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ABSTRACT

The reliability and safety of industrial equipmeats one
of the main objectives of companies to remain cditipe
in sectors that are more and more exigent in tesfnsost
and security. Thus, an unexpected shutdown can tead
physical injury as well as economic consequencdss T
paper aims to show the emergence of the Prognaastids
Health Management (PHM) concept in the industry tmd
describe how it comes to complement the differeainten-
ance strategies. It describes the benefits to peated by
the implementation of signal processing, diagnosti
prognostic methods in health-monitoring. More sfieaily,
this paper provides a state of the art of existiignal
processing techniques that can be used in the Rkitegy.
This paper allows showing the diversity of possitdeh-
nigues and choosing among them the one that wilhel@a
framework for industrials to monitor sensitive campgnts
like bearings and gearboxes.

1. INTRODUCTION

ance (CBM), is defined as an approach for the heakn-
agement of systems based primarily on the diagnosti
prognostic and decision-making in maintenance. Tiis
losophy is relatively new since the PHM community
emerged in the early 2000s to form the PHM Socatgt
IEEE PHM. Following the researches of Niu et aD1@),
Jaloretto et al. (2009), Appleby (2003), Yu et(a2D07) and
Kumar et al. (2010), the objectives behind the enpénta-
tion of a PHM philosophy are:

- A better availability and, thus, a reduction wsts operat-
ing and maintenance through a policy of maintenaaru
logistics based on the monitoring of the healthtusteof
equipment or system in real time;

- A faster detection of degradation or loss of perfance
for an efficient operating;

- An improvement of the reliability and the secyidf criti-
cal components;

- A reduction of logistics congestion and costsoaisged
with the maintenance materials, transportationglst@and
maintenance personnel,

Prognostics and Health Management (PHM) is an emerg A failure reduction induced by maintenance;

ing "philosophy" which extends the concept of pcéde
maintenance by optimizing the maintenance anddyistic
support to increase the reliability and life expecty of
mechanical, structural and electronic systems whife-
Cycle costs are reduced and operational availphgitin-
creased (Kalgren et al., 2006, Kim et al., 201 hjsphilos-
ophy, usually confused with the Condition Based riki-
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- A forecasting and quantification of the futuregcedation
to provide a way to quantify the remaining life syfstems.
This helps to identify those which are near theid ef life
and require significant capital expenditures tdedédntiate
them from those that do not require a simple resitmn.

PHM allows maintenance to be performed more effi-

ciently by integrating PHM data (eg. the RUL "Remag
Useful Life") from the prognostic and the locatiand iden-
tification of failures resulting from the diagnastand health
assessment derived from detection, maintenance (data
sources and inventories), logistical constraints iaforma-
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tion on the planned mission. The historical failprevides
a database of failure models. These models are fsed
assessing current equipment information to deterntire
likely cause for any anomalies detected in the mgent.
The RUL database is used to construct life prestictnod-
els. These models are used to analyze current reguip
information to estimate its remaining useful seesvide.
This is the typical architecture of a PHM systetris lusual-
ly formalized with the standard OSA-CBM (Open Syste

So, the PHM associated with the CBM can signifigant
reduce the costs of intervention and increase ¢pemdabil-
ity of systems. These results are achieved onél ifayers
composing the CBM are operational. One of the nrost
portant layer is the signal processing. This impkegood
knowledge of the different signal processing teghas
used to extract fault indicators. Hence, this pajetails the
signal processing layer of the CBM architecture ano-
vides an extensive state of the art of existinghnegues

Architecture for Condition Based Maintenance) (seeused inthe PHM strategy. Thus, it lists the vasipossible

Bengtsson, 2003, Thurston, 2001a, Rasovska eR@D7
and Swearingen et al., 2007). This architecturabdishes a
framework communication between the monitoring eyst
and the various experts concerned through induistréén-
tenance (Holmberg et al., 2010).

In fact, it is suitable to expose the evolutionnodinten-
ance types (Elghazel et al., 2015). The earliepshaf
maintenance is corrective maintenance which cengi$t
reacting only when the equipment fails. Thus, stiategy
will lead to sudden breakdowns. So, the time-basepre-
ventive maintenance was invented. The PreventivinMa
tenance is defined as a "Maintenance carried opree-
termined intervals or according to prescribed dateand
intended to reduce the rate of failure or degradatf
equipment” (SS-EN 13306, 2001, p.14). Preventivénma
tenance includes two types of maintenance plassesatic
preventive maintenance and condition based maintena
(SS-EN 13306, 2001). Systematic maintenance isdstbe
and planned without the occurrence of any monitpéaativ-
ity. It could be based on the number of hours &, uke
number of times that a system is used, the numbkil®
meters of use, depending on prescribed dates anuhso
This type of service is best suited for a comporieat has
visible signs of wear and where maintenance taskshe
performed at a time that will prevent a systemufail(Starr,
1997). According to Yam et al. (2001) and Starr9Qa)9
systematic maintenance is sometimes called "tinsedba
maintenance" and "planned preventive maintenarifiete
time-based maintenance doesn'’t take into accounttite
of the system, it was necessary to come up witldition
based maintenance discussed in nineties (Heng, 049).
Condition based maintenance (CBM), in contrast le t
systematic maintenance, is not based on plannéhacit
is carried out according to the needs identifiedHgysystem
health (Yam et al., 2001). It is based on paramsetta-
tures) that can detect the current health and tsededict
possible failures before their real occurrence. uitor-
ing of these features can provide an indicatiorafim-
pending failure as well as emerging defects thatlead the
system or its components to deviate from an acbépta
level of performance or in the worst case, causdégrada-
tion. Among the advantages of the CBM, making flgatr
maintenance actions which avoids stopping a healfhtem
functioning (Heng et al., 2009), its ability to det an im-
minent fault and accuracy predicting failures (Sbuet al.,
2014). It also contributes to fault diagnosis beeait is
relatively easy to associate a specific defechendystem to
the monitored features.

techniques and establishes the choice that willessmt a
solid framework for industrial applications usingnsitive
components like bearings and gearboxBEserefore, sec-
tions of this work revolve around the detailed preation
of the different signal processing techniques dmairtcate-
gorization. The next section present in detail diféerent
layers composing the CBM. The section 3 will beidatd
to the presentation of the different signal processech-
niques.

2. IMPLEMENTATION OF A CONDITIONAL BASED MAIN-
TENANCE (CBM)

A conditional based maintenance is composed ofrseve
layers: data acquisition, signal processing, healikess-
ment, diagnostic, prognostic and decision suppidre se-
venth layer is called the human-machine interfatil]. It
is not essential for the CBM but allows displayiwigal
information about the health status of the systéhe (MI-
MOSA) "Machinery Information Management Open Stan-
dard Alliance" has been proposed as a standardizditec-
ture for the CBM described in six functional layefitom
the data acquisition to the decision support modulars-
ton., 2001b).

+ Layer 1 - The data acquisition module provideseas to
signals (digital data) from sensors. The data aitipm
covers different disciplines such as mechanical smea
ments (Wang & McFadden, 1996, Holroyd, 2005, Roemer
& Kacprzynski, 2000, Hountalas, 2000), electricaban
surements (Tsoumas et al., 2005, Kar & Mohanty,6200
tribology (Walter & Lee, 2004) and non-destructivea-
surements (Mba, 2006). The mechanical measurements
include mechanical vibration, acoustic emissiorgspure,
flow, temperature, and stress, while the electnoahsure-
ments are current, voltage, phase and flux. Trigpplcs
especially interested in the machinery lubricatemd oil
analysis of debris. The non-destructive controlsugisual
inspection or non-contact measurement.

+ Layer 2 — The signal processing module receiigsats
from the data acquisition module. The outputs & thod-
ule are health indicators extracted from signalcpssing
techniques: temporal analysis, spectral analysisie-t
frequency analysis.

+ Layer 3 - The health assessment module receiaés d
from the signal processing module and other mainigor
modules. The aim is to compare the extracted haatica-
tors with reference values to assess the condiifothe
machine. The health assessment module generatessala
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based on predefined operating limits (eg, low lesfebe-
gradation, natural degradation level and advantagesof
degradation).

+ Layer 4 - The diagnostic module receives datanfthe
signal processing and health assessment modulssdRm
the obtained indicators, this module determinestidrethe
state of the monitored system or component is diegrar
not and identify the element responsible of thigrddation.
+ Layer 5 - The prognostic module considers infdioma
provided from all previous layers to estimate temaining
useful life (RUL) of the system. The RUL is obtainby
extrapolating a series of measurements (time 3efries a
health indicator acquired until a present tirtiet) a horizon
of prediction defined by+RUL. t+RUL corresponds to the

wherex; is thei-th sample of the recorded signdt) andN
is the number of samples.

The most popular indicators used in literature are:

- The standard deviatiom which measure the dispersion of
the signalx(t). This indicator is often used as a metric in
classifiers such as dynamic Bayesian networks (Viédrad.,

2007) and neural networks (Laerhoven et al., 2001).

- The RMS is the most interesting measure of vibnat
amplitudes. In addition of taking into account thlution

of the signal over time, the calculation of the RM&ue is

related to the vibratory energy and therefore ® 'foten-

tial for deterioration" of the vibration signal. practice, the
positive and negative instantaneous values of itheakare

moment where the extrapolated time series reached tsquared. The average of these values is then atédubver

threshold of system’s degradation.

a certain period of time. The result is put under square

+ Layer 6 - The decision support module receives da root to obtain the RMS. Recently, the RMS was uted

from the diagnostic and prognostic modules. Thidual®

verify the effectiveness of exploiting only a seiec of the

gives recommend maintenance actions and altersativ&ibration signals instead of the original ones. WRss

related to the management of the system.

In the next section, the main focus will be on $leeond
layer, which is the signal processing .

3. SIGNAL PROCESSING

As said in the introduction section, the signalgassing
is one of the most important module of the CBM. sThi
module analyzes and transforms the input signaixtoact
indicators of defects (Seryasat et al., 2010, Cheral.,
2012, Prieto et al., 2013). From the literatureyesal
processing techniques, like temporal analysis, ueagy
analysis and time-frequency analysis can be usecttact
efficient health indicators (Tobon-Mejia et al.,120 Niu &
Yang, 2010, Tsui et al., 2015).

3.1. Temporal analysis

The temporal analysis extracts indicators of defemn
raw signals. These features are called "statisitichtators"
because they represent the temporal characteristitbe
recorded signal. Table 1 shows a list of the mastroon
indicators used in the time-domain:

Peak o A
value x= sup X Crest |Cl :+
L indicator VAN (X)2
Mean X=—
X N ; X
0 Sl= NS, (%)2
Standard | __ | 1 o Shape R —
deviation |7 =1y 1258 " | indicator | WXL |
Root 5 .
_ 1 Impulse | = X
mean RMS=, |— X)? )
square N iZZI:( 9" | Indicator WNY 1% |
N N
Skewness ke iz:;(x -%° Kurtosis ‘U < ;(N -%'
T(N-D P TIN-D o

Table 1. Statistical features (Chen et al., 2012).

showed that when RMS is applied after the seleddtep, it
gives more significant information about the fauttgses
(Feng et al., 2017).

In Hemmati et al. (2016), authors investigate tfece
tiveness of this parameter to detect bearing fadtapared
to other statistical parameters like peak valuetdsis, crest
factor and skewness. Bearing faults are artifigipfoduced
on an outer race using an engraving machine toocbtdrol
the shape and depth of the faults. In this expertation,
defect size, rotating speed, and radial load haen lzonsi-
dered as the most critical parameters that mayenfte the
statistical parameters. Results showed that sincenany
practical cases the rotating speed of the shafbisstant,
RMS is a strong candidate for identifying defectradling
element bearings.

- The Skewness, commonly called the moment of c3gér
mathematically defined by the the ratio of the agercubed
deviation from the mean divided by the cube ofgtedard
deviation. This definition represents the dissynmnedte of
the amplitude distribution of the signal with respéo a
maximum (whose abscissa corresponds to the med#mein
case of a Gaussian). The measurement of this dimssym
is given in table 1. It is a dimensionless quantityhe
Skewness will be positive or negative dependingthom
distribution of the curve to the right or left, pestively, of
the mean value. If the Skewness is equal to Odisteibu-
tion is symmetric. If the Skewness is smaller titarthe
distribution is shifted to the left compared torntean. If the
Skewness is greater than 0, the distribution iteshito the
right. It was proven in the paper of Hemmati et(2D16)
that the Skewness is a good indicator for diagrpbiaring
faults.

- The kurtosis represents the relation betweersthtstical
moment of order 4 and the square of the statistrzahent
of order 2. For a Gaussian distribution, the Kugads equal
to 3 (case of a healthy bearing or gear). Whenstgeal
becomes non-Gaussian (appearance of a fault) theskal
becomes greater than 3 (see table 2). The Kurtesén
indicator of impulsivity, it is independent of tlenplitudes
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and it allows possible establishing a criteriorseferity for
the diagnosis of machines (Thomas, 2002). For #ke sf
comparison, Pang et al. (2018) used the Kurtosistte
same fault case but before and after the improeesion of
the proposed framework and found out that it gisiggifi-
cant values in the second case.

Kurtosis

2,810 3,2 Acceptable

Severity

Table 2. quantification of the severity accordiagtrtosis.

- The crest indicator is the ratio between the palitude
of the signal and the RMS. A system in a good diordi
generates a low amplitude signal as well as irptak value
and the RMS. The crest factor remains low (betw2zamd
6). A localized defect generates a high peak angsgitand
low RMS amplitude, so an important peak factor tge

To improve the effectiveness of these indicatortgr-
poral analysis tool called the time synchronousraye

(TSA) was introduced by Bennett (1958). The TSA was

applied for cyclostationary vibration signals fauft detec-
tion of gearbox. The TSA consists of dividing areition
signal into time-segments and carrying out a mdahese
segments to eliminate the noise. In Bonnardot (R0the

angular synchronous average (ASA) was proposed. The

ASA consists of dividing a vibration signal into caar-
segments. This approach was tested in a gearboxhand
obtained results are better than the TSA.

Another method has been proposed in Hong and Dhupia

(2014). It consists of combining the fast-dynamimet
warping (Fast DTW) and the correlated kurtosis (G&&Gh-
niques to detect and identify the faulty gear. Gaersng
that the faulty gear tooth generates periodic irsgsilin the
vibration signal, the fast DTW extracts these inspal by
using a reference signal at the same frequendyeoidmin-

than 6). However, as the RMS increases for progress al gear mesh harmonic. It is based on vibrationai)ob-
failure, the crest indicator decreases (Dron e2a04). tained from a healthy and steady functioning of siistem.
Then, the subsequent signal is resampled for thgndistic
)i)y the CK technique which aims to isolate the gearfault
locally by analyzing the periodic effect of the ltau

The Kurtosis, Skewness, Cl and RMS have been e
tracted from vibration signals to detect the degtiad of
the gearbox. The degradation test was done foratidn of
12 days. These indicators are given in fig.1: Another method was developed in Do and Chong (2011)
It consists of transforming a vibration signal (ene
dimensional domain) into an image (two-dimensioraf)
translation. The indicators are deduced by theesoakriant
feature transform (SIFT) to detect faults by affegtthe
vibration signal to the corresponding fault catgg@liagno-
sis level). For the translation (see fig. 2), thepktude

—8— RvS
_ _ | ==6— Skewness

T

|

|
4

| I Kurtosis

| Crest indicator

| T
1

|

[
o
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|

Amplitude
(6

0-

Time samples of the signal are normalized to obtainegin the
12 @ays) range [0-255]. These values are putted in a mail
w where the coordinate of tiBelement in the vibration signal

1 b is the pixel [,k) in the matrix withj = floor (i/N) andk =

s 1 1 modulo {/N). Then the SIFT algorithm is applied on this
= i . ®) image to obtain 128-dimension vectors. Finallyheiadlica-
E | | tor vector is compared to each centroid of thetfeategory
¢ 7 Time dictionary to obtain a histogram of similarity bewn the
0.08 l ‘ ‘ ‘ (days) indicator vectors and the fault category. The faaltegory

0 2 4 6 8 10 12

of the vibration signal corresponds to the higtséstilarity.

Figure 1. a) Curves of the kurtosis, skewnessp@liRMS  Figure 3 gives an example of this method.

of a faulty gearbox. b) A zoom on RMS curve.

Pixel [0,0]
These curves show the beginning of the degradaffien J

i/bt ° 0
the &" day followed by an increase until the apparitidn o 3 Jele 1
the degradation in the £2lay. 2 2
Another indicator called the Entropy can be addetht g :
ble 1. The different types of the entropy have bdewel- E10Y 0y 1ttt
oped in Han et al. (2009) for the indicator exii@tt Table Vel
3 shows the most used entropy types: 0123 N Net 0123 N1

Signal in time domain Image (size(MxN)

Shannon entropy

=2 %2log(x?)
> log(x )

Figure 2. Vibration signal to image translation escie

Log energy entropy (Averbuch & Zheludev, 2002).

Table3. Entropy feature.
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An important concept widely used in bearing andrgea Figure 4. Spectrum of the acceleration signal fafuéty

diagnostic is the cyclostationarity. It was appliechelicop-
ter gearbox in Antoni and Randall (2002) in ordeisepa-
rate the periodic components of the signal fromrerelom
ones. This leads to the definition of first-ordgclostatio-
narity (CS1) related to deterministic signals sashgear
signals and second-order cyclostationarity (CSRjted to
random signals such as bearing signals. Very rgceda-
soli et al. (2018) applied the angular synchronausrage
on the acceleration signals and decomposed itG&b and
CS2 for fault detection of hydraulic axial pistonnpps and
studied the impact of faults on both indicatorsisTiypo-
thesis will generate new indicators that will bearporated
into diagnostic tools and prognosis to improveRkM.

The extraction of features plays a major role i ¢ffec-
tiveness of the monitoring method. Therefore, redeas
decided to mix different types of features. Thithis case of
Bleakie et al. (2013), where statistical featuned dynamic
features such as rise-time, overshoot and steatly salues
were chosen for system degradation prediction. defani-
tion of some dynamic features related to the tiesponse
of the system was given in detail by Franklin e{2010) .

The main advantage of the extracted indicators fro
temporal analysis is their capability to detect tregrada-
tion of the system. However, the main drawbackhisirt
incapacity to identify the origin of the degradatioThe
frequency analysis tackles this point more effitliethan
temporal analysis.

3.2. Frequency analysis

gearbox.

Another tool was proposed in Feng and Liang (2014)
which is the demodulated spectra of the amplitudei®pe.
This tool detects and localizes faults by applytimg FFT on
the envelope of the signal. However, the Fouriengform
is limited by the resolution (the frequency diffeces are
much smaller than the inverse of the number of miese
points). To resolve this problem, the algorithm MOS
(Multiple signal characterization) was proposedsichmidt
(1986). MUSIC estimates the frequency content efgaal
using an eigen space method. This method assuraes th
signal, x(t), consists ofp complex exponentials in the pres-
ence of Gaussian white noise. Recently, Ma et 2018§)
used the Teager energy spectrum which is obtaiyeithdo
application of the FFT on the Teager energy opermatthe
vibration signal and aims at envelope demodulation
achieve fault diagnosis of bearing. This operatdcudates
the energy of the signal at each time by usingdht of
three samples.

In an analogous way with the spectrum, anotherdons
to detect system defects by the cepstrum (Oppenig&eim
Schafer, 2004). It is defined as the inverse Fouransform

nRIFT) of the spectrum logarithm:

cepstrum of signat IFﬁ' qu KT the sigb])ii (1)

Cepstrum analysis is used for fault extractiontasapa-
ble to notice the periodic families in the frequgspectrum
and represent it by specific peaks in the cepstiTime. first
peaks are good indicators as they reflects a langeunt of

The spectrum analysis of a signal is the most commoharmonics (Niu, 2017). This was previously exploitey

technique used to identify faults in electro-medbansys-
tems. This technique is based on the fact thatcalifed
defect generates a periodic signal with a uniqueatdteris-
tic frequency (Tandon & Choudhury, 1999). In costrtd
the temporal analysis, the frequency analysis ifiestthis
fault by locating the characteristic frequency bé tfault.
This technique is generally used during the stesidie of
the system (Didier, 2004). A classic tool amongséhtech-
nigues is the fast Fourier transform (FFT). Figdrehows
an example of a faulty gearbox where the defetbdated
on the pinion with a series of pics separated withpinion
frequencyFp.

proposing an indicator noteift) and called the normalized
differential cepstral indicator (NDCI) was introcket by El
Badaoui (1999). This NDCI uses the relative diffexe
between the two cepstral pics in order to insusailiance
regarding the additional noise. Figure 5 shows expntal
results extracted from a gear box operating 12 .dagshe
sum of the energy of the two pics is constant,amglitude
corresponding to the gear defect increases whéeother
one decreases. From the NDCI curve, and giving tiet
NDCI tends to 1 when the pinion is faulty and towfen
the gear wheel is faulty, this shows the appeararica
pinion fault at the 8th day. This fault continuesincrease
until the total spalling on all teeth.
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Figure 5. A zoom on the first 2 pics in the cepstf a)
day 1 b) day 8 c¢) day 12 temporal signals.

Recently, a technique called cepstrum editing plooe
(CEP) was automated in Peeters et al. (2018). fieithod
aims at separating deterministic signals from ramdmes,
which can be very useful for bearings monitoring,tlaeir
components can be isolated from those of gearshaitss
characterized by explicit peaks. In this paperulteswere
compared before and after the application of theraated
CEP (ACEP) as a pre-processing step for envelopby/sia
and showed that adding ACEP helps for better ing¢ation
of the bearing health.

The proposed signal processing techniques are ggner
applied on vibration signals but recently reseavels inter-
ested to the use of electrical signals for fauted&éon and
diagnosis (Bellini et al, 2008, Gong & Qiao, 205aidi et
al., 2012). A novel framework was developed in &t al.
(2015). It consists of bearing fault detection dhieee-phase
induction motor by the squared envelope spectruBS|S
applied on the stator current. In order to enhattee
envelope analysis, spectral kurtosis-based algosthwere
applied. Those algorithms are used in this metbagsolve
the problem of determining the filtering frequenbgnd
around the mechanical resonance of the machinszBag
Jablonski, 2011, Sawalhi, 2007). The SES is obthimg
applying the discrete Fourier Transform to the wialsig-
nal got from the Hilbert transform. Figure 6 illtees the
detection of a bearing outer race fault in an iridtcmotor
by the stator current SES where the outer raceuémcy
and its harmonics are pointed by arrows.

x1C3 Outer race frequency
T i T T T T

3 2 x Quter race frequency
o 'S
=]
3
%_ 2 3 x Outer race frequency
3

1

0 ibdatlibiadl el b b | g

0 50 100 150 200 250 300 350 400

Frequency (Hz)
Figure 6. SES of the stator current from the matibh a
damaged bearing fault.

The main advantage of the frequency analysis isafa-
bility to locate the degraded component of the esyst
However, the main drawback is their incapacitydeniify
the origin of the degradation when the system tsstatio-
nary. This implies the use of the time-frequencglgsis.

3.3. Time-frequency analysis

The time-frequency analysis covers both the timaalo
and the frequency domain. Non-stationary signadsbatter
described by a time-frequency distribution to shbe dis-
tribution of the signal energy over the two-dimensil
space-time-frequency (Burgess & Shimbel, 1995). Most
commonly used techniques for time-frequency anglysi
the short-time Fourier transform (STFT), the Wighlie
distribution (WVD), wavelet transform (WT) and Hdb—
Huang transform (HHT). For example, the STFT method
allows following the changing in frequency contenfunc-
tion of time. This means that the defect becomealipable
in time. Although, this method needs high compotal
capacity when the quality of resolution mattersic8iSTFT
is based on windowing the signal around a partictiae t
and calculating the Fourier transform for each ti(eee
fig.7), this leads to make judicious choice of thimdow
size with:

STFT(@.f )= [x () -7 )é "> dt 2)

where STFT can be interpreted as a similarity meabe-
tween the signak(t) and the time-delayed and frequency-
modulated windovg(t-z).

The time-frequency analysis makes a compromise be-
tween the time resolution and the frequency resoiut-or
the Wigner-Ville distribution, this compromise doest
exist due to the absence of the window as we carinsthe
following equation:

W(t )= Xt+1/2)% (t-1/2)6 2™ ot

Time Shift 7

®3)

Frequency

\  Time
nr b

Figure 7. lllustration of short-time Fourier transh applied
to signalx(t).

The main drawback of this method is that it isrt@hr in
nature, introducing the cross terms in the WVD doma
which make the transform difficult to interpret. &WVD

of the sum oh signals x(t) = z X (?) is given by:

i=1

W, (t, f)= ZW(t f)+zz 2R({v\;H (t, f)]

k=1l=k+1

cross component

(4)

autocomponents

Cross terms could be reduced by processing thelsign
with a sliding window of timéa(z) in (3). This will suppress
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the WVD components that oscillate in the frequeditgc-
tion. This method is called the pseudo Wigner-Vdistri-
bution (PWVD). A further time-direction smoothingrc be
implemented by using an additional window in theqfren-

sis criterion. Then, the features of the choserafFcalcu-
lated by the improved multiscale fuzzy entropy (IE)FThe
fuzzy entropy is defined to assess the complexityieregu-
larity of the time series. When it is applied offatient scale

cy domainh(f). This extend is called the Smoothed Pseusdactors, it is called IMFE (Li et al., 2017). Theora signifi-

Wigner Ville distribution (SPWVD) which realizesetbest
trade-off between resolutions (time and frequerany) the
interferences. The SPWVD is considered as the comise
between STFT and WVD (Lee, 2013).

Another time-frequency technique is the Hilbert-Hga
transform (HHT). The HHT is a combination of the i

cal mode decomposition (EMD) and the Hilbert spactr

analysis (HSA). This technique performs an adaptives-

cant features are selected by using Laplacien s(idsg

algorithm which chooses automatically the bestdiastale
to reduce the dimensionality of features vectolesk new
feature vectors are the input of the improved suppector
machines to classify data into fault classes. Thiterion

may change from a framework to another; for examigie

et al. (2018) used a correlation coefficient ciiterbetween
the PFs and the original vibration signal in orttechoose
the efficient PFs.

frequency technique and in the same time removes th

noised signals to give useful information about fhelt
(Wang et al., 2014). The EMD uses the local chargstic
time scales of a signal to extract the intrinsiadmfunctions
(IMFs) (Lei et al., 2013). The IMFs are oscillatdanctions
with varying amplitude and frequency. They have shene
length as the original signal and each IMF corresisgao a
determined frequency range. Moreover, when theadizgr
tion is at an early stage, the EMD are buried lgy nbise
which constitutes the difficulty of earlier fauleté&ction (Al
et al., 2015). The Hilbert spectral analysis isli@gpto the
IMF to obtain the analytic form of the signal arfteathat,
this signal is combined with the instantaneousesgy to
obtain the Hilbert spectral density (HSD). In (Sbuat al.,
2015), authors used the Hilbert marginal spectranthie
IMF to extract bearing fault indicators by choosthg IMF
which corresponds to the bearing characteristigueacies.

As discussed in the frequency analysis sectionpweln
methodology has been developed in Leite et al. {p@dr
fault diagnosis by the analysis of the electricent by first
determining the optimal filtering frequency bandhisT is
done by two types of the spectral Kurtosis (SKpathms:
fast kurtogram and Wavelet Kurtogram. The SK is the
fourth-order cumulant of each frequency componena o
signal (Millioz & Martin, 2011):

_<HU(L1)>
sK(f) <H3(t, f)>? 2 ®)
where H¢{f) represents the STFT of the concerned signal
and <> is the average value.

In order to resolve the problem of the heavy caltoh,
the fast kurtogram (FK) was introduced. The FK aepbk
the STFT by a set of filters by dividing the freqog range

Furthermore, Zhu and Shen (2012) compared the Tim&n combinations of center frequen€yand bandwidthB,,.

frequency techniques for non-stationary signalse fesults
of this comparison showed that the HHT is the namktp-
tive to non-stationary signals. The HHT expressdecal
information and instantaneous frequency in a highet

frequency resolution. Another comparison has beadem

by Li et al. (2016a). This paper compared differémte-

Moreover, a set of Morlet wavelet filters replackd STFT
to form the wavelet kurtogram. The FK aims at dividthe
frequency in different bands. The chosen filtethis one
that maximizes the SK.

Another time-frequency method is the wavelet trarmsf

frequency techniques including STFT, WT, PWVD and(WT). There exist different types of wavelet traovst:

HHT based on the quality representation but alsothen

3.3.1. Continuous waved et transform

execution time of each technique. The PWVD was the

slowest.

A classical method of time-frequency analysis & ¢bn-
tinuous wavelet transform (CWT). CWT projects ansig

In an analogous way with the EMD, local mean decomy(t) on elementary functions (EF) called wavelets draw
position (LMD) was proposed as a self-adaptive timefrom mother wavelets by translations and dilatatido

frequency analysis method. LMD consists of decorimgpa
signal into a set of product functions (PFs) wheaeh PF is
the product of a frequency modulated frequency @sd

corresponding envelope component. Each PF is a mono CWT(s b=
component amplitude modulated - frequency modulated

(AM-FM) signal. In Park et al. (2011), complex lbcaean

represent it in two-dimensional plane (Auger & Fladn,
1996). CWT is expressed as follows:

= iw*[t'—sj ds{sm(_m’m)

Jb b bO[0, 0} ©

where s is the translation (the location parameter of the
wavelet) andb is the scaling (dilation) parameter of the
wavelet.y* is the complex conjugate of the mother wavelet
v (Yan et al., 2014). CWT can be defined as the suer o
time of the signal, multiplied by scaled and dethyersions
of the wavelet functiony.

The WT, like the STFT, depends on a function ofetim
and scale but the window duration in that STFTarstant

decomposition (CLMD) was developed to process mdy o
real-valued signals but also complex valued sigraipe-
rimental results showed that LMD is capable of edivey
information about amplitude and frequency with maceu-
racy than EMD. This technique was also used in thote
for fault diagnosis in Li et al. (2016b). This methconsists
of applying LMD on the signal to obtain product tions
PFs and select the optimum PF which maximizes thek
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while the WT uses a self-adaptive window given hyae-
let function which duration changes within the freqcy
inversely related to the scale factor(Giurgiutiu et al.,
2003). This difference is illustrated by fig.8. Whp|>1, the

detection and elimination of impulsive noise. le ttontext
of PHM, recently, CWT was joined to a blind sousepara-
tion technique to analyze the wavelet coefficieatsl the
evolution of each independent source is used faitihe

wavelet is dilated and wheb|{1 the wavelet is compressed assessment (Benkedjouh et al., 2018).

(Hammond & White,1996).

A A

Frequency (Hz)
Scale

» »
Lad
Time g
Wavelet Analysis

Figure 8. Sampling of the time-frequency planeSoFT
and wavelet analysis.

There are multiple shapes of wavelets. The mostilpop
is the Morlet wavelet :

of52)- e NGEd

Time
STFT

ol (7

where wy is the central frequency of the mother wavelet
(modulation parameter) andis the scaling parameter that

affects the width of the window.

In Nagaraju and Mallikarijuna Rao (2009), authprs-
posed the addition of phase angle information 8cCWT
plot to improve the crack detection in rotor systeioreo-
ver, in Ozturk et al. (2008), authors proposeddkteaction
of the mean frequency from the scalogram to detieet
progression of pitting damage in gears. It is ingar to
note that the scalogram is defined as the squacehlilors of
the CWT which represents the energy of the sigmaime-
scale plane. In Rafiee and Tse (2009), authorsgsexpthe
autocorrelation of continuous wavelet coefficiefus gear-
box fault diagnosis instead of using the continuaaselet
coefficients (CWCs) themselves because they coratdot
of information in each scale that can generategddss of
data after resampling. The autocorrelation of (CVé@gr-
comes this drawback by reducing the size of tha dath
keeping the content of information in each freqyeband.
Wang et al. (2010a) developed a fault growth patame
(FGP) for quantitative assessment based on thatiariof
complex Morlet CWT amplitude at all the scales bé t
transform under varying gearbox conditions. Authpre-
sented in Kankar et al. (2011) a method based emini-
mum Shannon entropy criterion (MSEC) to choosentlost
convenient mother wavelet and to define the schhe t
matches the characteristic defect frequency. Thexaate
wavelet minimizes the Shannon entropy of the cpord-
ing wavelet coefficients. Among all mother wave]etse
selected wavelet is the complex Morlet wavelet (C)vakid
the results showed that it has satisfying resudtgarding
bearing and gear fault detection. Lately, auth@ppsed in
Dai et al. (2016) a continuous wavelet transformprapch
for effective harmonic parameters estimation withire

In order to increase the effectiveness of the EMDas
been combined with the classic wavelet transforr@ao et
al. (2016) and called the empirical wavelet transfo
(EWT). This method was applied for fault detectmithe
wheel-bearing of trains. To ensure the efficiendythas
method, different faults were experimented (oudeerfault,
roller fault, and the compound fault of outer racel roller)
and it showed satisfactory results.

3.3.2. Discrete wave et transform

Another classical wavelet transform is the discretwe-
let transform (DWT). DWT uses instead of the comtins
scale and time, discretized parameters to adaystetimpling
condition of the physical signal®=2, s=k2'. Whergj is the
parameter about dilation, or the visibility in frency andk
is the parameter about the translation. This carvdry
powerful because it minimizes drastically the ckltian
time.

The DWT is expressed as follows:

t-k2!

DWT(j,k):%jx(t) v [Tjdt

This transform can be achieved by integrating a gigliow-
pass and high-pass wavelet filters, respective(l) and
g(k)=(-1"*h(1-K). These filters are obtained from the
wavelet function¥(t) and its scaling functio®(t) given by
(Mallat,1989):

o(t) = >h(k)v20(2t- k)
W(t) =Y g(kV20(2t- k)

(8)

Sh(k)=+2
k
29(k)=0
k

The coefficientsh(k) are a sequence of real or complex

numbers called the scaling function coefficients {oe
scaling filter).

(9)

When applying these filters on the signal, low duigh
frequency elements are obtained:

a;., = Y a;,-h(k)
k

dj+1,k = zajk g( k)
k

(Low frequency element:

(High frequency elemest

Wherea and d are called respectively the approximation
coefficient and the detail coefficient.

In Kim et al. (2007), a comparative study was agplon
non-stationary vibration signals for fault detentiof shaft-
cracked during acceleration and deceleration. Ehisly
compared the STFT, WVD and DWT. The obtained result
showed the efficiency of the DWT to extract goodtires.
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Moreover, to take into account the noisy statehef ¢énvi-

In Wang et al. (2010b), the authors made a conqparis

ronment, authors developed in Omar and Gaouda 2812 between three techniques dedicated to denoisingalsig

novel method to detect and localize gear toothasfé his
method uses the dynamic Kaiser’'s window in the Weve
domain where the shape, size and sliding rate ari@ble.
In Kumar and Singh (2013), authors underlined fiffecdl-

ty to assess bearing fault size. So, they proptsedise of
the Symlet wavelet to measure the width outer dmfect of
the roller bearing.

The combination of the WT with other techniques ha

been experimented in many works. For instancewadata-
driven method for fault detection in air handlingits was
developed in Yang and Nagarajaiah (2014). This otkfh
based on the principal components analysis (PCA)Vaslm.
The WT decomposes the signal in approximations dexd
tails coefficients by passing the signal and theffodents
through low-pasH, and high-pas$; filters thanks to a
recursive algorithm. These coefficients are takediféerent
frequencies and the original signal at ke step of decom-
position is given by: x(t) = ax + d¢ + diy +---+d; (See
fig.9).

— —> d;
X(t) — —d,
— —
a —» —» 3

Figure 9. Two level wavelet decomposition tree.

where |2 denotes down sampling and means the numb

of coefficients is halved through the filters. Tiezonstitu-
tion of the signal is done by filtering and up sdingp (whi-
tening the signal by filling with zeros between gdes).
The signal reconstructed must differentiate betwksrits
and the perturbations which avoid false alarms.tufea
extracted from the reconstructed signal are ingeatethe
PCA for fault detection.

3.3.3. Dual-tree complex wavelet transform

The WT technique has been used for signal denoésiilg
undergoes improvements also like the case of Wardd. e
(2010b). In this paper, authors proposed to usd-tdem
complex wavelet transform (DTCWT) for the enhancetme
of signal denoising and multi-fault detection intating
machines. DTCWT was introduced by Kingsbury (1998).
has properties that overcome some drawbacks obW@
such as shift-invariance and the selection of tivaavhich
yields the possibility of using two or higher dinséns.

The complex analytical wavelet considers only pesit
frequency and is composed of two real-valued wasele
V\F(t):Wh(t)+jWg(t) whereWy(t)=H[W,]. H[.] is the Hilbert

using the NeighCoeff shrinkage method. These metlanel
the DWT, the second generation wavelet transfor@wg)
and the DTCWT. The obtained results showed theiefft
cy of the DTCWT to diagnose composed faults ofimgll
elements bearing. First, the signdl) is transformed into
the wavelet domain. The noisy wavelet coefficieate
grouped and filtered with thresholding coefficienhe
denoised signal is obtained using the inverse vehvedns-

Sorm. The DTCWT has a small drawback which is tfé-d

culty of multi-resolution analysis of fault charewstic data
in high frequency band. This problem is resolvedubing
the dual tree complex wavelet packet transform (/RT).

3.3.4. Wavelet packet transform

As a generalization of the DWT, the wavelet pat¢kats-
form (WPT) was introduced for their better adagtgbio
non-stationary signals because it can perform aptack
decomposition of the time-frequency axis (Serbeslet
2016) and used, for instance, for signal processfngbra-
tion and acoustic emission signals. WPT is basedaelet
filters and the coefficients at each level can i¢ten as:

Wi =W () K2 1)

ij2+|i+l = \MK ( n)* q_z [) (10)

whereW?2*

i refers to thejth decomposed level of the

Shavelet packet coefficient at the frequency bandlof{0

<k< 2-1) with h(-2n) andg(-2n) are the low-pass and high-
pass filters respectively which depend of the mothave-
let. Actually, the approximations and details areded into
small elements which increase the efficiency of W8T
wards the CWT and DWT. The WPT is an efficient tfuol
analyzing the bearing fault signal in different quency
bands. This advantage was applied by Hemmati €2@l16)
for bearing fault detection. This method considtsabculat-
ing the kurtosis-to-Shannon entropy ratio to deteenthe
optimal mother wavelet and applying the WPT on the
acoustic emission signals of roller bearing. Afteis, the
envelope of acoustic emission signals is appliethendif-
ferent frequency bands given by the WPT and thedsis-
to-Shannon entropy ratio is calculated for eachelape in
order to determine the optimal frequency band giveithe
highest ratio and then the lowest Shannon entragyev
Then, this band pass is de-noised using adaptieshbld-

ing method given bythr =,/2xIn(n)xs where n is the

length of the discrete signal asds an estimate of the noise
level. Finally, the spectrum of squared Hilberngform is

transform. Moreover, DTCWT is a combination of two applied under variable rotating speeds and loadiorpli-

parallel wavelet transforms which are representgdab
upper and lower tree corresponding, respectivelyeal and
imaginary elements.

The DTCWT is almost shift invariant which meansttiha
is possible to detect transient effects. Furtheemibrreduc-
es frequency aliasing effects thanks to the prgpafrtana-
Iytic filters.

tions to estimate the time difference between tbabte
acoustic emission impulses for estimating the defize on
rolling element bearings.

3.3.5. Second generation wavelet transform

Another technique derived from the DWT is the secon
generation wavelet transform (SGWT) where the wetgel
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functions are not designed by translations andidiia of

the mother wavelet but designed by applying a nigfti
scheme (Sweldens, 1998). In an analogous way tDVH€E,

the lifting scheme aims, firstly, at decomposing gignal
into approximation and detail coefficients. Thisnche
achieved by, firstly, splitting the signal into odad even
components where:

split(x(1)) = ({ x(2t-1} { x(20)})
X ={X(2t-1)}
Xeven ={ X(2 t}

(11)

with t=1,2,...n. Secondly, the detail coefficients are given

by D = Xoqq-Predict (Xeven) WherePredictXeve) is a predic-
tion operator of adjacent even components. Theigiied
operator can be an average of two even indexedbeig.
In the same way, the approximation coefficients giken
by A = Xevent Update (detail) where Update (detail) is an
update operator based on previously calculatediciefts.
The P and U operators are analogoug ndh functions
used for the DWT.

by translating and modulating a simple windgft) € L2(R).

Consider the scalb > 0 , the frequency modulatidp and
the translatiors. We notey= (b, s, fo) ¢ T =R*xR? and we
define a "time-frequency" atom as follows:

g,(t) = % g(t_Tsj it

Frequency
energy of an atom
"time-frequency”

———————— = 1/b
I v
|
|
|
|

p Time

12)

Figure 11 Representation of the energy of an atom "time-
frequency" according to the scale b, the frequenogula-
tion fy and the translation s.

As shown in figure 11:

Many researches presented some enhancement on thg comparison with the time, the functigi(t) is centered
SGWT. For instance, authors presented in Yuan et ahrounds and its energy is concentrated neawith a size

(2010) a novel method (see fig.10) for gear faeledtion.
This method consists of combining customized muaitier
let schemes to a sliding window denoising. Firdfecent
vector prediction and update operators with therdele
properties of biorthogonality, symmetry, short soppand
vanishing moments are built, by using Hermite splimer-
polation (Averbuch & Zheludev, 2002). Then, the qude
operators are chosen based on the minimum entropy p
ciple. Then, by considering the period nature ef glearbox
signals, a multiwavelet sliding window is used taide the
detail signal in segmentations to keep significafdrma-
tion which leads to extract the fault featuresféarit identi-
fication in gearbox signals. These segmentatiortergo a
threshold denoising. Then the denoised signal @orre
structed.

Input signal
decompositiol
Signal Y8 Genetic algorithme] ‘ o .
(P and U determinin g e s'iding windo
Denoised signal +
recombinatio
. Threshold
Gear fault extraciogy e ——

Figure 10. The flow chart of the proposed method.

Wavelet transform performs as band pass filteriith &
constant relative-bandwidth. This is suitable toalgre
some signals but restricts the adaptability of tha@sform.
To deal with more general situations, Mallat andaid
(1993) proposed the matching pursuit algorithm &mel
concept of time-frequency atoms. In fact, to extmaforma-
tion from a signal, it may be interesting to decosw this
signal into a family of well-localized functions thoin time
and in frequency. These functions, called "timepfrency"
atoms, are grouped in a dictionary. Mallat and ghpro-
pose to generate such a dictionary by modifyingdtede,

proportional tab.

- In comparison with the frequency, the Fouriensfarm
g,(w) is centered arounig and its energy concentrated near
¢ with a size proportional to i/

The resulting dictionary is the family of vectoBs =
(9,(1)),er- The dictionary is complete only if the linear com
bination of the vectors dD is dense in the Hilbert space,
hereL? (R).

To effectively represent a signelt), we must select an
appropriate subset of atongs,(t)) neN with y, = (0, S, fon)
such as:

X)) =3 a,(ga(1)

n=—co

(13)

The coefficientsa, depend on the atog),(t) chosen. The
selected atoms and their corresponding coefficiprigide
the information about the time-frequency cheeastics
of the signal. This approach was proposed in thEepaf
Liu etal. (2002) to detect bearing failure. Theoration
signal is first decomposed into time-frequency atonith
matching pursuit. Then, the vibration signatures ves-
tracted using high frequency atoms with small scaBénce
the signature obtained this way contained less lateck
components to the defects than traditional band-fitter-
ing, it thus had a higher signal-to-noise ratio gaste more
explicit information for the bearing failure detiect.

Table 4 allows distinguishing two types of time-
frequency representation: linear (WT, STFT) anddgatic
(Wigner Ville distribution, HHT). The latter are meo effi-
cient than the first in terms of time-frequencyalesion. On
the other hand, they suffer from problems of irgezhce
between frequency components.

10
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Method Advantages Disadvantages
Short times | Free from cross terms,| Lacks adaptability due to fixed
Fourier fast implementation, |window, limited time-frequency
transforn | physically meaningfu resolution
Wavelet Free from cross terms,| Difficult to select wavelet basis,
transform |adaptive representation, limited time-frequency resolu-
and effective in detect- tion.
ing transients.
Winger — High time-frequency | Suffers from cross-term interfe-
Ville distri- resolution rence for multi-component
bution signals.
Hilbert High time-frequency Difficult to resolve signal
Huang resolution, adaptive | components when instantaneous
transform | signal decomposition | frequencies have crossings on
time-frequency plane, pseudo
IMFs due to endpoint effects
and intermittency.
Local mean | High time-frequency Difficult to resolve signal
decomposition resolution, adaptive | components when instantaneous
signal decomposition | frequencies have crossing on
time-frequency plane, pseudo
PFs.

Table 4. Categories of time-frequency analysis odth

4, CONCLUSION

This paper reviews different signal processing néples
used to extract indicators for bearings and geatoXhe
importance of these mechanical elements in thesingdand
their criticality leads to unfortunate consequeng@eainten-
ance costs, safety, etc.) and thus justifies thesl rod effec-
tive fault indicators. Techniques currently used laased on
the use of statistical indicators such as the RM8 the
Kurtosis. These indicators give good results famesting
the general degradation of the system but find tiaits to
locate the fault responsible of the degradatiore $pectral
analysis allows highlighting the characteristiaqfiencies of
faults. In contrast to time-frequency techniquesecsral
analysis does not take into account the “time” infation.
In other words, the presence of a frequency comptocen
be detected but no information on the time occueeis
available. Fourier transform and the cepstral aislgre the

most commonly used for stationary signals. The time

frequency analysis makes possible the representatidhe
same plane temporal and frequency characteristiesnthe
signals are non-stationary and when informationualoe
frequency bands where the defects can appear ailatze.

All the proposed signal processing techniques can
classified as follows: time analysis, Fourier asaly cep-
stral analysis, the cyclostationarity analysis,edope analy-
sis and time-frequency analysis. These methodsnave
available in any modern spectrum analyzer but oy well
applied in the industry. The results obtained ysthtech-
nigues in the references discussed in this paper bantri-
buted positively to choose among them the one Wikt
define a framework for industrials to monitor begs and
gearboxes.
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