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ABSTRACT 

Vibration Analysis (VA) is now routinely used for condition 

monitoring and failure diagnosis in Condition Based 

Maintenance (CBM). In the context of VA, a methodology 

is proposed, based on biplots, to simultaneously display 

both vibration frequencies and their measurement points, in 

support of monitoring and diagnostics tasks. 

In this research, real observational data obtained measuring 

mechanical vibrations on four generators aboard a 

Portuguese Navy Ship in real operating conditions is used. 

A portable vibration collector was employed, and the 

measurements were taken at 13 measurement points in each 

one of four generators, using the same collector settings. 

Spectrograms resulting from vibration measurements were 

transformed into biplots and used for decision support 

according to the proposed methodology. Data analysis 

showed a robust stability in the macrostructure of biplots 

when observations resulting from different generators of the 

same model and at the same assumed conditions was 

analyzed. This invariance allows the specification of 

reference conditions, rules to detect changes of operating 

conditions and the emergence of failures. The proposed 

methodology, once embedded in dedicated software, will 

reduce the interpretation error in diagnosis and prognosis 

associated to variability in personnel training and 

experience. Consequently, it will increase the safe use of 

VA in an increasing number of situations. 

1. INTRODUCTION 

VA is nowadays an efficient, reliable and proven 

methodology, widely used for CBM. 

This being true, its use in some organizations poses 

problems connected not with the method itself but with its 

organizational implementation. One important issue that 

limits its generalized use in some contexts is related with 

personnel training and retention.  

The routine use of VA implies investments in equipment 

and personnel training. Performing accurate measurements 

and correct interpretations of data analysis results are not 

trivial tasks. Only technicians with solid theoretical 

knowledge about the methodology and accumulated 

practical experience can reliably perform these tasks. This 

means that those technicians become highly valuable for the 

organization which employs them and, at the same time, 

become very attractive for other organizations.  

For government and other organizations lacking competitive 

salaries and having high internal mobility, it becomes very 

difficult to retain that kind of personnel: Therefore, very 

frequently, the introduction of VA based CBM becomes, in 

practice, a never-ending process and, sometimes, a practical 

impossibility. To overcome this situation, a partial solution 

is to incorporate a greater part of the knowledge involved in 

software. 

Recent emergence of low cost sensors, frequently enabling 

wireless data transmission, local data storage and processing 

also lead to a need for better software tools. The amount of 

data collected both by sensors and mobile data collectors is 

becoming bigger every day and the problem associated with 
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its storage, handling and analysis is one of the present 

challenges to statistics and computation, as discussed by 

Ferrer (2014). In this context, the present paper proposes the 

use of biplots as a graphical and descriptive instrument to 

consider in the development of software for VA. 

Field data associated to VA has an observational nature: 

data used for analysis in an operational setting is frequently 

collected using portable collectors, operated by not always 

fully trained technicians, in aggressive environments (heat, 

noise, smell, movement, reduced space) very far away from 

controlled laboratory conditions where planned experiments 

make sense. For this kind of data, sophisticated statistical 

inference procedures are in general invalid, given failure to 

satisfy assumed theoretical conditions such as randomness 

and independence. 

With the strong emergence of low cost sensors and the 

development of “Internet of Things” (IoT) all this is 

changing. The data generated daily from thousands of such 

sensors installed in a single plant (a ship for instance) allows 

not only the use of sophisticated multivariate data analysis 

methods but also imposes the search for new data driven 

methodologies able to cope, in real time, with such “data 

mountains”.  

The structure of this work is as follows. Part 2 is devoted to 

the statistical formulation of VA based CBM. Here it is 

shown that equipment condition is a latent, not directly 

observable variable, that manifests itself through 

observations at a chosen set of Observation Points (OP), and 

that must be estimated and predicted using adequate 

statistical methodologies. Part 3 is a brief review of relevant 

methodological literature directly related with our problem. 

Part 4 presents materials and methods employed, including 

collected data and assumptions implicit in its analysis. Part 

5 is used to define a kind of biplots assumed useful for the 

interpretation of VA data, relating OP with Fourier 

Frequencies (FF). Part 6 is used to interpret relations that 

can be read from biplots built from spectrograms and to 

present rules to detect, characterize and forecast failures 

using biplots. 

2. VIBRATION ANALYSIS AND CBM 

In VA CBM it is assumed that the machine condition (in 

general not directly observable) manifests itself through the 

vibration signals measured at a pre-defined set of 

observation points (OP) on the machine. See Figure 1, 

where the machine is represented as a parallelepiped and the 

selected observation points set is represented by OP = { P1, 

P2, … , Pk, …, PK }. This means that it is assumed that the 

true condition of the machine (whatever its meaning) 

manifests itself through the vibration signals observed at 

OP. Frequently, the set OP is suggested by equipment 

builder or imposed by local physical practical conditions 

such as accessibility, temperature or other. This means that 

neither the number of points nor its locations are necessarily 

 

Figure 1. For a specific equipment, the points  P1, P2, … , 

Pk, …, PK represent observation points where the vibration 

energy is represented by )(, tTPX , t= 1, …, n at the specific 

occasion T. 

optimal from the point of view of condition estimation, this 

fact making room for further theoretical considerations 

Let  

 QTttTPX ...,,2,1,0,)(, =  (1) 

represent the vibration signal, expressed in a convenient 

measurement unit (in fact it could be displacement, velocity, 

or acceleration) at a specific point P   and observation 

occasion T= 1, 2, …, Q. XP,T (t) is a stochastic process, i.e. a 

random variable dependent of time. The sequence of 

observation occasions T= 1, 2, …, Q must not be confused 

with time t used to refer to the time parameter of a specific 

signal. For example, P may represent the left support of a 

specific Diesel engine, T refer to weekly observations of 

that engine and t (in seconds) a generic instant in the 

interval [0, 1], 1 second being the observation length. 

Expression (1) is a continuous stochastic process that must 

be observed at specific instants (t1, t2, …, ti, …, tn) specified 

by n (sampling rate). 

This means that the observed data for a specific 

measurement occasion (T) is a set of K observed time series, 

each one with n observations as can be seen in Table 1. 

The “true” machine condition at a specific occasion is not 

directly observable and must be estimated, predicted or 

inferred from the observed time series data at OP for a 

succession of occasions (observation times). 

)(,1
tX TP  → )(...)(...)( ,,1, 111 nTPiTPTP tXtXtX  

…  … 

)(, tX TP  → )(...)(...)( ,,1, nTPiTPTP tXtXtX  

…  … 

)(, tX TPk
 → )(...)(...)( ,,1, nTPiTPTP tXtXtX

kkk
 

P -Observation Point; T= Observation Occasion 

Table 1. Observed time series corresponding to K 

observation points, at occasion T. For each point, the 

corresponding signal was sampled at n points. 
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Referring to one such specific time series as x1, x2, …, xn, 

the usual VA procedure consists in using the Discrete 

Fourier Transform (DFT) to transform those time series in 

their spectrograms (Brockwell & Davis, 1991), projecting 

the time series on an orthogonal functional base formed by 

sinusoidal functions with frequencies- Fourier Frequencies 

(FF) 
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 where [x] represents the integer part of x. See Figure 2. 

 

Figure 2. The time series of observed values is transformed 

in the sequence of amplitudes corresponding to the FF. 

For the specific observed value xt (t= 1, 2, …, n), this value 

is decomposed (Brockwell & Davis, 1991) as: 




=
nFj

jitw
eja

n
tx

1
 (4) 

aj being the projection of x= (x1, x2, …, xi, …, xn)T  on  

jitw
e

n

1
. (5) 

Inference about machine condition is then performed using 

statistical inference procedures based on results of DFT, or, 

informally, using the analyst skills, knowledge, experience 

and on existing rules or regulations. 

3. LITERATURE REVIEW 

The inference problem associated with spectral analysis and, 

consequently, with the use of VA for CBM, is solved using 

the concept of spectral density function and its estimation 

through the periodogram, a function of FF (w) and observed 

signal values xt (t= 1, …, n). If f(w) is the theoretical 

spectral density function, the variance or energy contained 

in the signal for frequencies  w is given by 

dw
w

wf
w

wFdwF  −= −= )()()( . (6) 

distribution (Priestley, 1981, and Brockwell & Davis, 1991). 

Statistical inference about f(w) is based on the observed data 

periodogram and its sampling distribution (Brockwell & 

Davis, 1991). This problem has been the object of intense 

research during the last 50 years, as can be seen in Jones 

(1965), Beneke, Leemis, Schelegal and Foote (1988), 

McSweeney (2006) and, more recently, in Fokianos and 

Savvides (2008). In all those references the main issue is to 

decide if two periodograms, corresponding to two sets of 

observations, come from the same population spectral 

density or not. For recent work in this direction see also 

Halliday, Rosenberg, Rigas and Conway (2009), and 

Ravishanker, Hosking and Mukhopadhyay (2010). 

Unfortunately, the use of these statistical inference results 

for operational diagnostic needs is questionable given the 

observational nature of data collected, not satisfying all the 

theoretical assumptions required by inference methods. In 

consequence, the diagnostic decision based on results of 

DFT is in general performed informally by the technicians, 

using their knowledge, experience and judgement. 

This context is changing with the availability of low cost 

high quality sensors. This creates a super abundance of data 

allowing and imposing the use of multivariate data analysis 

methods (Garcia & Trendafilova, 2014, Ferrer, 2014), where 

a new paradigm for Statistical Process Control (SPC) is 

identified and the generalized use of multivariate data 

analysis methods is suggested. Frequently these methods are 

based on the decomposition of matrices and other tensors 

using the Singular Value Decomposition (SVD) and in the 

visualization of its results. That is the case for classical 

multivariate techniques such as principal components (Li, 

Shi, Liao & Yang, 2003). 

The use of multivariate data analysis techniques in the 

context of maintenance has been the object of many 

contributions such as Zhan, Makis and Jardine (2003). 

The use of biplots in maintenance, proposed in this paper, 

has scarcely been employed. The biplot concept and its 

variants can be seen in Gabriel (1971), Galindo (1986), 

Greenacre (2010), Gower and Hand (1996). 

Biplots were initially proposed by Gabriel (1971). The 

concept was also present in the work of French school of 

Benzécri, associated to correspondence analysis (Benzécri et 

Collaborateurs, 1973). Biplots show in the same plot two 

kinds of objects (two modes), for example, frequencies and 

observation points. As can be seen in what follows, VA and 

reasoning involved in interpretation and prognosis relates 

more than two kinds of objects; namely: Occasions, 

Observation Points, Frequencies and Equipment.  

For this multiway or multimode data, occurring naturally in 

VA, a whole set of statistical and visualization 

methodologies have been developed recently (Kroonenberg, 

2008, Papalexakis & Faloutsos, 2015, Kolda & Sun, 2008, 

Mendes, 2011, Mendes, Fernandez-Gomez, Pereira, 

Azeiteiro & Galindo-Villardon, 2012). It is expected that, in 
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the near future, more applications of these concepts to VA 

and CBM will show up. 

4. MATERIAL AND METHODS. DATA ISSUES 

Data for this work was collected by the second author in real 

operating conditions on board NRP Berrio, a Portuguese 

Navy auxiliary ship. The data was obtained measuring 

vibration signals (in g-s) from four electrical power 

generators, powered by Volvo Penta TAMD 165A Diesel 

engines. These are four strokes, direct injected, 

turbocharged 440 kw, 1800 rpm diesel engines. The AC 

generators are STAMFORD, HC M534 D1, 60Hz, 487.5 kw 

at 1800 rpm. 

For each one of the 4 Generators (GE1 to GE4), vibrating 

signals were measured at K= 13 OP, identified in Figure 3, 

using a mobile collector CSI 2140 from Emerson (Emerson, 

2016). 

The vibration collector CSI 2140 was set for Hamming 

Window, observation time 1 second and sampling rate 3900 

lines. For each measurement, several replicas were obtained 

(at least 3) and the corresponding DFT’s were averaged. 

Figure 4 shows one possible layout for DFT resulting data. 

For each equipment E (power generators GE1 to GE4), at a 

specific point P, and a spectral frequency w, the 

corresponding amplitude (g-s) was aE,P,w. 

This kind of data is a 3-way layout (three modes) since it 

relates 3 kinds of entities: Equipment, Points and 

Frequencies. If all the measurements were obtained at the 

same occasion (T= 1st February 2011) for the 4 groups, the 

3-way layout that interests us here is shown in Figure 4 a). 

This kind of data, represented by tensors of order ≥ 2, 

requires algorithms such as PARAFAC (Kroonenberg, 

2008, Papalexakis & Faloutsos, 2015, Kolda & Sun, 2008, 

Mendes, 2011) to generalize to higher dimensions the 

classical graphical results such as principal components and 

biplots based SVD. 

2D Biplots used in this work were drawn using the software 

Biplots PMD (Vairinhos, 2003).  

 

Figure 3. For each site (1, 2, ...,7) there are 1, 2 or 3 

measurement points labelled as P(A,H,V). For example, P4 

(A, H, V) means that at site Coupling (C) there are 3 

measurements points – Axial, Horizontal and Vertical. 

 

Figure 4. a) A 3-way layout with modes 1 – Observation 

Points (P); 2 –Frequencies (w); 3 – Observed Equipment 

(E); b) Slices corresponding to biplots of interest. For Point 

p (on each equipment), relation between frequencies and 

equipment; c) For w0= 30HZ, say, aEPw – amplitude for E, P, 

w constant, relation between Equipment and OP. 

The suggested use of biplots in what follows is based in the 

following two assumptions:  

Assumption 1- The equipment condition does not change 

during the measurement process, at a specific occasion, for 

different OP. 

Assumption 2- The vibration patterns observed at OP 

(expressed by the corresponding DFT´s) are related. This 

relation is assumed approximately linear and captured by 

DFT’s correlations. 

5. USING BIPLOTS TO STUDY SPECTROGRAMS 

Biplots are defined in Gabriel (1971) as follows: given a 

rectangular matrix X (np) with n rows and p= m columns, 

this matrix can be represented exactly in Rr, with r= rank 

(X)  p, or, approximately, in Rd with d < rank (X),  using a 

Cartesian reference system, representing its rows by 

markers g1 … gn  and markers h1 … hr for the columns,  this 

representation being called a biplot, with j
T
iij hgx =  (i= 1 … 

n; j= 1 … p). 

Given the SVD of X = UΣVT = UΣαΣ(1-α)VT  , ( 0 <= α <= 1) 

where U and V contain X´s left and right eigenvectors and 

diagonal matrix Σ contains its singular values, one possible 

choice for markers,  satisfying Gabriel definition, is using 

the rows of UΣα   for gi  and  the rows of V Σ(1-α) as hj. When α 

= ½, this choice guarantees that both rows and columns are 

represented, in the corresponding biplot, with the same 

quality but not with the maximum possible quality. For 
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other choices of parameter α, rows and columns are 

represented with distinct qualities. 

HJ-BIPLOT, Galindo (1986), uses for row markers gi the 

rows of UΣ and for columns markers hj the rows of VΣ. 

This means that, in contrast with Gabriel biplot, xij ≠ gi
Thj (i= 

1 … n; j= 1 … p).  

HJ-Biplot, on the other hand, is a true simultaneous 

representation of rows and columns in a referential formed 

by the factorial axes, these axes being associated to the same 

weights for rows and columns. For this kind of biplot, rows 

and columns, are represented with the same and maximum 

possible quality and it makes sense to interpret statistically 

the distances (and angles) between rows and columns: 

when, on a HJ-Biplot, the distance between a column and a 

row is small (small angle) that means that the variable 

assumes a large value for that row. See Galindo (1986). 

In all what follows only HJ-biplots will be employed, 

meaning that the word biplot replaces, from now on, the 

expression HJ-Biplot.  

Both gi and hj are vectors of the same dimension d ≤ r. In a 

Cartesian (orthogonal) reference system, a biplot 

visualization is possible only for d 3. Using a parallel 

coordinate system, the visualization is possible for any d  p 

(Vairinhos & Galindo, 2012). The data illustrated in Figure 

4 b) and c), extracted from the cube in Figure 4 a), is named 

in what follows, respectively by: X (m, n), Y (m, k), Z (k, n). 

In X (m, n), for a specific equipment, rows represent 

Observation Points and columns represent Fourier 

frequencies. This means that each X column contains, for a 

specific Fourier Frequency w, m amplitudes (one for each 

observation point), for that frequency, obtained by DFT of 

vibration signals corresponding to observation points. A X 

row contains the n amplitudes corresponding to the n 

Fourier Frequencies of a single spectrogram obtained by 

DFT performed on the vibration signal at a single 

observation point. In Y(m, k), for a specific w,  rows 

represent OP and columns represent Equipment. In Z (k, n), 

for a specific OP, rows represent Equipment and columns 

FF. For each one of those matrices/slices a biplot is possible 

since only two of the three kinds of information (Modes) are 

being related. In our case, for n = 3900 FF; k= 4 generators; 

m = 13 OP, there are three biplots. For example, Figure 5 

shows a biplot corresponding to XT (3900, 13). Points 

represent n = 3900 FF and arrows represent the m = 13 

observation points. 

In these biplots the cosines of angles between the vectors 

representing variables (in this case the OP) are the 

correlations between those variables. Biplots show a 

graphical image of that correlation matrix; in this context, 

the cosines represent the strength of association between the 

vibration patterns at distinct OP: the greater the absolute 

value of those cosines the more similar the vibrations are at 

those points. 

 

Figure 5. HJ-Biplot for matrix X, relating n= 3900 Fourier 

Frequencies with p= 13 Observation Points. ‘*’ Represents 

a Fourier frequency; Observation points are represented by 

vectors labeled according with Figure 3. Tag “_m” means 

that variables were obtained averaging spectrogram replicas. 

For biplot in Figure 5, the distances between row markers 

(Fourier frequencies), represent dissimilarities (in terms of 

signal energy) between the corresponding frequencies 

(Galindo, 1986). 

6. BIPLOT INTERPRETATION FOR VIBRATION ANALYSIS 

RESULTS 

The reasoning used for VA results interpretation relates the 

following items: Fourier Frequencies (wi), Observation 

Points (Pj), Equipment (Ek) and, for monitoring, 

Observations Occasions (Tl). When all that matters is a 

global impression of what is going on, the kind of biplot in 

Figure 5, where rows (FF) are represented by a non-labelled 

symbol, can be very useful. The general position of these 

markers (as opposed to the actual frequencies they 

represent) can be used as reference to detect changes in the 

future. In the case of Figure 5, biplot represents 13 

spectrograms each one with 3900 FF corresponding to GE1, 

observed at Feb 1st, 2011 in a “good condition”. 

In this case the Fourier frequencies were labeled by ‘*’ but 

they could have been labelled also using their values (FF) or 

their amplitudes for each one of OP (variables), as shown, in 

Figure 6 where FF are identified by labels related with their 

value in Hz. 

For HJ biplots, Galindo (1986) used in this work, the angles 

between rows and columns (FF and OP in our case) can be 

statistically interpreted as the degree of contribution from 

the rows to the columns. If, for a specific observation point 

(P7V, say) some set of frequencies form small angles with 

that OP, this means that the identified FF have large 

contributions for the explanation of the vibration pattern 
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(represented by a spectrogram) at that OP. For example, it 

can be seen, in Figure 6 that FF labelled 190 and 191 make 

angles nearly zero (cosines =1) with P7V observation point, 

the right support of AC generator. That same figure, also 

shows that the subset of FF = {159, 158, 477, 588, 636, 637, 

350, 349, 196, 189, 191, 190} are the major contributors- by 

this order - for the vibration patterns at OP subset = {P7H, 

P5H, P7V, P5V} all belonging to the AC generator 

component, as can be checked from Figure 3.  

 This means that, in the biplot, it is possible to, literally, 

“see” and read all the information that matters for VA 

results interpretation and diagnosis: OP (spectrograms), 

FF(w´s), amplitude values and the mutual relations between 

OP and FF, expressed by angles and distances. 

Being a bit more specific, in a 2D biplot let w (an FF) and 

P1 and P2 two OP. All three markers are represented by 2D 

points in the biplot. For example: w= (5, 6)T , P1= (15, 3)T, 

P2= (1, 0)T. The marker w represents a row in the data set 

(corresponding to a Fourier Frequency) formed by p (p= 13 

in our example) amplitudes, the number of observation 

points. In the same way, the marker P1, for example, 

represents a vector with n (n=3900 components in our case), 

a column in the data set, containing the amplitudes of the 

spectrogram observed at point P1. The same for P2. 

The contribution of a Fourier Frequency w to explain the 

vibration pattern at point P is obtained projecting w on P, by 

)(cos, PwP
T

wPw ==  (7) 

In the process of VA results interpretation, the four basic 

tasks are:  

Task 1 – Set a reference: specify a biplot for a known 

reference condition. 

Task 2 – Detect a change: compare a measurement with the 

reference. 

Task 3 – Diagnostic: identify possible failure modes. 

Task 4 –Prognosis: given some trend pattern, predict the 

failure. 

Task 1 (set a reference)  

This task corresponds, roughly, to Phase I in the process of 

specifying a SPC control chart. For a specific equipment, 

assuming a known condition and the corresponding working 

parameters, several replicas of vibration measurements are 

obtained for all OP and for identical machines (same maker 

and model). The biplots corresponding to the spectrograms 

of these observations are built and studied, identifying the 

sets   of   frequencies   that   are   more    important   for   the 

characterization of vibration patterns at specific observation 

points or at homogeneous sub-groups of OP. 

 

 Figure 

6. For GE1 in the reference condition, the frequencies that 

must contribute to the Motor and Generator form the 

signaled Co-cluster = {{P7H, P5V, P7V, P5V}, {189, 196, 

195, 191, 190}}. FF are represented by blue figures; 

Variables (OP’s) are represented by red vectors and red 

labels. The black lines represent the means both for 

Generator (G) and Diesel Motor (M) sets of points. 

For example, in Figure 6, corresponding to an assumed 

good condition of Generator Number 1 (GE1), two main 

sub-groups of OP can be identified corresponding accurately 

with the Diesel Motor (subset M= {P1H, P1V, P2A, P3H, 

P3V}) and with the Electric Generator (subset G= {P5H, 

P5V, P6A, P6H, P6V, P7H, P7V}). In this same Figure 6, 

the FF labels (not to be confused with frequencies in Hz) 

that, for this specific condition, have more influence on the 

vibration patterns at subset of OP M, are: {478, 159, 159, 

477, 637, 588, 636, 579, 222, 439, 350, 196, 189, 195}. As 

already seen, the vibration pattern at point P5V is very well 

explained by Fourier frequencies labelled 189, 196, 195, 

191,190 sorted by increasing effect. This means that, for this 

specific example, output from Task1 is a 

description/characterization of biplot structure given by two 

subsets of OP and corresponding lists of Fourier frequencies 

with greater contribution for identified subsets of OP. 

The final decision about this reference biplot configuration 

can be made using, for example, the bootstrap methodology 

(Nieto, Galindo, Leiva & Vicente-Galindo, 2014). Figure 7 

shows four biplots for GE1, GE2, GE3, GE4 in the assumed 

reference condition, showing, with small variations, the 

same macrostructure. 



   7 

 

Figure 7. a) GE1; b) GE2; c) GE3; d) GE4. Biplots constructed with observations obtained from distinct machines, but the 

same model and maker and assumed in the same condition. Biplots macrostructure are very similar and defined by two 

subsets of OP: M (for Diesel Motor) and G (for electric Generator) the two means (black lines) which form an angle θ.  

Task 2 - Detect a condition change  

This task is related with a condition change associated with 

the emergence and incipient development of a failure. 

If there is a new failure development process, this process 

must be the cause of a noticeable change in the vibration 

patterns at OP and, consequently, of noticeable features in 

the current biplot. As an example, the process could 

manifest itself through noticeable changes of angles 

between OP, changes in the lists of contributing frequencies 

for OP and changes in some of angles between OP and FF. 

To be useful, this process must occur before any major 

external evidence of failure occurs. In synthesis: it is 

assumed that, when there is an assignable cause of change 

(not attributable only to chance), such as the development of 

an incipient failure, that must manifest itself in the 

corresponding geometric relations of markers in biplots, 

both FF and OP. For an example, figure 8 shows the biplot 

constructed with the same graphical parameters, resulting 

from an artificial modification of spectrograms for 

observation points P1H, and P1V. This new biplot should be 

compared with the one presented in Figure 6 for the 

reference condition resulting from Task 1. Observe that the 

macro structure of the second biplot – the Observation 

Points from the two cluster already identified in Figure 6, 

corresponding to M (Motor) and G (Generator), although 

very similar, presents noticeable changes in relation to 

reference Biplot at Figure 6.  

Another graphical manifestation of assignable causes of 

condition change, are the variations of angles between the 

subset of FF with higher influence on the vibration patterns 

at some specific subset of OP´s. In addition, it may happen 

that a specific assignable cause can produce also changes in 

the lists of FF with higher contributions for the vibration 

patterns at OP. For example, from Figure 8 the list of FF 

with more influence over the G set is the same as before but 

small variations between the angles are noticed. 

Another, rough, way to quantify the biplot change resulting 

from the existence of a latent failure process can be based 

on the following reasoning: 
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Figure 8. Modified reference condition biplot after the 

emergence of an incipient (simulated) failure which 

manifest itself in the biplot by the position of P1H, now 

associated to P4V when in the original it was associated to 

P4H. The two QQ clusters correspond to AC Generator and 

Diesel Motor. FF are represented by blue markers; Variables 

(OP’s) are represented by red vectors and red labels. The 

black lines represent the means both for Generator (G) and 

Diesel Motor (M) sets of points. Generator (down) is 

“slightly” different from the reference. 

If there is an assignable cause that explains the change in 

vibration pattern at some OP, this means that a new 

dimension is needed to account for the information 

associated with this new variability source. 

If the reference biplot (assumed to be 2D) explained 100% 

of the information associated with the Reference Condition, 

this would mean, for the current biplot, that the two-factorial 

solution would explain less than 100% of information; the 

additional information or variability associated to the new 

variation source should be accounted for by that additional 

dimension. To represent 100% variability, it would be 

necessary now to have a higher dimension biplot.  

Rule. Generalizing the idea in 2), a rule to detect the 

presence of an assignable cause of condition change 

(presence of an incipient or latent failure process) would be: 

“If the percent of variance (information) explained by the 

current biplot is less than that explained by the Reference 

biplot, this means that, eventually, an incipient failure is 

developing”.  

This rule can become more objective bootstrapping SVD 

results used to construct the current biplot (Nieto et al, 

2014), and performing a statistical test using the 

corresponding “sampling” distribution: the rejection of a 

reference hypothesis of no-change would sound the alarm 

for the eventual presence of a latent or incipient failure 

process. Another possibility is to use angle θ as a feature to 

monitor. 

Task 3 – Diagnostic. Identify possible failure modes 

Having assumed that equipment condition changed (or is 

changing) it becomes necessary to identify the cause of that 

change when such cause can be expressed using relations 

between frequencies and observation points. For example, 

let the natural frequency of some equipment be f0 Hz. This 

means that its harmonics hk = k × f0, k= 1, 2…, if combined 

with a vibrating pattern of some source can create dangerous 

resonances. From this observation, would result a rule to 

detect the presence of harmonics hk (or “near harmonics”) 

among the frequencies that most contribute (make smaller 

angles) to some subset of OP in the biplot. 

ISO 10816 (2014) and other international norms are 

important sources of data to construct rules of this kind.  

The exact nature of a failure cause, and its expression in 

terms of FF and corresponding amplitudes at OP can only 

be specified using deep technical knowledge about the 

specific machine. For example, ball bearings failures 

generate vibration processes with frequencies related with 

the geometry of the bearing and the number of balls. The 

number of balls combined with the rotation speed generate, 

in the case of several failed balls, vibration effects whose 

frequency can be calculated using this knowledge (Emerson, 

2016). This means that a technical analysis of specific 

equipment is needed to create rules relating possible failure 

causes, technical characteristics and frequencies. In general: 

if the FF that in the current biplot have higher contributions 

for the vibration patterns of some subset of OP belong to the 

set of harmonic frequencies that characterise some specific 

failure, then possibly, that failure is present or is becoming 

present. Geometrically, in the biplot, this is equivalent to the 

definition of detection regions, for each OP or relevant 

subsets of OP such as M or G defined before. The presence 

of harmonics associated to a specific class of failures in 

those regions should work as an alarm signal for that failure. 

Using a more appealing language: if some specific failure is 

developing, then those regions should “see” the presence of 

corresponding harmonics. In other words, the biplot should 

show a “movement” of some frequencies towards those 

regions, as if the FF subset corresponding to specific failure 

modes were attracted by those regions. 

Task 4 - Prognosis 

The monitoring of a system using biplots can be 

accomplished measuring vibrations at OP for successive 

occasions (T=1, 2,…,Q) and comparing the successive 

biplots with the reference one. For each occasion, the 

relevant features of the current biplot, for example angle θ 

between sets of points M and G or the % of variance 

explained by the first two biplot axis, are extracted and used 

to perform prediction/prognosis based in the corresponding 
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trends. When the reference condition is defined by a 2D 

biplot, then for successive biplots the total percent variance 

accumulated by the two axes (the same for 3D biplots) are 

compared with the corresponding value for the reference 

condition.  

 

Figure 9. A time series of biplots for VA monitoring. Biplot 

for T= 0 correspond to reference condition. For each 

observation condition (T=1, 2,…, Q) a biplot is produced 

and its features extracted. 

Specifically, for each one of the 5 biplots in Figure 9, 

constructed with random modifications (bootstrap simulated 

failures) of reference biplot for GE1, the percent of 

information/variance explained by those biplots are, for T= 

0, …, 5, respectively (74.25, 72.07, 72.07, 71.71, 71.72, 

72.07). 

Representing these values with a chart (Figure 10), it is 

shown that, for successive 2D biplots the percentage of 

information explained is decreasing. This means that the 

remaining (residual) information/variance, not explained by 

current biplot, is increasing. This suggests that one 

additional dimension is needed to account for that 

unexplained variability and, according with what was 

explained before, an incipient failure is developping.  

 

Figure 10. Plot and trendline for percent variance explained 

by successive 2D biplots corresponding to simulated failure 

data for 6 occasions, showing the need of a third dimension. 

Discussion 

The present work was based on about 2 GB of observational 

real data collected from real machines in real operating 

conditions. This was not enough to identify all possible 

problems and to check all the nuances and limitations of the 

proposed methodology. Further efforts in this direction are 

needed, but the results obtained so far are very encouraging. 

To fully explore the ideas proposed in this paper the 

software to be used must be “tailor-made”: allow dynamic 

interactions, have the statistical functionality needed to 

implement the interpretation rules suggested and to give the 

answers expected in VA. In our case a general-purpose 

software was used with the consequent limitations 

(Vairinhos, 2003). 

Biplots features extraction, the base of effective 

comparisons and trend studies implicit in Tasks 1,2,3,4 must 

be much more developed in future work, and the same 

applies to failure rules detection.  

7. CONCLUSIONS 

A biplot based graphical data driven methodology was 

proposed to monitor vibrations in the context of CBM 

maintenance.  

The methodology is based on observational data collected 

by fixed or mobile sensors in operating conditions. 

When implemented through dedicated software 

incorporating specific knowledge about the monitored 

machines, this methodology can contribute to generalise the 

use of VA. 
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