
Scalable fault models for diagnosis in a synchronous generator using
feature mapping and transformation techniques

R. Gopinath1, C. Santhosh Kumar2, and K. I. Ramachandran3

1,2,3 Machine Intelligence Research Lab., Department of Electronics and Communication Engineering,
Amrita School of Engineering, Coimbatore,

Amrita Vishwa Vidyapeetham, Amrita University, India-641112
rgopinath.gct@gmail.com
cs kumar@cb.amrita.edu
ki ram@cb.amrita.edu

ABSTRACT

Condition based maintenance (CBM) needs data acquired dur-
ing healthy and faulty conditions to develop intelligent sys-
tem for fault diagnosis. However, fault injection is not al-
lowed/possible in a highly expensive components of com-
plex/critical systems to collect fault condition data. There-
fore, proto-type/small working models are used to conduct
experiments for abnormal/fault conditions, to obtain and scale
the intelligence of the system for effective health monitoring
of complex system. This methodology is referred as scalable
fault models. For proof of concept, in this work, we con-
sidered two different capacity synchronous generators with
rating of 3 kVA and 5 kVA to emulate the behavior of proto-
type/small working model and complex system respectively,
for scalable fault models. We explored feature mapping and
transformation techniques to achieve effective scalability.

From the preliminary experiments, it is observed that the base-
line system performance deteriorated due to the changes in
the system (capacity) and its characteristics with load changes.
We therefore, expressed the input features in terms of load
and system independent manner, to make the features less
dependent on load and system variations. We explored lo-
cality constrained linear coding (LLC) to express the features
load/system independently. It is observed that experimenting
LLC with the backend support vector machine (SVM) clas-
sifier gave the best fault classification performance for linear
kernel, suggesting that the faults are linearly separable in the
new feature space.

Since the LLC mapped feature space is linearly separable, we
then explored linear feature transformation technique, nui-
sance attribute projection (NAP) on the LLC mapped feature
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space to further minimize the load/system specific variations.
We observed that LLC-NAP improved the overall accuracy
and sensitivity of the classifier significantly. We also noted
that the performance of NAP was limited in the original fea-
ture space since the feature space (NAP without LLC) is non-
linear with load/system variations.

1. INTRODUCTION

Over the past few years, condition based maintenance (CBM)
strategy is preferred over preventive maintenance approach
in most of the industries due to its reduced down time and
maintenance cost, and increased reliability of the machines
(Jardine, Lin, & Banjevic, 2006). Condition monitoring of
a line replaceable unit (LRU) in aerospace applications is
part of the integrated vehicle health management (IVHM)
system (Felke, Hadden, Miller, & Mylaraswamy, 2010). In
modern aircrafts, brushless synchronous machines are used
mostly to generate electrical power for operation of aircraft
subsystems. Maintenance of the flight critical components
(eg., power generator) is performed based on time or usage.
However, in this practice, the components are removed pre-
maturely irrespective of its remaining useful life (RUL). There-
fore, effective maintenance strategy needs to be carried out
for reduced maintenance cost and high reliability of the sys-
tems (Batzel & Swanson, 2009). CBM’s of various aerospace
subsystems are reported towards effective implementation of
IVHM (Tolani, Yasar, M. Shin, & Ray, 2005; Keller & Ray,
2001; Kirkland, Pombo, Nelson, & Ferghout, 2004).

To perform a data driven CBM of any engineering system, it
requires the data during normal and fault conditions from the
system to be monitored (Tavner, 2008; Nandi, Toliyat, & Li,
2005). However, in highly expensive complex systems, we
cannot inject fault and collect data to learn the intelligence
about the system. Further, deriving an accurate mathemati-
cal model of many of the complex systems will be extremely
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difficult if not impossible (Narasimhan, Roychoudhury, Bal-
aban, & Saxena, 2010). To overcome this problem, prototype
models were used, where fault injection is possible to learn
the system intelligence/knowledge and scale the intelligence,
to health monitoring of the complex (actual) system without
conducting experiments for fault conditions (Oh et al., 2014).

In condition monitoring of wind turbines, a wind turbine sim-
ulator tool can be used to validate and verify the algorithms
before implementing them on the actual wind turbine due to
the practical limitations. Oh et al. proposed a wind turbine
simulator with a small capacity of 20 kW that has similari-
ties to 3 MW wind turbine for studying the characteristics of
3 MW wind turbine using a 20 kW wind turbine simulator
(Oh et al., 2014). The experimental results reported that the
acquired vibration and strain values from the simulator had
similarities to the actual wind turbine. Oh et al. suggested
that the data from the simulator could be used for develop-
ing an intelligent fault diagnosis system to monitor the actual
wind turbine (Oh et al., 2014). However, no such study has
been conducted from the simulator model to monitor the con-
dition of actual wind turbine.

Godoy et al. experimented with two different specification
of induction motors at various loading conditions to moni-
tor the condition of machines (Godoy, da Silva, Goedtel, &
Palcios, 2015). The performance of the fault diagnosis sys-
tem is compared using different classifiers, multilayer per-
ceptron network, fuzzy adaptive resonance theory network
and support vector machine (SVM). However, the fault mod-
els are generated in a machine dependent manner. Zhang et
al. (Zhang, Ma, Lin, Ma, & Jia, 2015) developed a rotor dy-
namic model to simulate the various operating conditions of
the aero-engines and acquired the data at various fault condi-
tions, unbalance, misalignment and rub impact from the sim-
ulator. An improved empirical mode decomposition (EMD)
and statistical parameters are used to extract the time-frequency
features. Faults are diagnosed using an optimized fuzzy SVM
based on genetic algorithm (Zhang et al., 2015). However, the
proposed algorithms are tested for the simulated data rather
than real aero-engine data.

Duque-Perez et al. proposed additive models to diagnose the
faults in the rotor bars of induction motors when it was fed
by different types of frequency inverters and control (Duque-
Perez, Garcia-Escudero, Morinigo-Sotelo, Gardel, & Perez-
Alonso, 2015). The study reported that same fault condition
causes different fault signatures due to variations in power
supply, motor and load conditions (Duque-Perez et al., 2015).
However, the proposed approach has been experimented when
the data from the different motors were combined together.

In our recent work, we used two different capacity three phase
generators to consider as small working model/prototype and
complex system, for proof of concept of scalable fault models
(Gopinath, Kumar, Upendranath, & Kiran, 2016). Nuisance

attribute projection algorithm (NAP) was used to reduce sys-
tem dependent attributes/features from input features. De-
cision tree classifier was experimented for fault classifica-
tion. Though, NAP improved the system performance, it was
noted that NAP requires linear space to be effective in re-
ducing system attributes that are affecting the system perfor-
mance. Therefore, the scope of the NAP was limited due to
use of non-linear statistical features. It was suggested that ex-
pressing the input features in terms of load independent man-
ner using locality constrained linear coding (LLC) helps im-
prove the fault classification performance of load independent
system dependent fault diagnosis (Gopinath, Kumar, Vish-
nuprasad, & Ramachandran, 2015).

In this paper, we therefore explore LLC to minimize the load
and system specific variations in the input features from the
prototype and complex system to make the features robust
across the systems. We then explore NAP in the LLC mapped
feature space to further minimize the load and system specific
variations effectively. We also check the performance of the
NAP in the original feature space (without LLC) to illustrate
the effectiveness of experimenting NAP in the LLC mapped
feature space. We use SVM as a backend classifier for fault
diagnosis. Experimental setup and feature extraction process
are described in Section 2. Methodologies and experiments
are discussed in Section 3 and 4 respectively. Conclusions
are made in Section 5.

2. EXPERIMENTAL SETUP AND FEATURE EXTRACTION

In this work, synchronous generators with capacity of 3 kVA
and 5 kVA are customized to experiment stator winding short
circuit faults by taking the leads out from the coils to the front
panel as illustrated in Figure 1 and 2 (Gopinath et al., 2013).
Figure 3 represents experimental facility. The taps are made
in each coils at different points of the stator winding coils.
In our experiments, we shorted only 6 turns (3.57%), 8 turns
(4.76%) and 14 turns (8.33%) of 168 turns in each phase re-
spectively. Each phase of the stator winding has 18 taps. The
specifications of the 3 kVA and 5 kVA synchronous generator
is listed in Appendix A.

Current signatures are acquired from synchronous genera-
tors during healthy and inter-turn fault conditions for various
loading conditions from 0.5A to 3.5A with an increment of
0.5A load. Three phase resistive load bank is used for loading
the generator at different loads. Current sensors are interfaced
to the computer with the help of NI-PXI 62211, DAQ. The
block diagram of the experimental setup is shown in Figure
4. Short circuit fault conditions (inter-turn) are induced in the
three phases of winding (stator) separately. The current signal
acquired during the inter-turn short circuit condition for the 3
kVA and 5 kVA synchronous generator is shown in Figure 5.
Current signals are collected for ten seconds of duration at

1http://sine.ni.com/ds/app/doc/p/id/ds-15/lang/en
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1kHZ sampling rate for every experiments. A window size of
512 points is used to divide the signals into multiple frames.
Further, statistical features are extracted in frequency domain
from the input current signals (Lei, He, & Zi, 2008). Features
used in this work are listed in Table 1.

Figure 1. 3 kVA synchronous generator

Figure 2. 5 kVA synchronous generator

Figure 3. Experimental facility

3. METHODOLOGY

3.1. Locality constrained linear coding (LLC)

LLC is a feature mapping technique used to represent the
non-linear features in a higher dimensional space where it
can be linearly separable. Originally, LLC was introduced
in image classification application for improving the perfor-
mance of the classifier with the use of linear kernel (Wang
et al., 2010). In this work, we explore LLC for minimizing
load/system specific variations in the input features that af-
fects fault classification performance.

LLC is an unsupervised learning method which represents the
input feature vectors as a weighted sum of k nearest code-

Figure 4. Block diagram of the experimental setup
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Figure 5. Current signals acquired during inter-turn fault in
the 3 kVA and 5 kVA synchronous generators

books/basis vectors (Wang et al., 2010). The input features
are represented using few elements (sparse) in a higher di-
mensional space. Codebooks are computed with the help of
k means clustering algorithm from the training data set. Let
X = [x1, x2, ......, xN ] ∈ RD×N be the input feature vec-
tor and given the codebook B = [b1, b2, ......, bM ] ∈ RD×M ,
every feature vector is mapped into a M - dimensional code.
Basis vectors [b1, b2, ......, bM ] identifies the inherent struc-
tures in the feature vectors. LLC can be represented as:

min
C̃

N∑
i=1

‖Xi − c̃iBi‖2 (1)

s.t 1T c̃i = 1, ∀i
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Description Feature

Mean Feat1 =
∑K

k=1 s(k)

K

Variance Feat2 =
∑K

k=1(s(k)−Feat1)
2

K−1

Skewness Feat3 =
∑K

k=1(s(k)−Feat1)
3

K(
√
Feat2)3

Kurtosis Feat4 =
∑K

k=1(s(k)−Feat1)
4

K(Feat2)2

Frequency centre Feat5 =
∑K

k=1 fks(k)∑K
k=1 s(k)

Standard deviation Feat6 =

√∑K
k=1(fk−Feat5)2s(k)

K

Root Mean Square Feat7 =

√∑K
k=1 f2

ks(k)∑K
k=1 s(k)

frequency

Spectrum power Feat8 =

√∑K
k=1 f4

ks(k)∑K
k=1 f2

ks(k)

convergence
Stability factor Feat9 =

∑K
k=1 f2

ks(k)√∑K
k=1 s(k)

∑K
k=1 f4

ks(k)

Coefficient variability Feat10 = Feat6
Feat5

Skewness frequency Feat11 =
∑K

k=1(fk−Feat5)
3s(k)

K(Feat6)3

Kurtosis frequency Feat12 =
∑K

k=1(fk−Feat5)
4s(k)

K(Feat6)4

frequency

Spectrum power Feat13 =
∑K

k=1(fk−Feat5)
1
2 s(k)

K
√
Feat6

positional factor
where s(k) is the spectrum for k = 1, 2..K,K is the number of
spectrum lines fk is the frequency value of the kth spectrum.

Table 1. Frequency Domain Features

where C̃ = [c̃1, c̃2, c̃3..., c̃N ] is the set of coding coefficients
for input feature vector X . The shift invariant requirement
of LLC is obtained using the constraint 1T c̃i = 1. The pic-
torial representation of LLC is shown in Figure 6. It illus-
trates the selection of nearest basis vectors for representing
the input feature vector. From Figure 6, it is also noted that
the basis vectors are shared for the similar input feature vec-
tors. Thus, LLC ensures similar input vectors will have simi-
lar codes. Since LLC prefers locality, coding coefficients will
have smaller value for the basis vectors far away from the
local input feature vectors.

In this work, we experimented LLC to improve the fault clas-
sification performance of scalable fault models. To make the
fault model effective, the feature vectors should be robust to
load/system specific variations. For this, we derived the basis
vectors in a load/system independent manner and expressed
the feature vectors using these basis vectors. The load/system
independent basis vectors or codebooks are computed using
k means clustering algorithm from the input training feature
vectors. The computed codebooks are used to express the
input training and test feature vectors load/system indepen-
dently. LLC selects the k nearest load/system independent
basis vectors to represent the input features. The new training
and test features are used for generating and test the model

Figure 6. LLC

using SVM classifier.

3.2. Nuisance attribute projection (NAP)

Originally, NAP was proposed for reducing the channel ef-
fects to improve the robustness in speaker recognition sys-
tem (Solomonoff, Campbell, & Quillen, 2007). The same
person speaking through different channels (carbon button
handset and mobile phone) could be identified as different
speakers. The effect of the channels are considered as the
nuisance which affects the classification performance of the
system (Solomonoff et al., 2007). NAP uses eigenvalue anal-
ysis to remove the nuisance attributes.

In this work, we consider that the fault is expressing itself
through proto-type (3 kVA generator) and actual system (5
kVA generator). Though the nature of fault and its effect on
the generators are same, it is noted that there is a significant
difference in the signatures from generators. We attribute this
difference in the signal characteristics to the differences in
generator characteristics (proto-type/actual system) through
which the fault is expressing itself. In this paper, capacity
of the system is considered to be a attribute that affects the
fault diagnosis system performance. We experiment NAP to
reduce system attributes from feature space (input features)
to develop system to be robust in diagnosing faults.

Though, there were various approaches to remove the nui-
sance attribute from the input feature space, projection ap-
proach is most preferred due to its easiness. Projection is a
feature space transformation that helps to remove the vector
components in the specified subspace. NAP algorithm is il-
lustrated pictorially in Figure 7. From this figure, we interpret
that the input feature vector with system information (capac-
ity) m(s,c) is projected on to the subspace which contains the
system information v to obtain the system independent fea-
ture vector m(s). Here, we learn the dimensions that corre-
sponds to system capacity and project out those dimensions
from the input feature vector to make the feature vectors less
dependent on system capacity.

4
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Figure 7. Nuisance attribute projection (NAP)

Projection P can be written as:

P = I − vvt (2)

where v contains the information about the system attributes
and I denotes the identity matrix. The input feature vectors
of training data set {xi}ni=0 are labeled with the nuisance at-
tribute. A symmetric weight matrix is generated for training
feature vectors by applying the criteria:

Wij =

{
1; system(xi) 6= system(xj)
0; system(xi) = system(xj)

(3)

Here, we move together closer for the data from the same
capacity generator and move away the data from different
capacity generator. The figure of merit (FOM) δ is mini-
mized over P to improve robustness of feature vectors be-
tween the different capacity generators. FOM is expressed
as (Solomonoff et al., 2007):

δ =
∑
ij

Wij ‖P (xi − xj)‖2 (4)

Substituting, P = I − vvt, in Eq. (4):

δ =
∑
ij

Wij

∥∥(I − vvt)(xi − xj)∥∥2 (5)

Eq. (5), is reduced by performing algebra operations:

δ =
∑

ij Wij

[
‖(xi − xj)‖2 − (vt(xi − xj))2

]
(6)

Since, the first term in Eq. (6), does not have system infor-
mation v, it can be ignored:

δ = −
∑
ij

Wij(v
t(xi − xj))2 (7)

Eq. (7), can be simplified and expressed as:

δ = −2
∑

i(
∑

j Wij)v
txix

t
iv + 2

∑
ij Wijv

txix
t
jv (8)

Further, Eq. (8), can be expressed in terms ofA = [x1, x2, ...xn]:

δ′ = −2vtA diag(W.1)Atv + 2vtAWAtv (9)

= 2vtA(W − diag(W.1))Atv (10)

The FOM δ′ should be minimized, subject to ‖v‖ = 1, which
is equal to identifying the smallest eigenvalue of the symmet-
ric eigenvalue analysis.

A(W − diag(W.1))Atv = λv (11)

Eq. (11), can be further simplified as:

Az(W )Atv = λv (12)

Eq. (12), is called as NAP equation. Finally, the objective
function δ(P )′ can be minimized by keeping the columns of
v to be k most principal eigenvectors of the eigenvalue anal-
ysis, that has the information about the system. Therefore,
the system dependent features can be removed by projecting
it out from the input space (features).

4. EXPERIMENTS AND RESULTS

In this work, we developed scalable fault models for fault di-
agnosis of the synchronous generator using two different ca-
pacity, 3 kVA and 5 kVA synchronous generators. We model
the faults using the 3 kVA generator (no-fault and fault data)
and no-fault data from the 5 kVA generator, and scale this
model to diagnose faults in the 5 kVA generator. The 5 kVA
fault condition data is used for testing purpose only and not
while building the model. In this work, first we develop the
baseline system for scalable fault models using SVM classi-
fier. Then, we express the feature vectors in terms of load and
system independent manner to make the feature vectors less
dependent on load/system variations for effective scalability.
Dataset used in the experiments is listed in Table 2.

We measure the performance of the system by calculating the
overall accuracy, sensitivity (alarm accuracy) and specificity

5
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(no-alarm accuracy). Sensitivity and specificity are used to
analyze the performance of a binary classifier. Sensitivity
calculates the proportion of actual faults (positives) which are
correctly classified as fault, whereas specificity calculates the
proportion of actual no-faults (negatives) which are correctly
classified as no-fault. Overall accuracy measures the ability
to classify the no-fault and fault conditions correctly (Zhu,
Zeng, & Wang, 2010).

In this work, we consider systems used in mission critical ap-
plications that require high sensitivity for fault detection. In
such systems, every possibility of an alarm (fault) needs to be
detected, and the alarm detection accuracy has to be as high
as possible. Short circuit faults (inter-turn) are experimented
in all the phases of the stator winding separately and acquired
the output current signals. In this work, experiments are per-
formed as a two class classification problem. i.e., R phase
fault vs no-fault, Y phase fault vs no-fault, B phase fault vs
no-fault.

Data 3 kVA Generator 5 kVA Generator
Healthy Fault Healthy Fault

Training 13300 10640 13300 -
Testing - - 5852 4683

Note: The numbers in table are the number of data points used for
training and testing.

Table 2. Data set

4.1. Scalable fault models using SVM: Baseline system

For the baseline system, we first combined the data acquired
from the different loads under normal and fault operating con-
ditions. Three phase current signals are collected at 0.5 A, 1
A, 1.5 A, 2 A, 2.5 A, 3 A and 3.5 A resistive loads. Inter-
turn faults are injected in the R, Y and B phases separately
and acquired the current signals respectively. Subsequently,
the acquired time domain signals are transformed into fre-
quency domain using Fast Fourier Transform (FFT). We then
extracted the frequency domain statistical features (13 x 3
phase= 39 features) from the current signal acquired in the
3 kVA and 5 kVA generators.

The features from 3kVA generator (no-fault and fault con-
dition) and 5kVA generator (no-fault condition) are used for
training the model using SVM classifier. The features from
5 kVA generator (no-fault and fault conditions) are used as a
test data set (See Table 2) for fault classification using SVM.
No-fault and fault conditions are labeled as two separate classes.
The block diagram for scalable fault models baseline system
is shown in Figure 8. The experiments with R, Y and B phase
inter-turn faults are treated as a independent two class clas-
sification problems. It may be noted that a N class prob-
lem may be realized as N two class problems. For its sim-
plicity, we chose to experiment with the two class problem,
no-fault or fault, with the R or Y or B phase of the gener-

ator. For each experiment, overall accuracy, sensitivity and
specificity of the baseline system are calculated from SVM
testing. Linear kernel is used for fault classification. The per-
formance of the baseline system for scalable fault models is
listed in Table 3. The baseline system has the overall accu-
racy of 53.79%, 52.09% and 52.91% for the R, Y and B phase
faults respectively. From experiments and results, it is ob-
served that the baseline system performance deteriorated due
to the changes in the system (capacity) and its characteristics
with load changes. Therefore, the effective fault discrimina-
tion has not been achieved due to the load and system specific
variations in the input feature vectors. For effective scalabil-
ity, the input features should be robust across the 3 kVA and
5 kVA generators. We therefore express the feature vectors
from the 3 kVA and 5 kVA generators in terms of load/system
independent basis vectors to make the features less dependent
on load/system variations.

Fault Overall Sensitivity (%) Specificity (%)
Accuracy (%)

R 53.79 31.86 71.34
Y 52.09 63.63 42.86
B 52.91 56.46 50.09

Table 3. Baseline system performance of scalable fault mod-
els using linear SVM

4.2. Scalable fault models using LLC

From the baseline system performance of scalable fault mod-
els, it is observed that the fault classification accuracy dete-
riorated due to the changes in the system (capacity) and its
characteristics with load changes. We therefore experimented
with LLC to minimize the load/system specific variations in
the feature vectors for effective scalability. The block dia-
gram of LLC-SVM system is shown in Figure 9.

In this experiment, input features from the training data (39
features) are used to compute load/system independent ba-
sis vectors (codebooks). Subsequently, the computed code-
book is used for the representation of features from the train-
ing and test datasets. The optimum size of the codebook is
obtained empirically for the best classification performance.
The experiments are carried out for different k nearest neigh-
bors/basis vectors to represent the feature vectors effectively
in a load and system independent manner. The new feature
vectors are used for generating and test the fault model. The
block diagram of LLC for the fault diagnosis of synchronous
generator is shown in Figure 10.

The performance of LLC for scalable fault models is listed in
Table 4. The best classification accuracy is obtained for 1024
codebook size with an overall accuracy of 71.60 %, 78.27%
and 77.65% for the R, Y and B phase faults. From experi-
ments and results, we observed that experimenting LLC with
backend SVM classifier gave the best fault classification per-

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 8. Baseline system for scalable fault models of synchronous generator

Figure 9. Scalable fault models using LLC-SVM

formance for the linear kernel, suggesting that the faults are
linearly separable in the new feature space. We note that LLC
improves the overall classification accuracy and specificity
significantly when compared to the baseline system. How-
ever, better sensitivity is desired in mission critical applica-
tions.

Fault k-NN Overall (%) Sensitivity Specificity
Accuracy (%) (%)

R 1 71.60 36.58 99.62
Y 2 78.27 52.65 98.77
B 1 77.65 50.11 99.69

Table 4. Performance of scalable fault models using LLC
(1024 Codebooks) for linear kernel

From the experiments, we observed that LLC helps minimize
the load/system specific variations significantly by express-
ing the feature vectors in a load/system independent manner.
However, sensitivity of the classifier needs to be improved
further for effective scalability. Since the LLC mapped fea-
ture space is linearly separable, we then explored linear fea-
ture transformation technique, NAP on the LLC mapped fea-
ture space to further minimize the load/system specific vari-
ations. The experiments with NAP are discussed in the fol-
lowing section.

4.3. Scalable fault models using LLC-NAP

In this experiment, we explored supervised feature transfor-
mation technique, NAP to identify and remove the load/system
specific variations in the LLC mapped feature space effec-

tively. The block diagram of LLC-NAP system is shown in
Figure 11. The detailed block diagram of NAP is shown in
Figure 12. We first computed the load/system independent
basis vectors (codebook) from the input training feature vec-
tors to express the features in terms of load/system indepen-
dent basis vectors. The codebook and k nearest neighbors
are chosen empirically by experimenting with different sizes
of codebooks and its nearest neighbors. It may be noted that
LLC makes the features less dependent on load/system varia-
tions. From the previous experiments with LLC (Section 4.2),
we observed that LLC gave best performance for the linear
kernel, suggesting that the faults are linearly separable in the
new feature space. Since the LLC mapped feature space is
linearly separable, we then explored NAP to further remove
the load/system attributes in the LLC mapped feature space.

NAP (Solomonoff et al., 2007) has been used widely in speaker
recognition systems to remove the effects of the nuisance at-
tributes. NAP filters out the effect of the nuisance attributes
using eigenvalue analysis. Similarly, the performance of the
fault diagnosis system also depends on the system dependent
factors such as, power supply, motor and loads (Duque-Perez
et al., 2015). In this work, we explored NAP in minimizing
system dependent factors in the feature vectors in linear space
for effective scalability.

In NAP, initially, the input LLC mapped training feature vec-
tors from the two different capacity synchronous generators
(3 kVA & 5 kVA) are labeled as two different classes. Then,
Wij (weight matrix) is computed using Eq. 3 to develop the
model in a system independent manner. Now we minimize
figure of merit (FOM) δ′(P ) (Eq. 4) to remove the system
dependent factors and make the features robust across the two
different capacity generators. This objective can be obtained
by selecting k most principal eigenvectors of the eigenvalue
of v, where v is a matrix with orthonormal columns rep-
resenting the system information. The system attributes (k

7
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Figure 10. LLC-SVM methodology

Figure 11. Scalable fault models using LLC-NAP

most principal eigenvectors) are identified and removed from
the LLC feature mapped training feature vectors using Eq.
2. The optimum principal eigenvectors are obtained empir-
ically for the best fault classification performance. Finally,
projection matrix is multiplied with LLC mapped training
and test feature vectors to make the features robust to the
load/system specific variations. The NAP transformed train-
ing and test feature vectors are used for generating and test the
fault model. SVM backend classifier is used for fault classifi-
cation.

The fault classification performance of LLC-NAP for the scal-
able fault models is listed in Table 5. The best performance
is achieved for the codebook size of 512 using LLC. The op-
timum principal eigenvectors are selected empirically using
NAP. It is noted that LLC-NAP improves the overall accuracy
and sensitivity by 25.94%, 26.09% and 29.85%, and 40.31%,
8.31%, and 14.05% for R, Y and B phase faults respectively
when compared to baseline system. LLC-NAP has the over-
all accuracy of 79.73%, 78.18% and 82.76% for R, Y and B
phase faults respectively.

It is observed that NAP minimizes the effect of load/system
variations significantly in the linear space. We also compare
the performance of NAP with LLC (LLC-NAP-SVM), and
NAP without LLC (NAP-SVM). In the following section, we
discuss the fault classification performance of NAP without

LLC.

Fault k-NN Eigen Overall Sensitivity Specificity
Vector Accuracy

R 1 1:285 79.73 72.17 85.78
Y 1 1:238 78.18 71.94 83.18
B 1 1:268 82.76 70.51 92.56

Table 5. Performance of scalable fault models using LLC-
NAP for linear kernel (512 Codebooks)

4.3.1. Scalable fault models using NAP without LLC (NAP-
SVM)

In this experiment, we explore NAP in the input (original)
feature space to check its effectiveness in minimizing the load
and system specific variations. The input frequency domain
feature vectors are used for fault modeling. The block dia-
gram of NAP-SVM system is shown in Figure 13.

As discussed in previous section, we compute weight matrix
Wij , to model the system in a system independent feature
space using NAP. The figure of merit (FOM) over projection,
δ′(P ) (Eq. 4) is minimized to make the features robust across
the 3 kVA and 5 kVA generator. The system dependent infor-
mation is identified and projected out by finding the k most
principal eigenvectors of eigenvalue analysis. We project out
these system-dependent features to make the features system-
independent. The projected vectors are multiplied with train-
ing and test data sets to make the training and test feature vec-
tors, system-independent. The new transformed training and
test data sets are used to generate and test the fault model. We
used SVM backend classifier for fault classification. The per-
formance of NAP-SVM for the scalable fault model is listed
in Table 6.

8
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Figure 12. NAP-SVM methodology

Figure 13. Scalable fault models using NAP-SVM

Fault Eigen Overall Sensitivity Specificity
vector Accuracy

R 1 57.99 18.55 89.55
Y 1 75.03 44.78 99.23
B 1 70.61 43.18 92.57

Table 6. Fault classification performance of NAP without
LLC (NAP-SVM) for linear kernel

From experiments and results, we observed that NAP did
not improve the fault classification performance significantly
when compared to the LLC-NAP system (Table 5). It is noted
that the performance of NAP is limited in the input/original
feature space (without LLC) since the feature space is non-
linear with load/system variations. The performance of the
baseline SVM, LLC-SVM, LLC-NAP and NAP-SVM (NAP
without LLC) systems are compared using receiver operating
characteristics (ROC) curve. The ROC curves are shown in
Figure 14-16. The area under the curve (AUC) for LLC-NAP
was improved by 0.3, 0.25, and 0.29 for fault conditions (R,
Y, and B phase) when compared to baseline system. From
the experiments, we observed that NAP helps to improve the
performance of scalable fault models effectively in the LLC
mapped feature space.

5. CONCLUSIONS

In this work, we explored the concept of scalable fault models
in a laboratory setup. We used synchronous generators with
two different capacities as a case study. From the preliminary
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Figure 14. Performance comparison of scalable fault models
for R phase fault

experiment, we noted that the baseline system performance
deteriorated due to the changes in the system (capacity) and
its characteristics with load changes. We explored feature
mapping and feature transformation techniques to improve
the fault classification performance of synchronous genera-
tors. We experimented with LLC to express the input fea-
tures in terms of load and system independent manner. It
was seen that the LLC with the backend SVM classifier gave
the best fault classification performance for the linear ker-
nel, suggesting that the faults are linearly separable in the
new feature space. As the LLC mapped feature space is lin-
early separable, we then explored linear feature transforma-
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Figure 15. Performance comparison of scalable fault models
for Y phase fault
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Figure 16. Performance comparison of scalable fault models
for B phase fault

tion technique, nuisance attribute projection (NAP) on the
LLC mapped feature space to further minimize the load and
system specific variations. We observed that LLC-NAP im-
proved the fault classification performance significantly. Fur-
ther, we also illustrated the effectiveness of NAP in the orig-
inal feature space. We noted that the performance of the
NAP was limited in the original feature space since the fea-
ture space (NAP without LLC) is nonlinear with load/system
variations. The performance of the classifier was evaluated
using receiver operating characteristics (ROC) curve. We ob-

served that LLC-NAP outperforms the other systems for scal-
able fault models. The authors also suggest that the proposed
LLC-NAP approach could be used in various applications,
where the classification performance of the system gets af-
fected due to the presence of nuisance variations in the data.
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APPENDIX A

Parameter Generator 1 Generator 2
Rated power 3 kVA 5 kVA
Rated voltage 415 V 415 V
Rated frequency 50 Hz 50 Hz
Connection type star star
Number of poles 4 4
Number of phases 3 3
Speed 1500 rpm 1500 rpm
Current 4.2 A 6.5 A
Power factor 0.8 0.8

Synchronous generator specifications
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