝑖  to another 

physical state 𝑣𝑒𝑗  in a specific failure mechanism 𝐹𝑀𝑗 have 

been defined by experts as Weibull distributions. Thus, the 

model has to move to the semi-Markovian process. As failure 

mechanisms are non-mutually exclusive, each failure 

mechanism has been propagated independently. Finally, as 

propagation is a memory process, the extension of colored 

PN has been implemented. As not every path from a root 

cause towards a failure mode constitutes a failure mechanism, 

the colored PN makes it possible to take into account only 

those paths that are real failure mechanisms in the graphic 

representation. 

2.5.1. Failure Mechanism Propagation to a Target State 

The first resulting algorithm independently propagates any 

active failure mechanisms to the target state. A variable 

denoted 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 is defined to store the target state for which 

we wish to predict the occurrence over a discrete time of 

prediction 𝑣𝐶𝐷𝐹

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝). As defined in the diagnostic 

algorithms, the state of an active failure mechanism 

𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝) at a discrete time of prediction 𝑘𝑝 is defined by the 

activation interval of the last active physical state 𝐹𝑀𝑒𝑥 
𝑗

(𝑘𝑝) 

as the propagation start date. Then, the stochastic PN 

propagates through the remaining states of the failure 

mechanism to the target state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡. To sum the different 

remaining time transitions, a Monte Carlo simulation is used 

for a specific number of iterations denoted 𝑛𝑢𝑚𝐼𝑡𝑒𝑟 in 

Algorithm 2.5.1. Algorithm 2.5.1 presents failure 

propagation through the PN. 

Algorithm 

2.5.1 
Failure mechanism propagation algorithm for a 

discrete time of prediction 𝑘𝑝 to target states 

contained in Target 
1:  Input: 𝑘𝑝, 𝑛𝑢𝑚𝐼𝑡𝑒𝑟, [𝐹𝑀𝑒𝑥 

1 (𝑘𝑝),…,𝐹𝑀𝑒𝑥 
𝑗

(𝑘𝑝)],[𝐹𝑀𝜀
1(𝑘𝑝),…, 

    𝐹𝑀𝜀
𝑗
(𝑘𝑝)], [𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝),…, 𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝)],[𝐹𝑀1,…,𝐹𝑀𝑗], 

    [𝑇
𝐹𝑀1
𝑒1 ,  𝑒3,…,𝑇

𝐹𝑀𝑗

𝑒𝑢 ,  𝑒𝑣], 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡  

2:  Output: [𝐹𝑀
𝑣

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
1 (𝑘𝑝),…,𝐹𝑀

𝑣
𝑒𝑡𝑎𝑟𝑔𝑒𝑡

𝑗
(𝑘𝑝)] 

3:  for 𝑎 = 1 to j do: 

4:     if 𝐹𝑀𝜀
𝑎(𝑘𝑝) = 1 and 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 in 𝐹𝑀𝑎 then 

5:        for c = 1  to 𝑛𝑢𝑚𝐼𝑡𝑒𝑟 do 
6:             X~𝐹𝑀𝑇𝑥

𝑎 (𝑘𝑝) 

7:             rank = ran𝑘(𝐹𝑀𝑒𝑥 
𝑎 (𝑘𝑝)) 

8:             𝐹𝑀
𝑣𝑐

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
𝑎 (𝑘𝑝) = 𝑋𝑐  

9:             while  rank ≠ 𝑟𝑎𝑛𝑘(𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡) do 

10:               Y~𝑇𝐹𝑀𝑎
𝑒𝑟𝑎𝑛𝑘 ,  𝑒𝑟𝑎𝑛𝑘+1 

11:               𝐹𝑀
𝑣𝑐

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
𝑎 (𝑘𝑝) = 𝐹𝑀

𝑣𝑐

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
𝑎 (𝑘𝑝) + 𝑌 𝑐 

12:           end while  
13:       end for 
14:    end if 
15:  end for 

*𝐹𝑀
𝑣𝑐

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
𝑎 (𝑘𝑝), X 𝑐,𝑌 𝑐 realization 𝑐 of distribution 𝐹𝑀𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡

𝑎 (𝑘𝑝), 𝑋, 𝑌. 

Figure 6 shows the propagation of each active failure 

mechanism to the target state 𝑣𝑒14 . In 2016, even though nine 

failure mechanisms were detected active, only two of them 
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led to the 𝑣𝑒14  state. So only two failure mechanisms were 

propagated: 𝐹𝑀1
 and 𝐹𝑀2. The Cumulative Density 

Function (CDF) of these two failure mechanisms is shown in 

Figure 6. Those CDFs, 𝐹𝑀𝑣𝑒14
1 (2016) and 𝐹𝑀𝑣𝑒14

2 (2016) 

illustrate the probability predicted in 2016 that each failure 

mechanism 𝐹𝑀1
 and 𝐹𝑀2

 reached the state 𝑣𝑒14 . 

 

Figure 6. Illustration of the algorithm for failure mechanism 

propagation to a target state 

2.5.2. Failure Mechanism Propagation to Failure Modes 

Based on the same assumptions, a second resulting algorithm 

independently propagates any active failure mechanisms that 

contain the target states 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 from their state estimation 

𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝) at the date of prediction 𝑘𝑝 to the resulting failure 

modes 𝑣𝐹𝑏. This algorithm is slightly different from the one 

proposed by Blancke et al. (Blancke, Tahan, et al., 2018) 

because it propagates only failure mechanisms that relate to 

the target state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡. Thus, this algorithm (see Algorithm 

2.5.2) will be used to identify failure mechanism propagation 

leading to failure modes related to the target state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡.  

Algorithm 

2.5.2. 
Failure mechanism propagation algorithm for a 

discrete time of prediction 𝑘𝑝 to failure modes 

𝑣𝐹𝑏 related to the target state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 
1:  Input: 𝑘𝑝, 𝑛𝑢𝑚𝐼𝑡𝑒𝑟, [𝐹𝑀𝑒𝑥 

1 (𝑘𝑝),…,𝐹𝑀𝑒𝑥 
𝑗

(𝑘𝑝)],[𝐹𝑀𝜀
1(𝑘𝑝),…, 

    𝐹𝑀𝜀
𝑗
(𝑘𝑝)], [𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝),…, 𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝)],[𝐹𝑀1,…,𝐹𝑀𝑗], 

    [𝑇
𝐹𝑀1
𝑒1 ,  𝑒3,…,𝑇

𝐹𝑀𝑗

𝑒𝑢 ,  𝑒𝑣], 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡  

2:  Output: [𝐹𝑀𝐸𝑂𝐹
1 (𝑘𝑝),…,𝐹𝑀𝐸𝑂𝐹

𝑗
(𝑘𝑝)] 

3:  for 𝑎 = 1 to j do: 

4:     if 𝐹𝑀𝜀
𝑎(𝑘𝑝) = 1 and 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 in 𝐹𝑀𝑎 then 

5:        for c = 1  to 𝑛𝑢𝑚𝐼𝑡𝑒𝑟 do 
6:             X~𝐹𝑀𝑇𝑥

𝑎 (𝑘𝑝) 

7:             rank = ran𝑘(𝐹𝑀𝑒𝑥 
𝑎 (𝑘𝑝)) 

8:             𝐹𝑀𝐸𝑂𝐹𝑐
𝑎 (𝑘𝑝) = 𝑋𝑏  

9:             while  rank ≠ 𝑟𝑎𝑛𝑘(𝑣𝐹𝑏) do 

10:               Y~𝑇𝐹𝑀𝑎
𝑒𝑟𝑎𝑛𝑘 ,  𝑒𝑟𝑎𝑛𝑘+1 

11:               𝐹𝑀𝐸𝑂𝐹𝑐
𝑎 (𝑘𝑝) = 𝐹𝑀𝐸𝑂𝐹𝑐

𝑎 (𝑘𝑝) + 𝑌 𝑐 

12:           end while  

13:       end for 
14:    end if 
15:  end for 
*𝐹𝑀𝐸𝑂𝐹𝑐

𝑎 (𝑘𝑝), 𝑋 𝑐,𝑌 𝑐 realization 𝑐 of distribution 𝐹𝑀𝐸𝑂𝐹
1 (𝑘𝑝), 𝑋, 𝑌. 

Figure 7 shows the propagation of each active failure 

mechanism to the failure modes that relate to the target 

state 𝑣𝑒14 . In this case, the two active failure mechanisms 

related to the target state end at one failure mode: 𝑣𝐹1 . In 

2016, these two failure mechanisms have been propagated: 

𝐹𝑀1
 and 𝐹𝑀2. Their CDF is shown in Figure 6. CDFs 

𝐹𝑀𝐸𝑂𝐹
1 (2016) and 𝐹𝑀𝐸𝑂𝐹

2 (2016) represent the probability 

predicted in 2016 that each failure mechanism 𝐹𝑀1
 and 𝐹𝑀2

 

reached the End of Function (EOF). In other words, 

𝐹𝑀𝐸𝑂𝐹
2 (2016) is the probability of occurrence of the failure 

mode resulting from propagation of the failure mechanism 

𝐹𝑀2 for the 2016 date of prediction. 

Figure 7. Illustration of the algorithm for failure mechanism 

propagation to a target state 

2.6. Target State and Failure Mode Occurrence 

Prediction 

The last step consists of aggregating failure mechanism 

propagation in order to estimate the occurrence of the target 

physical state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 and the related failure modes 𝑣𝐹𝑏 for a 

time of prediction 𝑘𝑝. Based on the assumption that failure 

mechanisms are in competition, their occurrence has been 

defined as the envelope of all CDF functions. Equation 1 

presents the two aggregated functions. 

 

𝑣𝐶𝐷𝐹

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) = 𝑀𝑎𝑥_𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝐹𝑀

𝑣
𝑒𝑡𝑎𝑟𝑔𝑒𝑡

𝑗
(𝑘𝑝)) (1) 

 

𝑣𝐸𝑂𝐹
𝐹𝑏 (𝑘𝑝) = 𝑀𝑎𝑥_𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝐹𝑀𝐸𝑂𝐹

𝑗
(𝑘𝑝))    (2) 

3. FROM FAILURE MECHANISM PROPAGATION TO 

PREDICTIVE MAINTENANCE 

The algorithm is used to estimate the state of the system for 

different discrete times of prediction 𝑘𝑝 and to propagate 
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detected active failure mechanisms until target physical states 

𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡  or failure modes 𝑣𝐹𝑏 are reached. Predictive 

maintenance is aimed at predicting and suggesting 

maintenance actions based on prognostic algorithms. A 

maintenance action is considered to have a positive effect on 

the system once a specific degradation state is reached. From 

a PN point of view, it can be considered that once target 

physical states are reached, specific maintenance actions will 

have a positive effect on the system. Thus, maintenance 

actions can be attributed to target physical states of the PN 

and are denoted 𝑣𝑀𝑛

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
. Experts have the knowledge to 

suggest the possible expected effects. For example, those 

effects could work to: 

• Inhibit associated failure mechanism propagation 

• Reset associated failure mechanism propagation 

• Slow down associated failure mechanism propagation 

The predicted maintenance tasks will allow the organization 

to plan the work ahead. However, maintenance planning 

generally faces many operational and organizational issues. 

For an organization, it is more convenient to have an 

applicability interval for each maintenance task in order to 

more easily prioritize different tasks with regard to 

operational and organizational constraints.  

In the nuclear industry, the concept of maintenance interval 

applicability (or admissible tolerance of the maintenance 

interval) has already been discussed. An EPRI report (EPRI, 

2002) defined a time range in terms of the inspection interval 

for a specific maintenance task. This timeframe is defined 

between two limits applied to the inspection interval (To): 

0.9To and 1.125To. In this paper, we chose to apply those 

factors to the time necessary to reach the target states 

𝑣𝑇𝑇𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝). This time is defined in equation 3 as the 

difference between the predicted occurrence date of the target 

state 𝑣𝑘𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) and the prediction date 𝑘𝑝. To define the 

date of occurrence 𝑣𝑘𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝), the 𝑞75% percentile rank of 

the predicted occurrence of the target state 𝑣𝐶𝐷𝐹

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) for a 

specific date of prediction 𝑘𝑝 is used. 

 

𝑣𝑇𝑇𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) = 𝑣

𝑘𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) − 𝑘𝑝    (3) 

 

Equation 4 presents the applicability interval 𝐾𝐸  of a specific 

maintenance task 𝑀𝑛 attributed to a target state 𝑒𝑡𝑎𝑟𝑔𝑒𝑡  at a 

discrete time of prediction 𝑘𝑝. 

 

𝑣
𝑀𝑛[𝐾𝐸]

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) = [0.9 𝑣𝑇𝑇𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝); 1.125 𝑣𝑇𝑇𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝)] (4) 

 

However, a maintenance action must be performed before a 

failure mode is reached. Propagation Algorithm 2.5.2 is used 

to inform decision makers of the occurrence of potential 

failure modes. If the 𝑞25% percentile rank of one related 

failure mode occurrence is lower than the upper bound of the 

applicability interval, the applicability interval will be 

replaced by the 𝑞25% rank of one related failure mode 

occurrence. 

As a result, Figure 8 illustrates an example of predictive 

maintenance 𝑀𝑛 attached to a state 𝑣𝑒14 . The predicted time 

to reach 𝑣𝑒14  for the prediction date 2016 is 17 years. The 

suggested applicability interval for the maintenance task is 

between 2031 and 2035. Lubrication of the shaft bearing can 

be done in 2031 if the expected effect on the equipment is 

desired. However, it has to be done before 2035 in order to 

mitigate the risk of failure 

 

Figure 8. Illustration of the failure mechanism propagation 

algorithm 

4. CASE STUDY: HYDRO-GENERATORS 

4.1. Industrial Context 

The proposed case study is based on the real historical data 

for a hydro-generator from Hydro-Quebec’s generating fleet. 

Hydro-generators are heavy electro-mechanical rotating 

machines. Figure 9 shows a hydro-generator in a power plant. 

 

Figure 9. Hydro-Québec generating unit 

Groups of experts have been involved in identifying possible 

failure mechanisms for the stator part of hydro-generators. In 

this case, three failure modes and over one hundred failure 

mechanisms have been identified. Seventy different physical 

states have been defined and the causal graph representing all 

those stator failure mechanisms is illustrated in Figure 10. 
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Figure 10. Hydro-generator stator causal graph representing 

failure mechanisms leading to three failure modes 

At Hydro-Québec, a web-based application that gathers 

symptoms from diagnostic tools was implemented in 2008. 

The case study proposed in the following section is based on 

the historical data obtained from this application. 

4.2. Associated Maintenance Task 

In this case study, a brief analysis of available data has been 

carried out to identify target physical states that have possible 

maintenance actions associated with them. Four physical 

states have been targeted and are presented in Table 1. 

Table 1. Target physical states 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 

ID Physical states 

𝑣t6 Thermal aging of groundwall insulation 

𝑣m31 Stator lamination insulation wear 

𝑣m21 
Mechanical erosion of groundwall insulation inside the stator 

core 

𝑣e12 Erosion of the semiconducting coating 

 

Based on expert knowledge, maintenance tasks have been 

associated with the target physical states, and their potential 

effects on the system have been estimated. Results are 

presented in Table 2. 

4.3. Application of Prognostic Model 

In this case study, a hydro-generator (referred to as hydro-

generator A) for which several measurements and inspection 

data were available is used to illustrate the methodology. 

Table 3 presents the list of historical diagnostic data and 

maintenance actions carried out on hydro-generator A. 

Five dates of prediction 𝑘𝑝 have been chosen: one for each 

year between 2010 and 2015. The prediction date 2012 is 

described in detail in the case study. The occurrence of target 

physical states as well as the timeframe when their associated 

maintenance tasks will be applicable are presented below. 

Table 2. Associated maintenance tasks 𝑣𝑀𝑛

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
 and their 

potential effect on the system 

ID 
Associated maintenance task 

𝑣𝑀𝑛

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
 

Potential effect on 

system 

𝑣t6 Stator rewinding (replacement) 
Reset stator winding 

failure mechanisms 

𝑣m31 Stator lamination epoxy injection 
Slow down associated 

failure mechanisms 

𝑣m21 

Replacement of a few stator bars 

Reset local failure 

mechanisms (extend the 
average useful life of the 

entire winding) 

Stator rewinding (replacement) 
Reset stator winding 
failure mechanisms 

𝑣e12 
Painting of stator semiconducting 
insulation 

Inhibit failure 

mechanisms associated 

for a period of time 

Table 3. Historical measurements, inspections and 

maintenance actions on hydro-generator A 

Hydro-generator A 

Date Diagnostic tools/Intervention 

1932-09 Commissioning 

1989-01 Rewinding_without_uprate_&_core_replacement 

1992-01 Partial Discharge Analysis (PDA) 

2008-01 DC Ramp test (DCRT) 

2009-06 Partial Discharge Analysis (PDA) 

2010-05 Polarization/Depolarization Current test (PDC) 

2010-05 DC Ramp test (DCRT) 

2010-05 Semiconducting coating assessment 

2010-05 Visual Inspection 

2011-04 Phase Resolved Partial Discharge (PRPD) 

… … 

2014-02 Phase Resolved Partial Discharge (PRPD) 

2014-04 Ozone detection test 

2015-10 Partial Discharge Analysis (PDA) 

2016-03 Polarization/Depolarization Current test (PDC) 

2016-06 Semiconducting coating assessment 

2016-07 DC Ramp test (DCRT) 

 

• State estimation in 2012 

Based on existing diagnostic data in 2012, the detected active 

physical states and their activation intervals 𝐾𝐸  are shown in 

Table 4 below. 

Table 4. Active physical states in 2012 on hydro-generator 

A and their activation intervals 𝐾𝐸  

Hydro-generator A (𝑘𝑝 = 2012) 

ID Active physical state appellation 

Activation 
interval 

𝑣𝜀𝐾𝐸

𝑒𝑖 (2012) 

𝑣a1 Conductive contamination on coil ends or 

end-winding 

[1996; 2010] 

𝑣a3 Presence of dust [2002; 2010] 

𝑣e21 Iron core hotspot due to eddy currents [2002; 2010] 

𝑣t2 Thermal shield [2006; 2010] 

𝑣m34 Buckling of stator iron core [2009; 2010] 
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For the activation intervals 𝐾𝐸 , the upper limit corresponds to 

the detection date 𝑘𝐸 and the lower limit to the last date on 

which the physical state was detected inactive. Based on 

those results, the failure mechanism detection algorithm 

(Algorithm 2.4.2.a) and the failure mechanism state isolation 

(Algorithm 2.4.2.b) were performed. Results are illustrated 

using graphic visualization of the PN in Figure 11. 

In 2012, five physical states were detected as active and 28 

as inactive. A total of 30 failure mechanisms were detected 

as active. In Figure 11, target physical states 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 are 

identified with a cross in the middle of their nodes. Fourteen 

of the active failure mechanisms led to the target state 𝑣t6 , six 

to target state 𝑣m31  and only three to target state 𝑣e12 in 2012. 

 

Figure 11. State estimation of hydro-generator A in 2012 

• Failure mechanism propagation in 2012 

All active failure mechanisms leading to the target physical 

states were propagated using the failure mechanism 

propagation algorithm (Algorithm 2.5.1). Transition times 

have been estimated based on elicitation process. Different 

expert estimations have been aggregated for this purpose. 

Their level of confidence has been taken into account in the 

aggregation process. Figure 12 presents results for the failure 

mechanism propagations and occurrence probabilities for the 

target physical states. 

 

Figure 12. Failure mechanism propagation of hydro-

generator A to target states in 2012 

The predicted 50% confidence intervals for each target 

physical state are presented in Table 5. 

Table 5. Prediction confidence intervals and time to reach 

𝑇𝑇𝐸 for each target physical states in 2012. 

Hydro-generator A (𝒌𝒑 = 𝟐𝟎𝟏𝟐) 

ID State appellation 

Predicted 

confidence 

Interval 

𝑣𝐶𝐷𝐹

𝑒𝑡𝑎𝑟𝑔𝑒𝑡(2012) 

Predicted time 
to event 

(years) 

𝑣𝑇𝑇𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡(2012) 

𝑣t6 
Thermal aging of 

groundwall insulation 
[2015; 2019] 7 

𝑣m31 
Stator lamination 
insulation wear 

[2012; 2015] 3 

𝑣m21 

Mechanical erosion of 

groundwall insulation 
inside the stator core 

[2017; 2020] 8 

𝑣e12 
Erosion of the 

semiconducting coating 
[2017; 2020] 8 

The second failure propagation algorithm (Algorithm 2.5.2) 

was computed to predict the time to failure (TTF) for each 

failure mechanism related to each target physical state. 

Results for failure mechanism propagation and occurrence 

probabilities for the failure modes are presented in Figure 13. 
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Figure 13. Failure mechanism propagation of hydro-

generator A to failure modes related to target states in 2012 

In all active failure mechanisms, only the failure mode 𝑣𝐹1  is 

found in failure mechanisms where the target physical states 

are present. The prediction for a 50% confidence interval for 

failure mode 𝑣𝐹1  is presented in Table 6. 

Table 6. Prediction confidence intervals and related TTF to 

target states in 2012 

Hydro-generator A (𝒌𝒑 = 𝟐𝟎𝟏𝟐) 

ID 
Target state 

appellation 

Related 

failure 
mode 

Related 

predicted failure 

confidence 
interval 

𝑣𝐸𝑂𝐹
𝐹1 (2012) 

Predicted 
time to 

failure 

(years) 

𝑣𝑇𝑇𝐹
𝐹1 (2012) 

𝑣t6 

Thermal aging 

of groundwall 

insulation 

𝑣F1 [2032; 2037] [20; 25] 

𝑣m31 

Stator 

lamination 

insulation wear 

𝑣F1 [2037; 2040] [25; 28] 

𝑣m21 

Mechanical 

erosion of 

groundwall 
insulation inside 

the stator core 

𝑣F1 [2030; 2035] [18; 23] 

𝑣e12 

Erosion of the 

semiconducting 
coating 

𝑣F1 [2030; 2035] [18; 23] 

• Predictive maintenance suggested in 2012 

Based on the predicted occurrence of the target physical 

states and related predicted failure occurrence, maintenance 

tasks 𝑣𝑀𝑛

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
 and their predicted dates of applications 𝐾𝐸  

were proposed in 2012 (see Table 7). As no failure is 

predicted in the proposed maintenance interval, the failure 

occurrence has no impact on the proposed intervals.  

Table 7. Predicted and suggested maintenance tasks and 

related dates of application 

Predicted interval 
for maintenance 

applicability 

𝑣
𝑀𝑛[𝐾𝐸]

𝑒𝑡𝑎𝑟𝑔𝑒𝑡(2012) 

 Predicted 
failure 

confidence 

interval 

𝑣𝐸𝑂𝐹
𝐹𝑏 (2012) 

Suggested 

maintenance 

task 𝑣𝑀𝑛

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
 

Potential 
effects on 

system 

[2015; 2015] [2037; 2040] 

Stator 
lamination 

epoxy 
injection 

Slow down 
associated 

failure 
mechanisms 

[2018; 2020] [2032; 2037] 

Stator 

rewinding 

(replacement) 

Reset stator 

winding failure 

mechanisms 

[2019; 2021] [2030; 2035] 

Replacement 
of a few 

stator bars 

Reset local 

failure 

mechanisms 
(extend the 

average useful 

life of the 
entire winding) 

Stator 

rewinding 

(replacement) 

Reset stator 

winding failure 

mechanisms 

[2019; 2021] [2030; 2035] 

Painting of 

stator semi-
conducting 

insulation 

Inhibit 

associated 

failure 
mechanisms 

for a period of 

time 

4.3.1. Validation of the Prognostic Algorithm 

In order to validate the prognostic algorithms, the activation 

date of the target physical states have been identified from 

historical diagnostic data. The historical detection states of 

the target physical states resulting from the symptom analysis 

for each measurement date are presented in Table 8. The 

symbol 0 means that the target states were detected as 

inactive at that date. The symbol 1 means that they were 

detected as active; x means that the measurement or 

inspection data at that date does not allow to detect the state, 

which can therefore be considered as unknown. For example, 

in 2016-03, the Polarization/Depolarization Current test 

(PDC) detected 𝑣m21  as active but was unable to detect 𝑣t6, 

𝑣e12  and 𝑣m21 . 
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Table 8. Historical detection state of target physical states 

on hydro-generator A 

Hydro-generator A 

Symptom 

analysis date 

(𝑘𝑝) 
𝑣𝜀

𝑡6(𝑘𝑝) 𝑣𝜀
𝑚31(𝑘𝑝) 𝑣𝜀

𝑒12(𝑘𝑝) 𝑣𝜀
𝑚21(𝑘𝑝) 

2010-05 0 × × × 

2010-05 × 0 0 0 

2010-05 × 0 0 0 

2011-04 × × × × 

… … … … … 

2014-02 × × × × 

2014-02 × × × × 

2014-04 × × × × 

2015-10 × × × × 

2016-03 × × × × 

2016-03 × 1 × × 

2016-06 × x 1 1 

2016-07 1 × × × 

Based on these results, the observed activation interval 𝐾𝐸  for 

the target physical states is found in Table 9. All target 

physical states were detected as active in 2016, and the last 

date when they were all detected as inactive was 2010. 

Table 9. Observed detection dates 𝐾𝐸  of target states from 

historical data 

Hydro-generator A (𝒌𝒑 = 𝟐𝟎𝟏𝟖) 

ID State appellation 

Historical 
activation 

interval 

𝑣𝜀𝐾𝐸

𝑒𝑖 (2018) 

𝑣t6 Thermal aging of groundwall insulation [2010; 2016] 

𝑣m31 Stator lamination insulation wear [2010; 2016] 

𝑣m21 
Mechanical erosion of groundwall 

insulation inside the stator core 

[2010; 2016] 

𝑣e12 Erosion of the semiconducting coating [2010; 2016] 

Figure 12 shows the validation of the prognostic algorithm 

for the date of prediction 𝑘𝑝 from 2010 to 2015. Results show 

the evolution for each time prediction. As new diagnostic 

data becomes available, the algorithm updates predictions by 

computing the diagnostic and prognostic algorithms again. 

 

 

Figure 14. Observed activation intervals (Boxplot) vs. 

predicted activation intervals for target states. Dotted lines 

illustrate the observed detection date and the grey area the 

observed possible activation interval. Percentages represent 

the ratio of the probability mass of the prediction that stays 

within the acceptable area. 

Results show that all predictions stay within the observed 

activation intervals for a 90% confidence interval. More than 

70% of the probability mass of the predictions stayed within 

the acceptable zone from 2010 to 2015 for physical state 𝑣m31  

and more than 25% for physical state 𝑣t6  until 2013. From a 

general perspective, predictions are closer to the detection 

dates from 2010 to 2012. The uncertainty range of predictions 

goes from approximately 9 years to 6 years for an 80% 

confidence interval (2 to 4 years for a 50% confidence 

interval). 

As this study was conducted in 2018, the hydro-generator is 

still in operation and no failure mode has been reached so far. 

In addition, no maintenance actions have been carried out 

since 2010. So far, the prognosis of failure modes related to 

the target physical states is in line with these last available 

observations. 

5. DISCUSSION 

From the standpoint of predictive maintenance, results seem 

consistent with the observed behavior of hydro-generator A 

from 2017 to 2018. Indeed, in 2012, the model suggested that 

a minor maintenance action was planned in 2015 and major 

maintenance actions are expected in 2019. The generator did 

not experience any failures to date in 2018. In addition, 
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according to the maintenance action history, no major 

maintenance has been carried out since 2010. With the 

proposed model, decision makers can move from a wide 

range of possible maintenance actions to a selection of 

specific maintenance actions that can have a positive effect 

on the system. For example, the model could have extended 

the life of the equipment by suggesting an epoxy injection 

into the stator laminations in 2015. In this case, when a 

suggested maintenance action is performed, the state of the 

system will be affected, and suggested further maintenance 

actions become irrelevant. Future studies may be considered 

to estimate more accurately how maintenance actions affect 

the system in order to suggest further maintenance scenarios.  

The model proposed in this paper is able to calculate an 

applicability interval for a specific maintenance action by 

taking into account the prognosis for possible related failures. 

It enables the organization to prioritize and plan maintenance 

actions efficiently while being aware of the failure risk. 

Prioritization requires several years to allow for adjustment, 

but an organization must be able to plan a prioritized 

maintenance action within a year. Otherwise, it will be 

considered inefficient. 

Regarding prognostic algorithm results, the width of 

uncertainty ranges stems from two factors: estimation of the 

physical state of the system (state activation intervals) and 

propagation of the failure mechanisms (range of transition 

time uncertainties). First, as the inspection intervals for the 

different diagnostic tools are significant and are carried out 

once a year or after several years, the potential activation 

intervals for physical states are quite large. This makes for 

considerable uncertainty regarding system state estimation. 

For example, in Table 4, based on 2012 data, physical state 

𝑣e21  has a potential activation interval of 8 years which is 

quite large. 

Then, because transition times were estimated based on an 

elicitation process, various biases such as overconfidence 

may have induced transition times that do not completely 

represent the realities of the generation fleet. 

CONCLUSION 

A predictive maintenance approach for complex equipment 

has been proposed in this paper. The model is based on a 

causal graph that identifies and discretizes all possible failure 

mechanisms that can occur on the equipment. As diagnostic 

data is associated with discretized degradation states, the 

graph shows dynamic data. In order to develop the prognostic 

model, assumptions were first defined based on expert 

knowledge. Thus, a customized PN model has been defined 

to propagate active failure mechanisms from their initial 

states to some target physical degradation states with which 

maintenance tasks are associated. Once target physical states 

are predicted, the application interval of maintenance tasks 

can be predicted for these physical states. A second 

propagation algorithm is used to propagate failure 

mechanisms up to failure modes. This makes it possible to 

factor the failure risk into decision planning. Results show 

that the model makes it possible to predict specific 

maintenance actions based on failure mechanisms detected as 

active by the diagnostic tools. In addition, the model predicts 

a timeframe when maintenance actions may be applicable in 

that they will begin affecting the system. It is also found that 

the prognostic model quickly adapts to new diagnostic data. 

Moreover, the model accounts for the uncertainties contained 

in both the state estimation and the propagation of the 

mechanisms. Some research perspectives have been 

identified, such as estimating the effect of maintenance on 

prognostic outcomes or evaluating prognostic performance 

for repairable equipment. 
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NOMENCLATURE 

G causal graph or directed acyclic graph (DAG) 

𝑉 finite set of distinct vertices 

E finite set of distinct edges 

𝑣𝑒𝑖  physical state vertex i 

𝑣𝑅𝐶𝑎  physical root cause vertex 𝑎 

𝑣𝐹𝑏  failure mode vertex 𝑏 

𝐹𝑀𝑗 failure mechanism j 

𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 specific target physical state 

𝑇
𝐹𝑀𝑗
𝑒𝑢 ,  𝑒𝑣  transition times between physical state 𝑢 and 𝑣 align 

with failure mechanism sequences 𝐹𝑀𝑗 

𝑣𝜀
𝑒𝑖(𝑘𝑝) physical state i evidence 𝜀 at discrete time of 

prediction 𝑘𝑝 

𝑣𝜀𝑘𝐸

𝑒𝑖 (𝑘𝑝) discrete date 𝑘𝐸  at which the physical state 𝑖 

evidence 𝜀 has been detected for discrete time of 

prediction 𝑘𝑝 

𝑣𝜀𝐾𝐸

𝑒𝑖 (𝑘𝑝) physical state 𝑖 possible detection event interval 𝐾𝐸  

of the evidence 𝜀 for discrete time of prediction 𝑘𝑝 

𝐹𝑀𝜀
𝑗
(𝑘𝑝) failure mechanism j evidence 𝜀 at discrete time of 

prediction 𝑘𝑝 

𝐹𝑀𝑒𝑥 
𝑗

(𝑘𝑝) failure mechanism j active physical state 𝑒𝑥 

closest to the failure mode at discrete time of 

prediction 𝑘𝑝 

𝐹𝑀𝑇𝑥

𝑗
(𝑘𝑝) failure mechanism j estimated state of propagation 

𝑇𝑥 at discrete time of prediction 𝑘𝑝 

𝐹𝑀𝐸𝑂𝐹
𝑗

(𝑘𝑝) end of function predicted 𝐸𝑂𝐹 of the system 

based on the propagation of failure mechanism j at 

discrete time of prediction 𝑘𝑝 
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𝐹𝑀
𝑣

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
𝑗

(𝑘𝑝) predicted time to reach the target state 

𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 of the system based on the propagation of 

failure mechanism j at discrete time of prediction 

𝑣𝐶𝐷𝐹

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) predicted cumulative density function of the 

time to reach the target state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 at discrete time 

of prediction  

𝑣𝐸𝑂𝐹
𝐹𝑏 (𝑘𝑝) end of function predicted 𝐸𝑂𝐹 of the system based 

on the predicted occurrence of failure mode 𝑣𝐹𝑏 at 

discrete time of prediction 𝑘𝑝 

𝑣𝑇𝑇𝐹
𝐹𝑏 (𝑘𝑝) time to failure predicted 𝑇𝑇𝐹 of the system based 

on the occurrence of failure mode 𝑣𝐹𝑏  at discrete 

time of prediction 𝑘𝑝 

𝑣𝑇𝑇𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) time to reach the target physical state 𝑒𝑡𝑎𝑟𝑔𝑒𝑡  at 

discrete time of prediction 𝑘𝑝 

𝑣𝑀𝑛

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
 specific maintenance task 𝑀𝑛 related to the target 

physical state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 

𝑣𝑘𝐸

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) predicted date 𝑘𝐸of the time to reach the target 

state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 at discrete time of prediction 𝑘𝑝 

𝑣
𝑀𝑛[𝐾𝐸]

𝑒𝑡𝑎𝑟𝑔𝑒𝑡
(𝑘𝑝) predicted interval 𝐾𝐸of application of the 

specific maintenance task 𝑀𝑛 related to the target 

physical state 𝑣𝑒𝑡𝑎𝑟𝑔𝑒𝑡 at a discrete time of 

prediction 𝑘𝑝 
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