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ABSTRACT 

This article aims to describe the most important aspects to 

consider when using the concept of internal impedance in 

algorithms that focus on characterizing the degradation of 

lithium-ion (Li-ion) batteries. The first part of the article 

provides a literature review that will help the reader 

understand the concept of electrochemical impedance 

spectroscopy (EIS) and how Li-ion batteries can be 

represented through electrochemical or empirical models, in 

order to interpret the outcome of typical discharge and/or 

degradation tests on Li-ion batteries. The second part of the 

manuscript shows the obtained results of an accelerated 

degradation experiment performed under controlled 

conditions on a Li-ion cell. Results show that changes 

observed on the EIS test can be linked to battery degradation. 

This knowledge may be of great value when implementing 

algorithms aimed to predict the End-of-Life (EoL) of the 

battery in terms of temperature, voltage, and discharge 

current measurements. The purpose of this article is to 

introduce the reader to several types of Li-ion battery models, 

and show how the internal impedance of a Li-ion battery is a 

dynamic parameter that depends on different factors; and 

then, illustrate how the EIS can be used to obtain an 

equivalent circuit model and how the different electronic 

components vary with the use given to the battery. 

1. INTRODUCTION 

Since their invention, batteries have been used in a wide 

variety of applications that require an autonomous energy 

source, or just as a backup for normal operation. Regardless 

of how a battery is used, a typical user is interested mainly on 

two things: the End-of-Discharge (EoD) time and the 

Remaining-Useful-Life (RUL) of the battery. These two 

indicators are associated to other two concepts: the State-of 

Charge (SOC) and the State-of-Health (SOH). The SOC can 

be understood as the amount of energy that a battery can 

deliver until it reaches the EoD time. The SOC can be 

interpreted as an indicator that is particularly useful to 

characterize short-term operation. Meanwhile, the SOH is an 

indicator associated with  the long-term cycle life of batteries, 

since every time a battery is used its RUL decreases. Both the 

SOC and the SOH are a function of several parameters, one 

of them being the internal impedance.  

To understand the operation of Li-ion batteries, different 

types of models have been proposed; being typically 

categorized as empirical, electrochemical, multi-physics and 

molecular/atomist (Daigle & Kulkarni, 2013). The most 

common are electrochemical and empirical models, and 

different approaches can be found in the available literature, 

thereby several examples of them are included on this article.  

Independently of the type of model that is used, it is important 

to note that the main purpose is to describe either how the 

battery cell discharges or degrades during the lifecycle. All 

these effects are associated with changes in the internal 

impedance of the battery. This impedance appears explicitly 

in empirical circuit models and it can be identified at different 

moments of the life cycle, making possible to quantify the 

changes of the different model parameters. In this regard, it 

is possible to characterize the circuit model as a transfer 

function of state-space structures, depending on the final 

application purpose (i.e., estimation or prognostics). 

Thus, understanding how the internal impedance varies in 

time is fundamental to estimate and prognosticate the EoD 

and the EoL, and therefore these changes have to be 

considered on the modeling process. A standard practice is to 

consider a battery degraded when it can only deliver 75% of 
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its nominal capacity due to the changes on its internal 

impedance (Olivares, Cerda, Orchard, & Silva, 2013). 

However, understanding how the impedance changes prior to 

reaching that point can be helpful to determine the correct 

amount of energy that can be stored and delivered. The main 

purpose of this article can be divided in two parts. First, 

introduce the reader with different types of Li-ion battery 

models available. Then, explain the concept of EIS and how 

different variables affect the value of the internal impedance. 

Finally, an accelerated degradation experiment with its 

results is presented and how the EIS can be used to analyze 

the evolution of the different parameters that compose an 

internal impedance model. 

2. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 

The EIS consists of a frequency response analysis of an 

electrochemical system when submitted to a certain electrical 

conditions. One of its main advantages is the amount of 

information that can be extracted to characterize the aging 

effects (Tröltzsch, Kanoun, & Tränkler, 2006). Usually the 

results are illustrated using a Nyquist plot with a negative Y-

axis, since most electrochemical systems show a more 

capacitive behavior. This method is fast, non-destructive and 

it is a reliable technique capable of identifying the origin of 

the degradation process and it highlights some aging effects 

that traditional tests do not recognize (Vetter, Novák, 

Wagner, Veit, Möller, Besenhard and Hammouche, 2005). 

Figure 1 shows a typical Nyquist plot obtained through this 

technique. As proposed by these authors, the Nyquist plot can 

be divided in three major areas: high frequencies are 

associated with an inductive effect caused by the geometry of 

the cell and porosity of the electrode plates; the intercept with 

the real axis corresponds for the total value of the ohmic 

resistances; and the low frequency behavior can be related to 

the capacitive effects. Furthermore, these authors state that at 

low frequency ranges, where the graph may show a spike, the 

semicircle end corresponds to Li+ cation diffusion in the 

solid-state phase. This semicircle correspond to the relaxation 

of charge carriers at the solid-electrolyte interface (SEI), and 

the other semicircle is dependent to the electrode potential, 

modeled by a double-layer capacitance and the charge-

transfer resistance.  

The diagonal line with a positive slope that starts at low 

frequencies on the Nyquist plot, is represented by the 

Warburg impedance. This impedance is associated to the 

result of the chemical reaction of the solid-state diffusion of 

the Li+ in the bulk electrode material (Ning, Haran, & Popov, 

2003). Figure 2 shows a Nyquist plot where the Warburg 

impedance part can be appreciated, between the 0.36 Hz and 

5 mHz. As it was previously mentioned, the Nyquist plot can 

be approximated through different electronic components 

according to the frequency ranges on which these elements 

have a major influence. For instance, high frequencies can be 

represented through an inductance, while the cross by zero on 

the imaginary axis represents a pure resistive element. Then, 

a RC-parallel branch is used to model the semicircle present 

on the plot. Last but not least, the Warburg impedance affects 

the response at low frequencies. 

The adjustment of these circuits allow the transformation of 

visual information obtained with the Nyquist plots, into 

parameters that evolve in time as the degradation process 

becomes more evident. This way it is possible to establish a 

correlation between parameter changes and the SOH of the 

battery.  

Figure 1. Typical Nyquist plot of the internal impedance of 

a Li-ion battery. Adapted from Vetter et al. (2005). 

 

 

Figure 2. Nyquist plot and equivalent circuit model. 

Adapted from Koch and Kuhn (2014). 

3. LI-ION BATTERY MODELS 

3.1. Electrochemical Models 

Understanding the internal chemical reactions of Li-ion 

batteries is essential since they have a direct influence on the 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

 

3 

internal impedance. For this reason, modeling the 

electrochemical processes becomes relevant to understand 

the degradation process. As the name suggests, these type of 

models are based on electrochemical equations that represent 

the effects of discharge or degradation of the batteries. 

Usually, electrochemical models are very detailed and try to 

explain the stress that occurs on every component inside the 

battery. Ning and Popov (2004) propose a capacity fade 

model that includes the charge rate (CR), the depth of 

discharge (DOD), the end-of-charge voltage (EOCV) and the 

discharge rate (DR). In their paper, these authors explain 

through the use of partial differential equations the flow of 

ions from the anode to the cathode or vice-versa (depending 

if the battery is charging or discharging). Their results show 

that the degradation process that occur on the electrodes and 

electrolyte are the reasons of why the impedance increases 

throughout the lifespan.  

Similarly, Daigle and Kulkarni (2013) propose a model that 

describes electrochemical process. These authors propose a 

set of equations to explain the chemical reactions that occur 

when the battery is being charged or discharged. Also, the 

authors establish different types of stress that may affect 

batteries when operating at low or high temperatures. For 

instance, at low temperatures the ionic diffusion can be 

compromised creating a damage such as lithium plating. In 

case of high temperatures, corrosion and generation of gases 

can occur, elevating the internal pressure. Also, the authors 

define four characteristics of the aging effect in the 

electrodes, which are: the SEI layer growth, lithium 

corrosion, lithium plating and contact loss. The authors 

emphasize how the loss of mobile ions generate an increase 

in the internal resistance, which is associated with a rise of 

the internal temperature of the battery.  

Ning, White, and Popov (2006), focus on explaining a 

charge-discharge model, based on the loss of active Li-ions 

due to electrochemical reactions that occur at the 

anode/electrolyte interface. Hence, the rise in the anode film 

resistance is used to explain the decrease of the discharge 

voltage as battery ages. In their effort, the authors propose 

that the increased SEI film thickness is related to an increase 

of the anode film resistance. 

It is understood that electrochemical models are accurate but 

their main disadvantage is the long simulation time that is 

required (Rong & Pedram, 2003). On this paper, the authors 

propose two electrochemical reactions that occur at each of 

the electrodes. Furthermore, the cycle aging is explained as 

an effect of cell oxidation, electrolyte decomposition, and 

self-discharge processes. It is important to emphasize that cell 

oxidation causes a film growth on the electrodes, which 

causes the internal resistance to rise, and this resistance is 

proportional to the thickness of the film. This is also 

supported by Santhanagopalan, Zhang, Kumaresan, and 

White (2008).  

A study of the effects caused by how the different parts of the 

Li-ion battery degrade according to its use is presented by 

Vetter et al. (2005). In their paper, the authors propose a 

detailed analysis of the causes that lead to either capacity or 

power fade, and how it is enhanced by the different operating 

conditions. The work presented by these authors also support 

the findings made all throughout the available literature, 

perhaps the most important characteristic of this work is the 

amount of detail presented. 

3.2. Empirical Models 

Empirical models are built from measured data. Usually, the 

measured data is fitted to obtain an equivalent circuit model. 

Depending on the approach, the topology of this circuit can 

change from one study to another.  

Figure 3 shows the structure proposed by Wang, He, Sun, 

Liu, and Wu (2011) for the equivalent model of the internal 

impedance of a Li-ion battery. In their work, the authors use 

the following elements: a resistor that represents the 

resistance of the electrolyte, two RC-parallel branches to 

represent the negative and positive pole. The RL-parallel 

branch is aimed to fit the data at high frequencies.  

 

Figure 3. Equivalent circuit model of a battery. Adapted 

from Wang et al. (2011). 

Xie, Lin, Wang, and Pedram (2012) propose a similar model; 

see Figure 4. In their work the authors state that the model is 

composed by an internal series resistance, and two parallel 

branches intended to model the internal capacitances.  

A semi-empirical proposal is presented by Ramadass, Haran, 

White, amd Popov (2003). In their work the authors propose 

a correlation to determine the state of charge and the battery 

resistance (polarization and film resistance) as a function of 

the number of cycles. Their approach includes the analysis of 

performance data plus a destructive physical analysis of new 

and cycled electrode materials. In their findings the authors 

establish that the capacity fade can be separated in three 

aspects:  

 Increase of the resistance on both electrodes. 

 Loss of lithiation capacity at the electrodes. 

 Loss of active material in the cell. 

Zou, Hu, Ma, and Li (2014) present a first-order RC model 

as the best choice after comparing twelve common equivalent 
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circuit models. This choice is based on complexity, accuracy 

and robustness, see Figure 5. The model consists of a series 

resistance and a RC branch intended to represent the diffusion 

effect. 

 

Figure 4. Li-ion battery circuit model. Adapted from Xie et 

al. (2012). 

 

Figure 5. Battery circuit model (the left part explains the 

SOC, and the right part the voltage-current characteristics). 

Adapted from Zou et al. (2014).  

3.3. Combined Electrochemical and Empirical Models 

Ning, Haran, and Popov (2003) present an interesting 

approach where a series of analysis are performed to whole-

cells and half-cells, using EIS. Also, the authors propose an 

experimental method to obtain the internal DC resistance of 

the whole-cells through the use of Ohm’s Law, then their 

results are validated with the use of EIS on other cells. One 

of the major findings in their work is shown in Figure 6. This 

figure shows the increase of the internal resistance as a 

function of the depth of discharge (DOD) after 300 cycles of 

use. The results were obtained for cells cycled at different 

discharge currents, and then compared to a new cell. It is 

reported that the value of the resistance by the manufacturer 

is approximately 200 mΩ, similar to the experimental results. 

However near the EoD, the value of the resistance tends to 

increase.  

A different way to analyze the changes on the battery 

impedance is using Nyquist plots Ning et al. (2003). In this 

case, instead of having a DC resistance, an AC impedance 

can be obtained. This AC impedance is correlated with the 

actual SOC, so it is very important to know the conditions 

under which it is measured: when fully charged the 

impedance of the battery is lower than when the battery is 

discharged. Also, as reported by the authors, a battery that is 

cycled at higher currents (2 or 3 times the nominal current) 

has higher impedance when compared to battery cycled at the 

nominal current. The authors propose the use of Croce’s 

model to analyze the EIS results shown in Figure 7. The idea 

behind this model is that on the Nyquist plots there are three 

semi-circles that can be noted, depending if the area 

corresponds to high, medium or low frequencies. High 

frequencies are associated with the migration of active 

material through the SEI, at middle frequencies the semi-

circle is associated to the charge-transfer resistance across the 

interface; and, finally, low frequencies, are related to the 

resistance of the electrode material (Ning et al., 2003). 

Furthermore the slope that can be obtained at low frequencies 

represents a characteristic associated with the Warburg 

diffusion region. Additionally, the authors propose an 

equivalent circuit model that represents the obtained data 

with the EIS, on Figure 8. For this model, Relec represents the 

resistance of the active material in the electrolyte. The RC 

branches are associated to the passivating surface layer, the 

charge-transfer and the electronic resistance of the material 

respectively. Also, the Warburg impedance and the 

capacitance are considered to have an effect only at very low 

frequencies.  

 

Figure 6. DC Resistance as a function of DOD. Adapted 

from Ning et al. (2003).  

A simpler circuit equivalent model obtained through EIS is 

presented by Saha, Goebel, Poll, and Christophersen (2009) 

on Figure 9. In this case CDL represent a double layer 

capacitance, RCT is the charge transfer resistance, RW stands 

for the Warburg impedance and RE is the electrolyte 

resistance. In their work the authors also propose the use of a 

semi-circle on the Nyquist plot in order to find the 

parameters. 

Dai, Wei, and Sun (2009) performed a similar experiment. In 

their proposal, Li-ion batteries were cycled under different 

conditions causing a variation of the ohmic resistance. Figure 

10 shows how the authors define the evolution of the ohmic 

and the polarization resistances. The importance of this figure 

is to note how the polarization resistances is practically 
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constant while the ohmic resistance does change with 

cycling. Since this resistance tends to increase, the authors, 

propose to study it in order to understand better the SOH. 

 

 

Figure 7. Nyquist plot for a new battery and for used 

batteries after 300 cycles and 100% SOC. Adapted from 

Ning et al. (2003). 

Figure 11 shows another experiment that was performed. The 

intention was to measure the ohmic resistance variation 

(defined as 𝑅/𝑅𝑛𝑒𝑤 ) when the battery was discharged at 

different multiples of the nominal current and at a 

temperature of 40 °C. It is easily seen that the resistance 

increases at higher currents. 

Since not all cycles are the same, the authors also include the 

ohmic resistance variation when the battery is discharged at 

different values of DOD. In this case also, the temperature is 

40 °C and the charge and discharge current is equal to the 

nominal value or 1C. Figure 12 shows that, the higher DOD 

cycles have a major impact on the resistance than a more 

conservative use.  

 

 

Figure 8. Equivalent circuit model obtained through EIS. 

Adapted from Ning et al. (2003). 

 

The last result presented by Dai et al. (2009) is an analysis of 

the ohmic resistance variation, as a function of the 

temperature when charging and discharging at nominal 

current. Figure 13 illustrates that the operating temperature 

has a major impact since the variation trend increases as the 

temperature is higher. 

With these findings, the authors propose the model of Figure 

14. The series resistance is used to describe the internal ohmic 

resistance. The RC branches are used to represent 

polarization effects, while CE is a combination of a 

capacitance and voltage source that depends on the SOC and 

open circuit voltage.  

 

Figure 9. Battery equivalent circuit model. Adapted from 

Saha et al. (2009).  

 

Figure 10. Ohmic and polarizarion resistance. Adapted from 

Dai et al. (2009).  

 

 

Figure 11. Ohmic resistance variation when cycled at 

different currents. Adapted from Dai et al. (2009). 
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Figure 12. Ohmic resistance variation when cycled at 

different DODs. Adapted from Dai et al. (2009). 

 

 

Figure 13. Ohmic resistance variation when cycled at 

different temperatures. Adapted from Dai et al. (2009). 

 

 

Figure 14. Equivalent circuit model. Adapted from Dai et al. 

(2009). 

4. EXPERIMENTAL TESTS AND OBTAINED RESULTS 

The following results aim to illustrate how the degradation 

process can be studied through the use of EIS and the 

corresponding Nyquist plots that are generated with this 

method. Measured data is used to fit two empirical models; 

one of them offering a more complex structure and, therefore, 

more parameters. Also, with the Nyquist plots it is possible 

to determine how the internal impedance varies through 

cycling, creating a map between the curve and the ohmic 

resistance value. This concept was experimentally validated 

using data from a continuous cycling test performed on 

Panasonic CGR18650CG Li-ion battery cells (nominal 

capacity 2250 mAh, and a cut-off voltage of 3 V). The 

charging protocol was the constant current-constant voltage 

(CCCV) method, and the temperature was controlled at a 

room temperature of 25 °C. 

The first 10 cycles were executed at nominal current to allow 

a proper electrochemical stabilization of the battery. 

Afterwards, the EIS test was performed every 20 cycles, 

when the battery was fully charged, and at 25 °C. The 

galvanostatic mode was set on, the current amplitude was 50 

mA, and the frequency range was between 10 kHz and 5 

mHz, with 7 seven measurements per decade. 

Figure 15 shows the different Nyquist plots obtained 

throughout the cycling procedure. The initial state curve 

shows the brand new cell completely charged before any 

discharge. The other curves show the different Nyquist plots 

every 100 cycles. It can be observed that the curve displaces 

to the right on the real axis, until it reaches a point at cycle 

480, where the capacity of the battery reaches an 80% of its 

original value, at nominal current. 

Figure 16 shows how the ohmic resistance varies through the 

cycling experiment. This value is obtained at 370 Hz, which 

corresponds to the cross by zero on the imaginary axis. At the 

beginning of the experiment, the value of the experiment is 

bounded and has small variations, but as the amount of cycles 

increases, the changes on the resistance also increases. Even 

more, it is possible to see a major increase on the resistance 

after 450 cycles. At this point the nominal capacity of the 

battery is near an 80% of its original value.  

Using the experimental data, we are going to focus on three 

measured cases. With this measurements, we are going to fit 

the Nyquist plot and generate the equivalent empirical circuit 

model. The intention is to study the changes on the circuit 

parameters to determine which of them have a significant 

variance, when compared to the initial values of the cell prior 

to start the cycling experiment. In this approach we are 

presenting two empirical models for comparison purposes. 

We are focusing on three specific cycles: cycle 0 (new 

battery), cycle 310 (manufacturer reports information up to 

cycle 300) and cycle 480 (almost an additional 50% of 

cycles). The value of the ohmic resistance for these cycles 

are:𝑅0 = 52.7 𝑚Ω, 𝑅310 = 54.6 𝑚Ω, and 𝑅480 = 56.8 𝑚Ω. 
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Figure 17 shows the Nyquist plot of the measured data and 

the fitted curve that corresponds to the equivalent circuit 

shown in Figure 18. In this case, it can be observed that the 

fitted curve is not very accurate when compared to the 

measured data. This means that the selection of the particular 

empirical simple model perhaps might not be a good choice 

when trying to understand the evolution of the impedance of 

the battery. 

Table 1 shows the different values of the parameters for the 

three fitted curves. From the results shown on this table, it is 

possible to see that the changes on the value of the parameters 

are considerable. It is important to mention that the value of 

the R1 resistor is very close to the measured ohmic resistance 

in Figure 16.  

A second fit was approached using a different circuit model. 

The Nyquist plot can be seen on Figure 19. In this case, the 

fitted curve is more accurate when compared to the real data. 

This means that the empirical model can represent the 

dynamics of the battery on a better way.  

 

Figure 15. Nyquist plots at different cycles for the 

performed experiment.  

 

Figure 16. Resistance value at different cycles. 

 
Figure 17. Nyquist plots for measured and fitted data of 

Model #1.  

 

 
Figure 18. Equivalent empirical circuit Model #1. 

 

Element Cycle #0 Cycle #310 Cycle #480 

L1 (nH) 883 716 694 

R1 (mΩ) 51.9 55.2 57.5 

R2 (mΩ) 9.48 13 13.9 

C1 (F) 0.245 1.06 1.26 

Zw (S) 231 209 212 

Table 1. Circuit parameters for empirical Model #1 

 

Figure 20, shows the equivalent model obtained for this case. 

It is important to mention that the two RC branches connected 

in series with the resistor R3, correspond to an equivalent 

topology that emulates the effect of the Warburg impedance 

(Do, Forgez, Benkara, & Friedrich, 2009) (Mauracher & 

Karden, 1997). Furthermore, Table 2 shows the different 

values for all the elements for each cycle of operation. 

Similar to the previous model, the resistor R1 has a value near 

the measured value of the ohmic resistance. This means, that 

regardless of the model, the ohmic resistance is very similar 

to the actual value. 

In this case, Model #2 fits in a better way the measured data, 

although the variations on the values of the elements is very 

high except for R2. These models were obtained with the 

software Nova 2, property of Metrohm Autolab, which 

allows an option of “Fit and Simulation of equivalent circuit 

models” through the use of EIS. The two models presented in 

this article are included in the available options of the 

software. In this regard, the values of the parameters are 

optimized using nonlinear least squares to fit the 
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experimental values. Even though the empirical model has 

many parameters, it is important to keep in mind that each 

element has a definite contribution on different frequency 

ranges. If the Nyquist plots are compared it can be seen that 

Model #2, (which has more parameters) fits the real data in a 

better manner than Model #1. Hence, Model #2 is able to 

capture in a better manner the complete range of dynamics of 

the battery without overfitting the model. Furthermore, the 

chi-square test for Model #1 has a value of 0.19504, while for 

Model #2 the value is 0.0020974. 

Figure 21 shows how nominal capacity of the studied 

Panasonic Li-ion battery decreases at the same time that the 

ohmic resistance increases. This plot is built in chronological 

order, this means that when the capacity degradation is equal 

to 1, the battery is fresh, while the last point corresponds to 

the parameters of capacity and resistance after 760 cycles. 

After the first 300 cycles of the experiment, it is noted that a 

variation of 3% on the value of the resistance produces a 

reduction of nearly 14% of the total capacity. After this point, 

the variation on the delivered capacity remains almost 

constant, but internally the battery is changing since the 

increment on the resistance is significant, approximately 8% 

of the original value. An interesting phenomena can be 

observed towards the end, where the capacity drops from 

nearly 82% until 75%, associated to a 2 mΩ increment on the 

resistance, growing from 56.8 mΩ and reaching 58.7 mΩ. In 

this case, a total reduction of 25% of the nominal capacity is 

associated to an increment of 11% of the original value of the 

resistance. 

For reference purposes a third degree polynomial fit curve is 

also included in Figure 21. Although more experimentation 

and data are require to validate a specific structure to support 

this trend for any event, it is interesting to show this 

characteristic. For this reason, this analysis is left for future 

research.  

Table 3 shows the normalized capacity and resistance value 

for several cycles. 

 

 
Figure 19. Nyquist plots for measured and fitted data of 

Model #2. 

 
Figure 20. Equivalent empirical circuit Model #2. 

 

Element Cycle #0 Cycle #310 Cycle #480 

L1 (nH) 890 759 738 

R1 (mΩ) 51.20 53.90 56.10 

R2 (mΩ) 5.71 5.43 5.38 

R3 (mΩ) 6.34 11.90 13.00 

R4 (mΩ) 3.78 5.92 6.35 

R5 (mΩ) 39.70 50.40 49.90 

C1 (mF) 124 300 319 

C2 (F) 1.68 3.01 3.20 

C3 (F) 222 530 579 

C4 (F) 954 1200 1270 

Table 2. Circuit parameters for empirical Model #2. 

 
Figure 21. Normalized capacity with its corresponding value 

of ohmic resistance. 

 

Cycle Normalized Capacity Ohmic 

Resistance (mΩ) 

0 1 52.7 

132 0.89224 53.309 

202 0.86945 52.927 

311 0.83307 54.618 

412 0.82357 53.964 

462 0.82004 56.855 

550 0.79667 56.682 

700 0.7653 58.555 

760 0.7536 58.7 

Table 3. Variations of the capacity and resistance at 

different cycles. 
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5. CONCLUSIONS 

This paper presents a background on basic terminology 

associated with Li-ion batteries. Also, the components of this 

type of batteries are explained, as well as a brief introduction 

of the different types of resistances that can be located inside 

the batteries. Even though, sometime the literature refers to 

Li-ion batteries as a generic product, it is important to know 

that different chemistries are available on the market, and the 

purposes of the batteries can be different. 

The use of EIS, a non-invasive method, is very helpful in 

order to understand the inside of the batteries. The main 

disadvantage of this method is the cost of the equipment. 

However, empirical circuit models can be used to represent 

the dynamics of the batteries. Empirical circuit models can be 

found on the available literature, and some models are more 

complex than others.  

The experimental results, show that first order circuits are too 

basic when used to explain the equivalent impedance of a Li-

ion battery. In our case, a third order model (where the two 

RC branches that emulate the Warburg impedance are fused 

into one branch) fits better the measured data. However, some 

models might neglect this effect since this impedance only 

affects low frequencies.  

Finally, it is important to note that, regardless of the model 

that is used, the ohmic resistance is generally very close to 

the value that is directly measured in laboratory tests.  
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