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ABSTRACT 

The reliability and safety of industrial equipments are one 
of the main objectives of companies to remain competitive 
in sectors that are more and more exigent in terms of cost 
and security. Thus, an unexpected shutdown can lead to 
physical injury as well as economic consequences. This 
paper aims to show the emergence of the Prognostics and 
Health Management (PHM) concept in the industry and to 
describe how it comes to complement the different mainten-
ance strategies. It describes the benefits to be expected by 
the implementation of signal processing, diagnostic and 
prognostic methods in health-monitoring. More specifically, 
this paper provides a state of the art of existing signal 
processing techniques that can be used in the PHM strategy. 
This paper allows showing the diversity of possible tech-
niques and choosing among them the one that will define a 
framework for industrials to monitor sensitive components 
like bearings and gearboxes. 

1.  INTRODUCTION 

Prognostics and Health Management (PHM) is an emerg-
ing "philosophy" which extends the concept of predictive 
maintenance by optimizing the maintenance and the logistic 
support to increase the reliability and life expectancy of 
mechanical, structural and electronic systems while Life-
Cycle costs are reduced and operational availability is in-
creased (Kalgren et al., 2006, Kim et al., 2017). This philos-
ophy, usually confused with the Condition Based Mainten-

ance (CBM), is defined as an approach for the health man-
agement of systems based primarily on the diagnostic, 
prognostic and decision-making in maintenance. This phi-
losophy is relatively new since the PHM community 
emerged in the early 2000s to form the PHM Society and 
IEEE PHM. Following the researches of Niu et al. (2010), 
Jaloretto et al. (2009), Appleby (2003), Yu et al. (2007) and 
Kumar et al. (2010), the objectives behind the implementa-
tion of a PHM philosophy are: 

- A better availability and, thus, a reduction in costs operat-
ing and maintenance through a policy of maintenance and 
logistics based on the monitoring of the health status of 
equipment or system in real time; 
- A faster detection of degradation or loss of performance 
for an efficient operating; 
- An improvement of the reliability and the security of criti-
cal components; 
- A reduction of logistics congestion and costs associated 
with the maintenance materials, transportation, stock, and 
maintenance personnel; 
- A failure reduction induced by maintenance; 
- A forecasting and quantification of the future degradation 
to provide a way to quantify the remaining life of systems. 
This helps to identify those which are near their end of life 
and require significant capital expenditures to differentiate 
them from those that do not require a simple restoration. 

PHM allows maintenance to be performed more effi-
ciently by integrating PHM data (eg. the RUL "Remaining 
Useful Life") from the prognostic and the location and iden-
tification of failures resulting from the diagnostic and health 
assessment derived from detection, maintenance data (re-
sources and inventories), logistical constraints and informa-
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tion on the planned mission. The historical failure provides 
a database of failure models. These models are used for 
assessing current equipment information to determine the 
likely cause for any anomalies detected in the equipment. 
The RUL database is used to construct life prediction mod-
els. These models are used to analyze current equipment 
information to estimate its remaining useful service life. 
This is the typical architecture of a PHM system. It is usual-
ly formalized with the standard OSA-CBM (Open System 
Architecture for Condition Based Maintenance) (see 
Bengtsson, 2003, Thurston, 2001a, Rasovska et al., 2007 
and Swearingen et al., 2007). This architecture establishes a 
framework communication between the monitoring system 
and the various experts concerned through industrial main-
tenance (Holmberg et al., 2010). 

In fact, it is suitable to expose the evolution of mainten-
ance types (Elghazel et al., 2015). The earlier shape of 
maintenance is corrective maintenance which consists of 
reacting only when the equipment fails. Thus, this strategy 
will lead to sudden breakdowns. So, the time-based or pre-
ventive maintenance was invented. The Preventive Main-
tenance is defined as a "Maintenance carried out at prede-
termined intervals or according to prescribed criteria and 
intended to reduce the rate of failure or degradation of 
equipment" (SS-EN 13306, 2001, p.14). Preventive main-
tenance includes two types of maintenance plans: systematic 
preventive maintenance and condition based maintenance 
(SS-EN 13306, 2001). Systematic maintenance is scheduled 
and planned without the occurrence of any monitoring activ-
ity. It could be based on the number of hours of use, the 
number of times that a system is used, the number of kilo-
meters of use, depending on prescribed dates and so on. 
This type of service is best suited for a component that has 
visible signs of wear and where maintenance tasks can be 
performed at a time that will prevent a system failure (Starr, 
1997). According to Yam et al. (2001) and Starr (1997), 
systematic maintenance is sometimes called "time-based 
maintenance" and "planned preventive maintenance". Since 
time-based maintenance doesn’t take into account the state 
of the system, it was necessary to come up with condition 
based maintenance discussed in nineties (Heng et al., 2009). 
Condition based maintenance (CBM), in contrast to the 
systematic maintenance, is not based on planned actions. It 
is carried out according to the needs identified by the system 
health (Yam et al., 2001). It is based on parameters (fea-
tures) that can detect the current health and used to predict 
possible failures before their real occurrence. The monitor-
ing of these features can provide an indication of an im-
pending failure as well as emerging defects that can lead the 
system or its components to deviate from an acceptable 
level of performance or in the worst case, cause its degrada-
tion. Among the advantages of the CBM, making the right 
maintenance actions which avoids stopping a healthy system 
functioning (Heng et al., 2009), its ability to detect an im-
minent fault and accuracy predicting failures (Soualhi et al., 
2014). It also contributes to fault diagnosis because it is 
relatively easy to associate a specific defect in the system to 
the monitored features.  

So, the PHM associated with the CBM can significantly 
reduce the costs of intervention and increase the dependabil-
ity of systems. These results are achieved only if all layers 
composing the CBM are operational. One of the most im-
portant layer is the signal processing. This implies a good 
knowledge of the different signal processing techniques 
used to extract fault indicators. Hence, this paper details the 
signal processing layer of the CBM architecture and pro-
vides an extensive state of the art of existing techniques 
used in the PHM strategy. Thus, it lists the various possible 
techniques and establishes the choice that will represent a 
solid framework for industrial applications using sensitive 
components like bearings and gearboxes. Therefore, sec-
tions of this work revolve around the detailed presentation 
of the different signal processing techniques and their cate-
gorization. The next section present in detail the different 
layers composing the CBM. The section 3 will be dedicated 
to the presentation of the different signal processing tech-
niques. 

2. IMPLEMENTATION OF A CONDITIONAL BASED MAIN-

TENANCE (CBM) 

A conditional based maintenance is composed of seven 
layers: data acquisition, signal processing, health assess-
ment, diagnostic, prognostic and decision support. The se-
venth layer is called the human-machine interface (HMI). It 
is not essential for the CBM but allows displaying vital 
information about the health status of the system. The (MI-
MOSA) "Machinery Information Management Open Stan-
dard Alliance" has been proposed as a standardized architec-
ture for the CBM described in six functional layers: from 
the data acquisition to the decision support module (Thurs-
ton., 2001b). 

+ Layer 1 - The data acquisition module provides access to 
signals (digital data) from sensors. The data acquisition 
covers different disciplines such as mechanical measure-
ments (Wang & McFadden, 1996, Holroyd, 2005, Roemer 
& Kacprzynski, 2000, Hountalas, 2000), electrical mea-
surements (Tsoumas et al., 2005, Kar & Mohanty, 2006), 
tribology (Walter & Lee, 2004) and non-destructive mea-
surements (Mba, 2006). The mechanical measurements 
include mechanical vibration, acoustic emission, pressure, 
flow, temperature, and stress, while the electrical measure-
ments are current, voltage, phase and flux. Tribology is 
especially interested in the machinery lubrication and oil 
analysis of debris. The non-destructive control uses visual 
inspection or non-contact measurement. 
+ Layer 2 – The signal processing module receives signals 
from the data acquisition module. The outputs of this mod-
ule are health indicators extracted from signal processing 
techniques: temporal analysis, spectral analysis, time-
frequency analysis. 
+ Layer 3 - The health assessment module receives data 
from the signal processing module and other monitoring 
modules. The aim is to compare the extracted health indica-
tors with reference values to assess the condition of the 
machine. The health assessment module generates alarms 
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based on predefined operating limits (eg, low level of de-
gradation, natural degradation level and advanced stage of 
degradation). 
+ Layer 4 - The diagnostic module receives data from the 
signal processing and health assessment modules. Based on 
the obtained indicators, this module determines whether the 
state of the monitored system or component is degraded or 
not and identify the element responsible of this degradation. 
+ Layer 5 - The prognostic module considers information 
provided from all previous layers to estimate the remaining 
useful life (RUL) of the system. The RUL is obtained by 
extrapolating a series of measurements (time series) from a 
health indicator acquired until a present time "t" to a horizon 
of prediction defined by t+RUL. t+RUL corresponds to the 
moment where the extrapolated time series reached the  
threshold of system’s degradation. 

+ Layer 6 - The decision support module receives data 
from the diagnostic and prognostic modules. This module 
gives recommend maintenance actions and alternatives 
related to the management of the system. 

In the next section, the main focus will be on the second 
layer, which is the signal processing . 

3. SIGNAL PROCESSING 

As said in the introduction section, the signal processing 
is one of the most important module of the CBM. This 
module analyzes and transforms the input signal to extract 
indicators of defects (Seryasat et al., 2010, Chen et al., 
2012, Prieto et al., 2013). From the literature, several 
processing techniques, like temporal analysis, frequency 
analysis and time-frequency analysis can be used to extract 
efficient health indicators (Tobon-Mejia et al., 2012, Niu & 
Yang, 2010, Tsui et al., 2015). 

3.1. Temporal analysis 

The temporal analysis extracts indicators of defect from 
raw signals. These features are called "statistical indicators" 
because they represent the temporal characteristics of the 
recorded signal. Table 1 shows a list of the most common 
indicators used in the time-domain: 
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Table 1. Statistical features (Chen et al., 2012).
 

where xi is the i-th sample of the recorded signal x(t) and N 
is the number of samples. 

The most popular indicators used in literature are: 

- The standard deviation σ which measure the dispersion of 
the signal x(t). This indicator is often used as a metric in 
classifiers such as dynamic Bayesian networks (Wang et al., 
2007) and neural networks (Laerhoven et al., 2001). 
- The RMS is the most interesting measure of vibration 
amplitudes. In addition of taking into account the evolution 
of the signal over time, the calculation of the RMS value is 
related to the vibratory energy and therefore to the "poten-
tial for deterioration" of the vibration signal. In practice, the 
positive and negative instantaneous values of the signal are 
squared. The average of these values is then calculated over 
a certain period of time. The result is put under the square 
root to obtain the RMS. Recently, the RMS was used to 
verify the effectiveness of exploiting only a selection of the 
vibration signals instead of the original ones. Results 
showed that when RMS is applied after the selection step, it 
gives more significant information about the faulty cases 
(Feng et al., 2017). 

In Hemmati et al. (2016), authors investigate the effec-
tiveness of this parameter to detect bearing faults compared 
to other statistical parameters like peak value, kurtosis, crest 
factor and skewness. Bearing faults are artificially produced 
on an outer race using an engraving machine tool to control 
the shape and depth of the faults. In this experimentation, 
defect size, rotating speed, and radial load have been consi-
dered as the most critical parameters that may influence the 
statistical parameters. Results showed that since in many 
practical cases the rotating speed of the shaft is constant, 
RMS is a strong candidate for identifying defective rolling 
element bearings. 
- The Skewness, commonly called the moment of order 3, is 
mathematically defined by the the ratio of the average cubed 
deviation from the mean divided by the cube of the standard 
deviation. This definition represents the dissymmetry rate of 
the amplitude distribution of the signal with respect to a 
maximum (whose abscissa corresponds to the mean in the 
case of a Gaussian). The measurement of this dissymmetry 
is given in table 1. It is a dimensionless quantity. The 
Skewness will be positive or negative depending on the 
distribution of the curve to the right or left, respectively, of 
the mean value. If the Skewness is equal to 0, the distribu-
tion is symmetric. If the Skewness is smaller than 0, the 
distribution is shifted to the left compared to its mean. If the 
Skewness is greater than 0, the distribution is shifted to the 
right. It was proven in the paper of Hemmati et al. (2016) 
that the Skewness is a good indicator for diagnosing bearing 
faults. 
- The kurtosis represents the relation between the statistical 
moment of order 4 and the square of the statistical moment 
of order 2. For a Gaussian distribution, the Kurtosis is equal 
to 3 (case of a healthy bearing or gear). When the signal 
becomes non-Gaussian (appearance of a fault) the kurtosis 
becomes greater than 3 (see table 2). The Kurtosis is an 
indicator of impulsivity, it is independent of the amplitudes 
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and it allows possible establishing a criterion of severity for 
the diagnosis of machines (Thomas, 2002). For the sake of 
comparison, Pang et al. (2018) used the Kurtosis for the 
same fault case but before and after the improved version of 
the proposed framework and found out that it gives signifi-
cant values in the second case. 

Kurtosis Severity 
1,5 Good 

2,8 to 3,2 Acceptable 
3,2 to 4 High 

> 4 critical 

Table 2. quantification of the severity according to kurtosis. 

- The crest indicator is the ratio between the peak amplitude 
of the signal and the RMS. A system in a good condition 
generates a low amplitude signal as well as in the peak value 
and the RMS. The crest factor remains low (between 2 and 
6). A localized defect generates a high peak amplitude and 
low RMS amplitude, so an important peak factor (greater 
than 6). However, as the RMS increases for progressive 
failure, the crest indicator decreases (Dron et al., 2004). 

The Kurtosis, Skewness, CI and RMS have been ex-
tracted from vibration signals to detect the degradation of 
the gearbox. The degradation test was done for a duration of 
12 days. These indicators are given in fig.1: 

 

Figure 1. a) Curves of the kurtosis, skewness, CI and RMS 
of a faulty gearbox. b) A zoom on RMS curve. 

These curves show the beginning of the degradation after 
the 8th day followed by an increase until the apparition of 
the degradation in the 12th day.  

Another indicator called the Entropy can be added to ta-
ble 1. The different types of the entropy have been devel-
oped in Han et al. (2009) for the indicator extraction. Table 
3 shows the most used entropy types: 

Shannon entropy ² log( ²)i i
i

x x−∑  

Log energy entropy log( ²)i
i

x∑  

Table 3. Entropy features.

To improve the effectiveness of these indicators, a tem-
poral analysis tool called the time synchronous average 
(TSA) was introduced by Bennett (1958). The TSA was 
applied for cyclostationary vibration signals for fault detec-
tion of gearbox. The TSA consists of dividing a vibration 
signal into time-segments and carrying out a mean of these 
segments to eliminate the noise. In Bonnardot (2004), the 
angular synchronous average (ASA) was proposed. The 
ASA consists of dividing a vibration signal into angular-
segments. This approach was tested in a gearbox and the 
obtained results are better than the TSA.  

Another method has been proposed in Hong and Dhupia 
(2014). It consists of combining the fast-dynamic time 
warping (Fast DTW) and the correlated kurtosis (CK) tech-
niques to detect and identify the faulty gear. Considering 
that the faulty gear tooth generates periodic impulses in the 
vibration signal, the fast DTW extracts these impulses by 
using a reference signal at the same frequency of the nomin-
al gear mesh harmonic. It is based on vibration signals ob-
tained from a healthy and steady functioning of the system. 
Then, the subsequent signal is resampled for the diagnostic 
by the CK technique which aims to isolate the gearbox fault 
locally by analyzing the periodic effect of the fault. 

Another method was developed in Do and Chong (2011). 
It consists of transforming a vibration signal (one-
dimensional domain) into an image (two-dimensional) by 
translation. The indicators are deduced by the scale invariant 
feature transform (SIFT) to detect faults by affecting the 
vibration signal to the corresponding fault category (diagno-
sis level). For the translation (see fig. 2), the amplitude 
samples of the signal are normalized to obtain values in the 
range [0-255]. These values are putted in a matrix M*N 
where the coordinate of the i th element in the vibration signal 
is the pixel (j,k) in the matrix with j = floor (i/N) and k = 
modulo (i/N). Then the SIFT algorithm is applied on this 
image to obtain 128-dimension vectors. Finally, each indica-
tor vector is compared to each centroid of the fault category 
dictionary to obtain a histogram of similarity between the 
indicator vectors and the fault category. The fault category 
of the vibration signal corresponds to the highest similarity. 
Figure 3 gives an example of this method. 

 

Figure 2. Vibration signal to image translation scheme 
(Averbuch & Zheludev, 2002). 
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Figure 3. An example of vibration signal translated into the 
128-128 gray image (M=128 and N=128) (Averbuch and 

Zheludev, 2002). 

An important concept widely used in bearing and gear 
diagnostic is the cyclostationarity. It was applied to helicop-
ter gearbox in Antoni and Randall (2002) in order to sepa-
rate the periodic components of the signal from the random 
ones. This leads to the definition of first-order cyclostatio-
narity (CS1) related to deterministic signals such as gear 
signals and second-order cyclostationarity (CS2) related to 
random signals such as bearing signals. Very recently, Ca-
soli et al. (2018) applied the angular synchronous average 
on the acceleration signals and decomposed it into CS1 and 
CS2 for fault detection of hydraulic axial piston pumps and 
studied the impact of faults on both indicators. This hypo-
thesis will generate new indicators that will be incorporated 
into diagnostic tools and prognosis to improve the PHM. 

The extraction of features plays a major role in the effec-
tiveness of the monitoring method. Therefore, researchers 
decided to mix different types of features. This is the case of 
Bleakie et al. (2013), where statistical features and dynamic 
features such as rise-time, overshoot and steady state values 
were chosen for system degradation prediction. The defini-
tion of some dynamic features related to the time response 
of the system was given in detail by Franklin et al. (2010) . 

The main advantage of the extracted indicators from 
temporal analysis is their capability to detect the degrada-
tion of the system. However, the main drawback is their 
incapacity to identify the origin of the degradation. The 
frequency analysis tackles this point more efficiently than 
temporal analysis. 

3.2. Frequency analysis 

The spectrum analysis of a signal is the most common 
technique used to identify faults in electro-mechanical sys-
tems. This technique is based on the fact that a localized 
defect generates a periodic signal with a unique characteris-
tic frequency (Tandon & Choudhury, 1999). In contrast to 
the temporal analysis, the frequency analysis identifies this 
fault by locating the characteristic frequency of the fault. 
This technique is generally used during the steady state of 
the system (Didier, 2004). A classic tool among these tech-
niques is the fast Fourier transform (FFT). Figure 4 shows 
an example of a faulty gearbox where the defect is located 
on the pinion with a series of pics separated with the pinion 
frequency Fp. 

 

Figure 4. Spectrum of the acceleration signal of a faulty 
gearbox. 

Another tool was proposed in Feng and Liang (2014) 
which is the demodulated spectra of the amplitude envelope. 
This tool detects and localizes faults by applying the FFT on 
the envelope of the signal. However, the Fourier transform 
is limited by the resolution (the frequency differences are 
much smaller than the inverse of the number of observed 
points). To resolve this problem, the algorithm MUSIC 
(Multiple signal characterization) was proposed in Schmidt 
(1986). MUSIC estimates the frequency content of a signal 
using an eigen space method. This method assumes that a 
signal, x(t), consists of p complex exponentials in the pres-
ence of Gaussian white noise. Recently, Ma et al. (2018) 
used the Teager energy spectrum which is obtained by the 
application of the FFT on the Teager energy operator of the 
vibration signal and aims at envelope demodulation to 
achieve fault diagnosis of bearing. This operator calculates 
the energy of the signal at each time by using the data of 
three samples. 

In an analogous way with the spectrum, another tool aims 
to detect system defects by the cepstrum (Oppenheim & 
Schafer, 2004). It is defined as the inverse Fourier transform 
(IFT) of the spectrum logarithm:  

        ( )( )cepstrum of signal  IFT log FT the signal =    (1) 

Cepstrum analysis is used for fault extraction as it capa-
ble to notice the periodic families in the frequency spectrum 
and represent it by specific peaks in the cepstrum. The first 
peaks are good indicators as they reflects a large amount of 
harmonics (Niu, 2017). This was previously exploited by 
proposing an indicator noted d(t) and called the normalized 
differential cepstral indicator (NDCI) was introduced by El 
Badaoui (1999). This NDCI uses the relative difference 
between the two cepstral pics in order to insure invariance 
regarding the additional noise. Figure 5 shows experimental 
results extracted from a gear box operating 12 days. As the 
sum of the energy of the two pics is constant, the amplitude 
corresponding to the gear defect increases while the other 
one decreases. From the NDCI curve, and giving that the 
NDCI tends to 1 when the pinion is faulty and to -1 when 
the gear wheel is faulty, this shows the appearance of a 
pinion fault at the 8th day. This fault continues to increase 
until the total spalling on all teeth.  

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

m
a

gn
itu

d
e

time (sec) 128

1
2

8

150100 20050

Fp Fp Fp

3

2.5

2

1.5

1

0.5

× 10-3

50
Frequency(Hz) 

A
m

pl
itu

de

100 150 200



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

6 

   
                 a)                                      b)                             c) 

 
Figure 5. A zoom on the first 2 pics in the cepstrum of a) 

day 1 b) day 8 c) day 12 temporal signals. 

Recently, a technique called cepstrum editing procedure 
(CEP) was automated in Peeters et al. (2018). This method 
aims at separating deterministic signals from random ones, 
which can be very useful for bearings monitoring, as their 
components can be isolated from those of gears or shafts 
characterized by explicit peaks. In this paper, results were 
compared before and after the application of the automated 
CEP (ACEP) as a pre-processing step for envelope analysis 
and showed that adding ACEP helps for better interpretation 
of the bearing health. 

The proposed signal processing techniques are generally 
applied on vibration signals but recently research was inter-
ested to the use of electrical signals for fault detection and 
diagnosis (Bellini et al, 2008, Gong & Qiao, 2013, Saidi et 
al., 2012). A novel framework was developed in Leite et al. 
(2015). It consists of bearing fault detection of a three-phase 
induction motor by the squared envelope spectrum (SES) 
applied on the stator current. In order to enhance the 
envelope analysis, spectral kurtosis-based algorithms, were 
applied. Those algorithms are used in this method to resolve 
the problem of determining the filtering frequency band 
around the mechanical resonance of the machine (Barszcz & 
Jablonski, 2011, Sawalhi, 2007). The SES is obtained by 
applying the discrete Fourier Transform to the analytic sig-
nal got from the Hilbert transform. Figure 6 illustrates the 
detection of a bearing outer race fault in an induction motor 
by the stator current SES where the outer race frequency 
and its harmonics are pointed by arrows. 

 
Figure 6. SES of the stator current from the motor with a 

damaged bearing fault. 

The main advantage of the frequency analysis is its capa-
bility to locate the degraded component of the system. 
However, the main drawback is their incapacity to identify 
the origin of the degradation when the system is not statio-
nary. This implies the use of the time-frequency analysis. 

3.3. Time-frequency analysis 

The time-frequency analysis covers both the time domain 
and the frequency domain. Non-stationary signals are better 
described by a time-frequency distribution to show the dis-
tribution of the signal energy over the two-dimensional 
space-time-frequency (Burgess & Shimbel, 1995). The most 
commonly used techniques for time-frequency analysis is 
the short-time Fourier transform (STFT), the Wigner Ville 
distribution (WVD), wavelet transform (WT) and Hilbert–
Huang transform (HHT). For example, the STFT method 
allows following the changing in frequency content in func-
tion of time. This means that the defect becomes localizable 
in time. Although, this method needs high computational 
capacity when the quality of resolution matters. Since STFT 
is based on windowing the signal around a particular time t 
and calculating the Fourier transform for each time (see 
fig.7), this leads to make judicious choice of the window 
size with: 

 ( 2 )STFT( , ) ( ) ( ) j ftf x t g t e dtπτ τ −= −∫  (2) 

where STFT can be interpreted as a similarity measure be-
tween the signal x(t) and the time-delayed and frequency-
modulated window g(t-τ). 

The time-frequency analysis makes a compromise be-
tween the time resolution and the frequency resolution. For 
the Wigner-Ville distribution, this compromise does not 
exist due to the absence of the window as we can see in the 
following equation: 

 * ( 2 )( , ) ( / 2) ( / 2) j f
xW t f x t x t e dπ ττ τ τ

+∞ −

−∞
= + −∫  (3) 

 

Figure 7. Illustration of short-time Fourier transform applied 
to signal x(t). 

The main drawback of this method is that it is bilinear in 
nature, introducing the cross terms in the WVD domain, 
which make the transform difficult to interpret. The WVD 

of the sum of n signals 
1

( ) ( )
n

i
i

x t x t
=
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 (4) 

Cross terms could be reduced by processing the signal 
with a sliding window of time h(τ) in (3). This will suppress 
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the WVD components that oscillate in the frequency direc-
tion. This method is called the pseudo Wigner-Ville distri-
bution (PWVD). A further time-direction smoothing can be 
implemented by using an additional window in the frequen-
cy domain h(f). This extend is called the Smoothed Pseuso 
Wigner Ville distribution (SPWVD) which realizes the best 
trade-off between resolutions (time and frequency) and the 
interferences. The SPWVD is considered as the compromise 
between STFT and WVD (Lee, 2013). 

Another time-frequency technique is the Hilbert-Huang 
transform (HHT). The HHT is a combination of the empiri-
cal mode decomposition (EMD) and the Hilbert spectral 
analysis (HSA). This technique performs an adaptive time-
frequency technique and in the same time removes the 
noised signals to give useful information about the fault 
(Wang et al., 2014). The EMD uses the local characteristic 
time scales of a signal to extract the intrinsic mode functions 
(IMFs) (Lei et al., 2013). The IMFs are oscillatory functions 
with varying amplitude and frequency. They have the same 
length as the original signal and each IMF corresponds to a 
determined frequency range. Moreover, when the degrada-
tion is at an early stage, the EMD are buried by the noise 
which constitutes the difficulty of earlier fault detection (Ali 
et al., 2015). The Hilbert spectral analysis is applied to the 
IMF to obtain the analytic form of the signal and after that, 
this signal is combined with the instantaneous frequency to 
obtain the Hilbert spectral density (HSD). In (Soualhi et al., 
2015), authors used the Hilbert marginal spectrum in the 
IMF to extract bearing fault indicators by choosing the IMF 
which corresponds to the bearing characteristic frequencies. 
Furthermore, Zhu and Shen (2012) compared the Time-
frequency techniques for non-stationary signals. The results 
of this comparison showed that the HHT is the most adap-
tive to non-stationary signals. The HHT expresses a local 
information and instantaneous frequency in a high time-
frequency resolution. Another comparison has been made 
by Li et al. (2016a). This paper compared different time-
frequency techniques including STFT, WT, PWVD and 
HHT based on the quality representation but also on the 
execution time of each technique. The PWVD was the 
slowest. 

In an analogous way with the EMD, local mean decom-
position (LMD) was proposed as a self-adaptive time-
frequency analysis method. LMD consists of decomposing a 
signal into a set of product functions (PFs) where each PF is 
the product of a frequency modulated frequency and its 
corresponding envelope component. Each PF is a mono-
component amplitude modulated - frequency modulated 
(AM-FM) signal. In Park et al. (2011), complex local mean 
decomposition (CLMD) was developed to process not only 
real-valued signals but also complex valued signals. Expe-
rimental results showed that LMD is capable of revealing 
information about amplitude and frequency with more accu-
racy than EMD. This technique was also used in a method 
for fault diagnosis in Li et al. (2016b). This method consists 
of applying LMD on the signal to obtain product functions 
PFs and select the optimum PF which maximizes the kurto-

sis criterion. Then, the features of the chosen PF are calcu-
lated by the improved multiscale fuzzy entropy (IMFE). The 
fuzzy entropy is defined to assess the complexity and irregu-
larity of the time series. When it is applied on different scale 
factors, it is called IMFE (Li et al., 2017). The more signifi-
cant features are selected by using Laplacien score (LS) 
algorithm which chooses automatically the best factor scale 
to reduce the dimensionality of features vectors. These new 
feature vectors are the input of the improved support vector 
machines to classify data into fault classes. This criterion 
may change from a framework to another; for example, Ma 
et al. (2018) used a correlation coefficient criterion between 
the PFs and the original vibration signal in order to choose 
the efficient PFs. 

As discussed in the frequency analysis section, a novel 
methodology has been developed in Leite et al. (2015) for 
fault diagnosis by the analysis of the electric current by first 
determining the optimal filtering frequency band. This is 
done by two types of the spectral Kurtosis (SK) algorithms: 
fast kurtogram and Wavelet Kurtogram. The SK is the 
fourth-order cumulant of each frequency component of a 
signal (Millioz & Martin, 2011): 

 ( ) ( )
( )

4

2 2

H ,
SK   2

H ,  

t f
f

t f

< >
= −

< >
 (5) 

where H(t,f) represents the STFT of the concerned signal 
and <·> is the average value. 

In order to resolve the problem of the heavy calculation, 
the fast kurtogram (FK) was introduced. The FK replaces 
the STFT by a set of filters by dividing the frequency range 
in combinations of center frequency fc and bandwidth Bw. 
Moreover, a set of Morlet wavelet filters replaced the STFT 
to form the wavelet kurtogram. The FK aims at dividing the 
frequency in different bands. The chosen filter is the one 
that maximizes the SK.  

Another time-frequency method is the wavelet transform 
(WT). There exist different types of wavelet transform: 

3.3.1. Continuous wavelet transform 

A classical method of time-frequency analysis is the con-
tinuous wavelet transform (CWT). CWT projects a signal 
x(t) on elementary functions (EF) called wavelets drawn 
from mother wavelets by translations and dilatations to 
represent it in two-dimensional plane (Auger & Flandrin, 
1996). CWT is expressed as follows: 

 
( , )1

( , ) ( ) * ,
[0, }

st s
CWT s b x t ds

bbb
ψ

∈ −∞ ∞− =   ∈ ∞  
∫  (6) 

where s is the translation (the location parameter of the 
wavelet) and b is the scaling  (dilation)  parameter  of  the  
wavelet. ψ* is the complex conjugate of the mother wavelet 
ψ (Yan et al., 2014). CWT can be defined as the sum over 
time of the signal, multiplied by scaled and delayed versions 
of the wavelet function ψ. 

The WT, like the STFT, depends on a function of time 
and scale but the window duration in that STFT is constant 
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while the WT uses a self-adaptive window given by a wave-
let function which duration changes within the frequency 
inversely related to the scale factor b (Giurgiutiu et al., 
2003). This difference is illustrated by fig.8. When |b|>1, the 
wavelet is dilated and when |b|<1 the wavelet is compressed 
(Hammond & White,1996). 

 
Figure 8. Sampling of the time-frequency plane for STFT 

and wavelet analysis. 

There are multiple shapes of wavelets. The most popular 
is the Morlet wavelet : 
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0
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t st s
i bb

b
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e e
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σω
ψ

 − −  −         −  = 
 

 (7) 

where ω0 is the central frequency of the mother wavelet 
(modulation parameter) and σ is the scaling parameter that 
affects the width of the window. 

In Nagaraju and Mallikarijuna Rao (2009), authors pro-
posed the addition of phase angle information into 3D CWT 
plot to improve the crack detection in rotor systems. Moreo-
ver, in Ozturk et al. (2008), authors proposed the extraction 
of the mean frequency from the scalogram to detect the 
progression of pitting damage in gears. It is important to 
note that the scalogram is defined as the squared modulus of 
the CWT which represents the energy of the signal in time-
scale plane. In Rafiee and Tse (2009), authors proposed the 
autocorrelation of continuous wavelet coefficients for gear-
box fault diagnosis instead of using the continuous wavelet 
coefficients (CWCs) themselves because they contain a lot 
of information in each scale that can generate a big loss of 
data after resampling. The autocorrelation of (CWC) over-
comes this drawback by reducing the size of the data with 
keeping the content of information in each frequency band. 
Wang et al. (2010a) developed a fault growth parameter 
(FGP) for quantitative assessment based on the variation of 
complex Morlet CWT amplitude at all the scales of the 
transform under varying gearbox conditions. Authors pre-
sented in Kankar et al. (2011) a method based on the mini-
mum Shannon entropy criterion (MSEC) to choose the most 
convenient mother wavelet and to define the scale that 
matches the characteristic defect frequency. The adequate 
wavelet minimizes the Shannon entropy of the correspond-
ing wavelet coefficients. Among all mother wavelets, the 
selected wavelet is the complex Morlet wavelet (CMW) and 
the results showed that it has satisfying results regarding 
bearing and gear fault detection. Lately, author proposed in 
Dai et al. (2016) a continuous wavelet transform approach 
for effective harmonic parameters estimation within the 

detection and elimination of impulsive noise. In the context 
of PHM, recently, CWT was joined to a blind source separa-
tion technique to analyze the wavelet coefficients and the 
evolution of each independent source is used for health 
assessment (Benkedjouh et al., 2018). 

In order to increase the effectiveness of the EMD, it has 
been combined with the classic wavelet transform in Cao et 
al. (2016) and called the empirical wavelet transform 
(EWT). This method was applied for fault detection of the 
wheel-bearing of trains. To ensure the efficiency of this 
method, different faults were experimented (outer race fault, 
roller fault, and the compound fault of outer race and roller) 
and it showed satisfactory results. 

3.3.2. Discrete wavelet transform 

Another classical wavelet transform is the discrete wave-
let transform (DWT). DWT uses instead of the continuous 
scale and time, discretized parameters to adapt the sampling 
condition of the physical signals : b=2j, s=k2j. Where j is the 
parameter about dilation, or the visibility in frequency and k 
is the parameter about the translation. This can be very 
powerful because it minimizes drastically the calculation 
time.  

The DWT is expressed as follows: 

 ( ) *1 2
DWT( , ) ψ

22

j

jj

t k
j k x t dt

 −=  
 

∫  (8) 

This transform can be achieved by integrating a pair of low-
pass and high-pass wavelet filters, respectively, h(k) and 
g(k)=(−1)1-kh(1−k). These filters are obtained from the 
wavelet function Ψ(t) and its scaling function Θ(t) given by 
(Mallat,1989): 
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The coefficients h(k) are a sequence of real or complex 
numbers called the scaling function coefficients (or the 
scaling filter).  

When applying these filters on the signal, low and high 
frequency elements are obtained: 

( )

( )
1, ,

1, ,
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j j k
k

j

k

a h k

d a g k

a +

+

 =

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=


∑

∑
 

Where a and d are called respectively the approximation 
coefficient and the detail coefficient. 
 

In Kim et al. (2007), a comparative study was applied on 
non-stationary vibration signals for fault detection of shaft-
cracked during acceleration and deceleration. This study 
compared the STFT, WVD and DWT. The obtained results 
showed the efficiency of the DWT to extract good features. 
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Moreover, to take into account the noisy state of the envi-
ronment, authors developed in Omar and Gaouda (2012) a 
novel method to detect and localize gear tooth defects. This 
method uses the dynamic Kaiser’s window in the wavelet 
domain where the shape, size and sliding rate are variable. 
In Kumar and Singh (2013), authors underlined the difficul-
ty to assess bearing fault size. So, they proposed the use of 
the Symlet wavelet to measure the width outer race defect of 
the roller bearing.  

The combination of the WT with other techniques has 
been experimented in many works. For instance, a new data-
driven method for fault detection in air handling units was 
developed in Yang and Nagarajaiah (2014). This method is 
based on the principal components analysis (PCA) and WT. 
The WT decomposes the signal in approximations and de-
tails coefficients by passing the signal and the coefficients 
through low-pass H0 and high-pass H1 filters thanks to a 
recursive algorithm. These coefficients are taken at different 
frequencies and the original signal at the kth step of decom-
position is given by:   x(t) = ak + dk + dk−1 +···+ d1 (see 
fig.9). 

 

Figure 9. Two level wavelet decomposition tree. 

where ↓2 denotes down sampling and means the number 
of coefficients is halved through the filters. The reconstitu-
tion of the signal is done by filtering and up sampling (whi-
tening the signal by filling with zeros between samples). 
The signal reconstructed must differentiate between faults 
and the perturbations which avoid false alarms. Features 
extracted from the reconstructed signal are injected in the 
PCA for fault detection. 

3.3.3. Dual-tree complex wavelet transform 

The WT technique has been used for signal denoising and 
undergoes improvements also like the case of Wang et al. 
(2010b). In this paper, authors proposed to use dual-tree 
complex wavelet transform (DTCWT) for the enhancement 
of signal denoising and multi-fault detection in rotating 
machines. DTCWT was introduced by Kingsbury (1998). It 
has properties that overcome some drawbacks of the DWT 
such as shift-invariance and the selection of direction which 
yields the possibility of using two or higher dimensions. 

The complex analytical wavelet considers only positive 
frequency and is composed of two real-valued wavelets:  
WC(t)=Wh(t)+jWg(t) where Wg(t)=H[Wh]. H[.] is the Hilbert 
transform. Moreover, DTCWT is a combination of two 
parallel wavelet transforms which are represented by an 
upper and lower tree corresponding, respectively, to real and 
imaginary elements. 

The DTCWT is almost shift invariant which means that it 
is possible to detect transient effects. Furthermore, it reduc-
es frequency aliasing effects thanks to the property of ana-
lytic filters. 

In Wang et al. (2010b), the authors made a comparison 
between three techniques dedicated to denoising signal 
using the NeighCoeff shrinkage method. These methods are 
the DWT, the second generation wavelet transform (SGWT) 
and the DTCWT. The obtained results showed the efficien-
cy of the DTCWT to diagnose composed faults of rolling 
elements bearing. First, the signal x(t) is transformed into 
the wavelet domain. The noisy wavelet coefficients are 
grouped and filtered with thresholding coefficients. The 
denoised signal is obtained using the inverse wavelet trans-
form. The DTCWT has a small drawback which is the diffi-
culty of multi-resolution analysis of fault characteristic data 
in high frequency band. This problem is resolved by using 
the dual tree complex wavelet packet transform (DTCWPT). 

3.3.4. Wavelet packet transform 

As a generalization of the DWT, the wavelet packet trans-
form (WPT) was introduced for their better adaptability to 
non-stationary signals because it can perform an adaptive 
decomposition of the time-frequency axis (Serbes et al., 
2016) and used, for instance, for signal processing of vibra-
tion and acoustic emission signals. WPT is based on wavelet 
filters and the coefficients at each level can be written as: 
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where 2
1
K

jW +  refers to the jth decomposed level of the 

wavelet packet coefficient at the frequency band of 2k (0 
<k< 2j-1) with h(-2n) and g(-2n) are the low-pass and high-
pass filters respectively which depend of the mother wave-
let. Actually, the approximations and details are divided into 
small elements which increase the efficiency of WPT to-
wards the CWT and DWT. The WPT is an efficient tool for 
analyzing the bearing fault signal in different frequency 
bands. This advantage was applied by Hemmati et al. (2016) 
for bearing fault detection. This method consists of calculat-
ing the kurtosis-to-Shannon entropy ratio to determine the 
optimal mother wavelet and applying the WPT on the 
acoustic emission signals of roller bearing. After this, the 
envelope of acoustic emission signals is applied in the dif-
ferent frequency bands given by the WPT and the Kurtosis-
to-Shannon entropy ratio is calculated for each envelope in 
order to determine the optimal frequency band given by the 
highest ratio and then the lowest Shannon entropy value. 
Then, this band pass is de-noised using adaptive threshold-

ing method given by 2 ln( )thr n s= × ×  where n is the 

length of the discrete signal and s is an estimate of the noise 
level. Finally, the spectrum of squared Hilbert transform is 
applied under variable rotating speeds and loading condi-
tions to estimate the time difference between the double 
acoustic emission impulses for estimating the defect size on 
rolling element bearings. 

3.3.5. Second generation wavelet transform 

Another technique derived from the DWT is the second 
generation wavelet transform (SGWT) where the wavelets 

H1 ↓ 2 d1

H0 ↓ 2
H1 ↓ 2 d2

H0 ↓ 2

x(t)

a2a1
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functions are not designed by translations and dilations of 
the mother wavelet but designed by applying a lifting 
scheme (Sweldens, 1998). In an analogous way to the DWT, 
the lifting scheme aims, firstly, at decomposing the signal 
into approximation and detail coefficients. This can be 
achieved by, firstly, splitting the signal into odd and even 
components where: 

 

( )( ) ( ){ } ( ){ }( )
( )

( )

2 1 , 2

{ 2 1 }

{ 2 }
odd

even

split x t x t x t

x x t

x x t

= −

= −
=

 (11) 

with t=1,2,…,n. Secondly, the detail coefficients are given 
by D = xodd -Predict (xeven) where Predict(xeven) is a predic-
tion operator of adjacent even components. The prediction 
operator can be an average of two even indexed neighbors. 
In the same way, the approximation coefficients are given 
by A = xeven+ Update (detail) where Update (detail) is an 
update operator based on previously calculated coefficients. 
The P and U operators are analogous to g and h functions 
used for the DWT. 

Many researches presented some enhancement on the 
SGWT. For instance, authors presented in Yuan et al. 
(2010) a novel method (see fig.10) for gear fault detection. 
This method consists of combining customized multiwave-
let schemes to a sliding window denoising. First, different 
vector prediction and update operators with the desirable 
properties of biorthogonality, symmetry, short support and 
vanishing moments are built, by using Hermite spline inter-
polation (Averbuch & Zheludev, 2002). Then, the adequate 
operators are chosen based on the minimum entropy prin-
ciple. Then, by considering the period nature of the gearbox 
signals, a multiwavelet sliding window is used to divide the 
detail signal in segmentations to keep significant informa-
tion which leads to extract the fault features for fault identi-
fication in gearbox signals. These segmentations undergo a 
threshold denoising. Then the denoised signal is recon-
structed.

 

Figure 10. The flow chart of the proposed method. 

Wavelet transform performs as band pass filtering with a 
constant relative-bandwidth. This is suitable to analyze 
some signals but restricts the adaptability of the transform. 
To deal with more general situations, Mallat and Zhang 
(1993) proposed the matching pursuit algorithm and the 
concept of time-frequency atoms. In fact, to extract informa-
tion from a signal, it may be interesting to decompose this 
signal into a family of well-localized functions both in time 
and in frequency. These functions, called "time-frequency" 
atoms, are grouped in a dictionary. Mallat and Zhang pro-
pose to generate such a dictionary by modifying the scale, 

by translating and modulating a simple window g(t) ϵ L²(ℝ). 
Consider the scale b > 0 , the frequency modulation f0 and 
the translation s. We note γ= (b, s, f0) ϵ  Γ =ℝ+×ℝ2 and we  
define a "time-frequency" atom as follows:  

 0
1

( ) if tt s
g t g e

bb
γ

− =  
 

 (12) 

 
 
 
 
 
 
 
 
 
Figure 11. Representation of the energy of an atom "time-
frequency" according to the scale b, the frequency modula-

tion f0 and the translation s. 
 
As shown in figure 11: 
- In comparison with the time, the function gγ(t) is centered 
around s and its energy is concentrated near s with a size 
proportional to b.  
- In comparison with the frequency, the Fourier transform 
gγ(ω) is centered around f0 and its energy concentrated near 
ξ with a size proportional to 1/b.  

The resulting dictionary is the family of vectors D = 
(gγ(t))γ∈Γ. The dictionary is complete only if the linear com-
bination of the vectors of D is dense in the Hilbert space, 
here L2 (ℝ). 

To effectively represent a signal x(t), we must select an 
appropriate subset of atoms (gγn(t)) n∈N with γn = (bn, sn, f0n) 
such as : 

 ( ) ( ( ))n n
n

x t a g tγ

+∞

=−∞

= ∑  (13) 

The coefficients an depend on the atom gγn(t) chosen. The 
selected atoms and their corresponding coefficients provide  
the  information  about  the  time-frequency characteristics 
of the signal. This approach was proposed in the paper of 
Liu et al. (2002) to detect bearing failure. The vibration 
signal is first decomposed into time-frequency atoms with  
matching  pursuit. Then, the vibration signature was ex-
tracted using high frequency atoms with small scales. Since 
the signature obtained this way contained less unrelated 
components to the defects than traditional band-pass filter-
ing, it thus had a higher signal-to-noise ratio and gave more 
explicit information for the bearing failure detection. 

Table 4 allows distinguishing two types of time-
frequency representation: linear (WT, STFT) and quadratic 
(Wigner Ville distribution, HHT). The latter are more effi-
cient than the first in terms of time-frequency resolution. On 
the other hand, they suffer from problems of interference 
between frequency components. 
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Method Advantages Disadvantages 
Short times 

Fourier 
transform 

Free from cross terms, 
fast implementation, 

physically meaningful. 

Lacks adaptability due to fixed 
window, limited time-frequency 

resolution. 
Wavelet 
transform 

Free from cross terms, 
adaptive representation, 
and effective in detect-

ing transients. 

Difficult to select wavelet basis, 
limited time-frequency resolu-

tion. 

Winger – 
Ville  distri-

bution 

High time-frequency 
resolution 

Suffers from cross-term interfe-
rence for multi-component 

signals. 
Hilbert 
Huang 

transform 

High time-frequency 
resolution, adaptive 

signal decomposition 

Difficult to resolve signal 
components when instantaneous 
frequencies have crossings on 
time-frequency plane, pseudo 
IMFs due to endpoint effects 

and intermittency. 
Local mean 

decomposition 
High time-frequency 
resolution, adaptive 

signal decomposition 

Difficult to resolve signal 
components when instantaneous 

frequencies have crossing on 
time-frequency plane, pseudo 

PFs. 

Table 4. Categories of time-frequency analysis methods 

4. CONCLUSION 

This paper reviews different signal processing techniques 
used to extract indicators for bearings and gearboxes. The 
importance of these mechanical elements in the industry and 
their criticality leads to unfortunate consequences (mainten-
ance costs, safety, etc.) and thus justifies the need of effec-
tive fault indicators. Techniques currently used are based on 
the use of statistical indicators such as the RMS and the 
Kurtosis. These indicators give good results for estimating 
the general degradation of the system but find their limits to 
locate the fault responsible of the degradation. The spectral 
analysis allows highlighting the characteristic frequencies of 
faults. In contrast to time-frequency techniques, spectral 
analysis does not take into account the “time” information. 
In other words, the presence of a frequency component can 
be detected but no information on the time occurrence is 
available. Fourier transform and the cepstral analysis are the 
most commonly used for stationary signals. The time-
frequency analysis makes possible the representation on the 
same plane temporal and frequency characteristics when the 
signals are non-stationary and when information about the 
frequency bands where the defects can appear are available.  

All the proposed signal processing techniques can be 
classified as follows: time analysis, Fourier analysis, cep-
stral analysis, the cyclostationarity analysis, envelope analy-
sis and time-frequency analysis. These methods are now 
available in any modern spectrum analyzer but not very well 
applied in the industry. The results obtained by these tech-
niques in the references discussed in this paper have contri-
buted positively to choose among them the one that will 
define a framework for industrials to monitor bearings and 
gearboxes. 

 

 

REFERENCES 

Antoni, Jerome & Randall, R.B. (2002). Differential Diag-
nosis of Gear and Bearing Faults. Journal of Vibration 
and Acoustics. 124(2): 165-171. 

Ali, J. B., Fnaiech, N., Saidi, L., Chebel-Morello, B., and 
Fnaiech, F. (2015). Application of empirical mode de-
composition and artificial neural network for automatic 
bearing fault diagnosis based on vibration signals. Ap-
plied Acoustics, 89:16 – 27. 

Appleby, M. P. (2003). Wear debris detection and oil analy-
sis using ultrasonic and capacitance measurements. Mas-
ter’s thesis, Master of Science Thesis, the Graduate Fa-
culty of the University of Akron. 

Auger, F. and Flandrin, P. (1996). Ctime-frequency toolbox. 
CNRS France-Rice University, 46 (1996). 

Averbuch, A. Z. and Zheludev, V. A. (2002). Lifting 
scheme for biorthogonal multiwavelets originated from 
hermite splines. IEEE Transactions on Signal 
Processing, 50(3):487–500. 

Barszcz, T. and Jablonski, A. (2011). A novel method for 
the optimal band selection for vibration signal demodu-
lation and comparison with the kurtogram. Mechanical 
Systems and Signal Processing, 25(1):431 – 451. 

Bellini, A., Immovilli, F., Rubini, R., and Tassoni, C. 
(2008). Diagnosis of bearing faults of induction ma-
chines by vibration or current signals: A critical compar-
ison. In IEEE Industry Applications Society Annual 
Meeting, pages 1–8. 

Bengtsson, M. (2003). Standardization issues in condition 
based maintenance. In Condition Monitoring and Diag-
nostic Engineering Management, pages 651–660. 

Bennett, W. R. (1958). Statistics of regenerative digital 
transmission. Bell System Technical Journal, 
37(6):1501–1542. 

Benkedjouh, T., Zerhouni, N., & Rechak, S. (2018). Tool 
wear condition monitoring based on continuous wavelet 
transform and blind source separation. The Internation-
al Journal of Advanced Manufacturing Technology, 1-
13. 

Bleakie, A., & Djurdjanovic, D. (2013). Feature extraction, 
condition monitoring, and fault modeling in semicon-
ductor manufacturing systems. Computers in Indus-
try, 64(3), 203-213. 

Bonnardot, F. (2004). Comparison between angular and 
time domain analysis of rotating machine vibratory sig-
nals. Study of fuzzy-cyclostationnarity concept. PhD the-
sis, Institut National Polytechnique de Grenoble - INPG. 

Burgess, L. and Shimbel, T. (1995). What is the prognosis 
on your maintenance program. In Engineering and Min-
ing Journal, volume 196, pages 32–35. 

Cao, H., Fan, F., Zhou, K., and He, Z. (2016). Wheel-
bearing fault diagnosis of trains using empirical wavelet 
transform. Measurement, 82:439 – 449. 

Casoli, P., Bedotti, A., Campanini, F., & Pastori, M. (2018). 
A Methodology Based on Cyclostationary Analysis for 
Fault Detection of Hydraulic Axial Piston 
Pumps. Energies, 11(7), 1-19. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

12 

Chen, K., Li, X., Wang, F., Wang, T., and Wu, C. (2012). 
Bearing fault diagnosis using wavelet analysis. In Inter-
national Conference on Quality, Reliability, Risk, Main-
tenance, and Safety Engineering, pages 699–702. 

Dai, Y., Xue, Y., and Zhang, J. (2016). A continuous wave-
let transform approach for harmonic parameters estima-
tion in the presence of impulsive noise. Journal of Sound 
and Vibration, 360:300 – 314. 

Didier, G. (2004). Modélisation et diagnostic de la machine 
asynchrone en présence de défaillances. PhD thesis, Un-
iversité Nancy 1, France. 

Do, V. T. and Chong, U.-P. (2011). Signal model-based 
fault detection and diagnosis for induction motors using 
features of vibration signal in two- dimension domain. 
Journal of Mechanical Engineering, 57(9):655–666. 

Dron, J. P., Bolaers, F., Rasolofondraibe, I. (2004). Im-
provement of the sensitivity of the scalar indicators 
(crest factor, kurtosis) using a de-noising method by 
spectral subtraction: application to the detection of de-
fects in ball bearings. Journal of Sound and Vibra-
tion, 270(1-2), 61-73. 

El Badaoui, M. (1999). Contribution to the Vibratory Diag-
nosis of the Complex gears by the Cepstrum analysis. 
Theses, Université Jean Monnet - Saint-Etienne. 

Elghazel, W., Bahi, J., Guyeux, C., Hakem, M., Medjaher, 
K., and Zerhouni, N. (2015). Dependability of wireless 
sensor networks for industrial prognostics and health 
management. Computers in Industry, 68:1 – 15. 

Feng, Z. and Liang, M. (2014). Fault diagnosis of wind 
turbine planetary gearbox under nonstationary condi-
tions via adaptive optimal kernel time-frequency analy-
sis. Renewable Energy, 66:468 – 477. 

Feng, K., Wang, K., Zhang, M., Ni, Q., & Zuo, M. J. 
(2017). A diagnostic signal selection scheme for plane-
tary gearbox vibration monitoring under non-stationary 
operational conditions. Measurement Science and 
Technology, 28(3), 035003. 

Franklin, G. F., Da Powell, J., & Emami-Naeini, A. (2010) 
Feedback Control of Dynamic Systems (6th). 

Giurgiutiu, Victor, and Yu, L. (2003). In Comparison of 
Short-time Fourier Transform and Wavelet Transform of 
Transient and Tone Burst Wave Propagation Signals 
For Structural Health Monitoring, pages 1267–1274. 

Gong, X. and Qiao, W. (2013). Bearing fault diagnosis for 
direct-drive wind turbines via current-demodulated sig-
nals. IEEE Transactions on Industrial Electronics, 
60(8):3419–3428. 

Hammond, J. and White, P. (1996). The analysis of non-
stationary signals using time-frequency methods. Jour-
nal of Sound and Vibration, 190(3):419 – 447. 

Han, J., Dong, F., and Xu, Y. Y. (2009). Entropy feature 
extraction on flow pattern of gas/liquid two-phase flow 
based on cross-section measurement. Journal of Physics: 
Conference Series, 147(1):012041. 

Hemmati, F., Orfali, W., and Gadala, M. S. (2016). Roller 
bearing acoustic signature extraction by wavelet packet 

transform, applications in fault detection and size esti-
mation. Applied Acoustics, 104:101 – 118. 

Heng, A., Zhang, S., Tan, A. C., and Mathew, J. (2009). 
Rotating machinery prognostics: State of the art, chal-
lenges and opportunities. Mechanical Systems and Sig-
nal Processing, 23(3):724 – 739. 

Holmberg, K., Adgar, A., Arnaiz, A., Jantunen, E., Masco-
lo, J., and Mekid, S. (2010). E-maintenance. Springer 
Publishing Company, Incorporated, 1st edition. 

Holroyd, T. J. (2005). The application of ae in condition 
monitoring. In International Conference on Condition 
Monitoring, volume 47, pages 481–485. 

Hong, L. and Dhupia, J. S. (2014). A time domain approach 
to diagnose gearbox fault based on measured vibration 
signals. Journal of Sound and Vibration, 333(7):2164 – 
2180. 

Hountalas, D. T. (2000). Prediction of marine diesel engine 
performance under fault conditions. Applied Thermal 
Engineering, 20(18):1753 – 1783. 

Jaloretto, M. R., de Oliveira, C. R. E., and Kawakami, R. 
(2009). Trend analysis for prognostics and health moni-
toring. In CTA-DLR Workshop on Data Analysis & 
Flight Contr, pages 14–16. 

Kalgren, P. W., Byington, C. S., Roemer, M. J., and Wat-
son, M. J. (2006). Defining phm, a lexical evolution of 
maintenance and logistics. In IEEE Autotestcon, pages 
353–358. 

Kankar, P., Sharma, S. C., and Harsha, S. (2011). Rolling 
element bearing fault diagnosis using wavelet transform. 
Neurocomputing, 74(10):1638 – 1645. 

Kar, C. and Mohanty, A. (2006). Monitoring gear vibrations 
through motor current signature analysis and wavelet 
transform. Mechanical Systems and Signal Processing, 
20(1):158 – 187. 

Kim, B., Lee, S., Lee, M., Ni, J., Song, J., and Lee, C. 
(2007). A comparative study on damage detection in 
speed-up and coast-down process of grinding spindle-
typed rotor-bearing system. Journal of Materials 
Processing Technology, 187-188:30 – 36. 

Kim, N. H., An, D., & Choi, J. H. (2017). Prognostics and 
health management of engineering sys-
tems. Switzerland: Springer International Publishing. 

Kingsbury, N. (1998). The dual-tree complex wavelet trans-
form: A new technique for shift invariance and direc-
tional filters. 8th IEEE DSP Workshop, pages 319–322. 

Kumar, R. and Singh, M. (2013). Outer race defect width 
measurement in taper roller bearing using discrete wave-
let transform of vibration signal. Measurement, 
46(1):537 – 545. 

Kumar, S., Dolev, E., and Pecht, M. (2010). Parameter se-
lection for health monitoring of electronic products. Mi-
croelectronics Reliability, 50(2):161 – 168. 

Laerhoven, K. V., Aidoo, K. A., and Lowette, S. (2001). 
Real-time analysis of data from many sensors with neur-
al networks. In Proceedings Fifth International Sympo-
sium on Wearable Computers, pages 115–122. 

Lee, J.-Y. (2013). Sound and vibration signal analysis using 
improved short-time fourier representation. International 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

13 

Journal of Automotive and Mechanical Engineering, 
7:811–819. 

Lei, Y., Lin, J., He, Z., and Zuo, M. J. (2013). A review on 
empirical mode decomposition in fault diagnosis of ro-
tating machinery. Mechanical Systems and Signal 
Processing, 35(1):108 – 126. 

Leite, V. C. M. N., da Silva, J. G. B., Veloso, G. F. C., 
da Silva, L. E. B., Lambert-Torres, G., Bonaldi, E. L., 
and d. L. de Oliveira, L. E. (2015). Detection of loca-
lized bearing faults in induction machines by spectral 
kurtosis and envelope analysis of stator current. IEEE 
Transactions on Industrial Electronics, 62(3):1855–
1865. 

Liu, B., Ling, S., and Gribonval, R. (2002). Bearing failure 
detection using matching pursuit. NDT & E Internation-
al, 35(4):255 – 262. 

Li, M.-a., Liu, H.-n., Zhu, W., and Yang, J. (2017). Apply-
ing improved multiscale fuzzy entropy for feature ex-
traction of mi-eeg. Applied Sciences, 7:92. 

Li, X., Wang, X., Rong, M., Xie, D., Yin, N., Fu, Y., and 
Gao, Q. (2016a). Comparison of different time-
frequency analysis methods for sparse representation of 
pd-induced uhf signal. In 2016 China International Con-
ference on Electricity Distribution (CICED), pages 1–5. 

Li, Y., Xu, M., Wang, R., and Huang, W. (2016b). A fault 
diagnosis scheme for rolling bearing based on local 
mean decomposition and improved multiscale fuzzy en-
tropy. Journal of Sound and Vibration, 360:277 – 299. 

Ma, J., Wu, J., & Wang, X. (2018). A hybrid fault diagnosis 
method based on singular value difference spectrum 
denoising and local mean decomposition for rolling 
bearing. Journal of Low Frequency Noise, Vibration 
and Active Control, 1461348418765973. 

Mallat, S. G. (1989). A theory for multiresolution signal 
decomposition: the wavelet representation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 
11(7):674–693. 

Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with 
time-frequency dictionaries. IEEE Transactions on Sig-
nal Processing, 41(12):3397–3415. 

Mba, D. (2006). Development of acoustic emission technol-
ogy for condition monitoring and diagnosis of rotating 
machines: Bearings, pumps, gearboxes, engines, and ro-
tating structures. 38:3–16. 

Millioz, F. and Martin, N. (2011). Circularity of the stft and 
spectral kurtosis for time-frequency segmentation in 
gaussian environment. IEEE Transactions on Signal 
Processing, 59(2):515–524. 

Nagaraju, C.and Narayana Rao, K. and Mallikarijuna Rao, 
K. (2009). Application of 3d wavelet transforms for 
crack detection in rotor systems. Sadhana, 34(3):407–
419. 

Niu, G., Lau, D., and Pecht, M. (2010). Improving computer 
manufacturing management through lean six sigma and 
phm. In Prognostics and System Health Management 
Conference, pages 1–7. 

Niu, G. and Yang, B.-S. (2010). Intelligent condition moni-
toring and prognostics system based on data-fusion 

strategy. Expert Systems with Applications, 37(12):8831 
– 8840. 

Niu, G. (2017). Data-Driven Technology for Engineering 
Systems Health Management. Springer. 

Omar, F. K. and Gaouda, A. (2012). Dynamic wavelet-
based tool for gearbox diagnosis. Mechanical Systems 
and Signal Processing, 26:190 – 204. 

Oppenheim, A. V. and Schafer, R. W. (2004). From fre-
quency to quefrency: a history of the cepstrum. IEEE 
Signal Processing Magazine, 21(5):95–106. 

Ozturk, H., Sabuncu, M., and Yesilyurt, I. (2008). Early 
detection of pitting damage in gears using mean fre-
quency of scalogram. Journal of Vibration and Control, 
14(4):469–484. 

Pang, B., Tang, G., Tian, T., & Zhou, C. (2018). Rolling 
Bearing Fault Diagnosis Based on an Improved HTT 
Transform. Sensors, 18(4), 1203. 

Park, C., Looney, D., Hulle, M. M. V., and Mandic, D. P. 
(2011). The complex local mean decomposition. Neuro-
computing, 74(6):867 – 875. 

Peeters, C., Guillaume, P., & Helsen, J. (2018). Vibration-
based bearing fault detection for operations and main-
tenance cost reduction in wind energy. Renewable 
Energy, 116, 74-87. 

Prieto, M. D., Cirrincione, G., Espinosa, A. G., Ortega, 
J. A., and Henao, H. (2013). Bearing fault detection by a 
novel condition-monitoring scheme based on statistical-
time features and neural networks. IEEE Transactions 
on Industrial Electronics, 60(8):3398–3407. 

Q. Zhu, Y. W. and Shen, G. (2012). Research and compari-
son of time-frequency techniques for nonstationary sig-
nals. Journal of computers, 7(4):954–958. 

Rafiee, J. and Tse, P. (2009). Use of autocorrelation of 
wavelet coefficients for fault diagnosis. Mechanical Sys-
tems and Signal Processing, 23(5):1554 – 1572. 

Rasovska, I., Chebel-Morello, B., and Zerhouni, N. (2007). 
Classification des différentes architectures en mainte-
nance. In International congress on electrical engineer-
ing, volume 23, pages 1–12. 

Roemer, M. J. and Kacprzynski, G. J. (2000). Advanced 
diagnostics and prognostics for gas turbine engine risk 
assessment. In IEEE Aerospace Conference, volume 6, 
pages 345–353 vol.6. 

Saidi, L., Fnaiech, F., Capolino, G. A., and Henao, H. 
(2012). Stator current bi-spectrum patterns for induction 
machines multiple-faults detection. In IECON 2012 - 
38th Annual Conference on IEEE Industrial Electronics 
Society, pages 5132–5137. 

Sawalhi, N. (2007). Rolling element bearings: Diagnostic, 
prognostic and fault simulations. Theses, Faculty Eng. 
Mech. Manuf. Eng., Univ. New South Wales. 

Schmidt, R. (1986). Multiple emitter location and signal 
parameter estimation. IEEE Transactions on Antennas 
and Propagation, 34(3):276–280. 

Serbes, G., Gulcur, H. O., and Aydin, N. (2016). Directional 
dual-tree complex wavelet packet transforms for 
processing quadrature signals. Medical & Biological 
Engineering & Computing, 54(2):295–313. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

14 

Seryasat, O. R., shoorehdeli, M. A., Honarvar, F., and Rah-
mani, A. (2010). Multi-fault diagnosis of ball bearing 
based on features extracted from time-domain and multi-
class support vector machine (msvm). In IEEE Interna-
tional Conference on Systems, Man and Cybernetics, 
pages 4300–4303. 

Soualhi, A., Medjaher, K., and Zerhouni, N. (2015). Bearing 
health monitoring based on hilbert huang transform, 
support vector machine, and regression. IEEE Transac-
tions on Instrumentation and Measurement, 64(1):52–
62. 

Soualhi, A., Razik, H., Clerc, G., and Doan, D. D. (2014). 
Prognosis of bearing failures using hidden markov mod-
els and the adaptive neuro-fuzzy inference system. IEEE 
Transactions on Industrial Electronics, 61(6):2864–
2874. 

Starr, A. G. (1997). A structured approach to the selection 
of condition based maintenance. In Fifth International 
Conference on Factory 2000 - The Technology Exploita-
tion Process, pages 131–138. 

Swearingen, K., Majkowski, W., Bruggeman, B., Gilbert-
son, D., Dunsdon, J., and Sykes, B. (2007). An open sys-
tem architecture for condition based maintenance over-
view. In IEEE Aerospace Conference, pages 1–8. 

Sweldens, W. (1998). The lifting scheme: A construction of 
second generation wavelets. 29:511–546. 

Tandon, N. and Choudhury, A. (1999). A review of vibra-
tion and acoustic measurement methods for the detection 
of defects in rolling element bearings. Tribology Inter-
national, 32(8):469 – 480. 

Thomas, M. (2002). Fiabilité, maintenance prédictive et 
vibration des machines. Université du Québec, Ecole de 
technologie supérieure. 

Thurston, M. (2001a). An open standard for web-based 
condition-based maintenance systems. In Annual Main-
tenance and Reliability Conference, pages 401 – 415. 

Thurston, M. G. (2001b). An open standard for web-based 
condition-based maintenance systems. In IEEE Autotest-
con Proceedings. IEEE Systems Readiness Technology 
Conference., pages 401–415. 

Tobon-Mejia, D., Medjaher, K., and Zerhouni, N. (2012). 
Cnc machine tool’s wear diagnostic and prognostic by 
using dynamic bayesian networks. Mechanical Systems 
and Signal Processing, 28:167 – 182. 

Tsoumas, I., Mitronikas, E., Georgoulas, G., and Safacas, A. 
(2005). A comparative study of induction motor current 
signature analysis techniques for mechanical faults de-
tection. In 5th IEEE International Symposium on Diag-
nostics for Electric Machines, Power Electronics and 
Drives, pages 1–6. 

Tsui, K.-L., Chen, N., Zhou, Q., Hai, Y., and Wang, W. 
(2015). Prognostics and health management: A review 
on data driven approaches. 2015:1–17. 

Walter, T. J. and Lee, H. (2004). Development of a smart 
wireless sensor for predicting bearing remaining useful 
life. In 58th Meeting of the society for machinery failure 
prevention technology, page 77. 

Wang, S., Pentney, W., Popescu, A.-M., Choudhury, T., and 
Philipose, M. (2007). Common sense based joint train-
ing of human activity recognizers. In Proceedings of the 
20th International Joint Conference on Artifical Intelli-
gence, pages 2237–2242. 

Wang, W. and McFadden, P. (1996). Application of wave-
lets to gearbox vibration signals for fault detection. 
Journal of Sound and Vibration, 192(5):927 – 939. 

Wang, X., Makis, V., and Yang, M. (2010a). A wavelet 
approach to fault diagnosis of a gearbox under varying 
load conditions. Journal of Sound and Vibration, 
329(9):1570 – 1585. 

Wang, Y., He, Z., and Zi, Y. (2010b). Enhancement of sig-
nal denoising and multiple fault signatures detecting in 
rotating machinery using dual-tree complex wavelet 
transform. Mechanical Systems and Signal Processing, 
24(1):119 – 137. 

Wang, Y., Ma, Q., Zhu, Q., Liu, X., and Zhao, L. (2014). 
An intelligent approach for engine fault diagnosis based 
on hilbert-huang transform and support vector machine. 
Applied Acoustics, 75:1 – 9. 

Yam, R. C. M., Tse, P., Li, L., and Tu, P. (2001). Intelligent 
predictive decision support system for condition-based 
maintenance. The International Journal of Advanced 
Manufacturing Technology, 17(5):383–391. 

Yan, R., Gao, R. X., and Chen, X. (2014). Wavelets for fault 
diagnosis of rotary machines: A review with applica-
tions. Signal Processing, 96:1 – 15. 

Yang, Y. and Nagarajaiah, S. (2014). Blind identification of 
damage in time-varying systems using independent 
component analysis with wavelet transform. Mechanical 
Systems and Signal Processing, 47(1):3 – 20. 

Yu, L., Cleary, D., Osborn, M., and Rajiv, V. (2007). In-
formation fusion strategy for aircraft engine health man-
agement. In Power for Land, Sea, and Air, volume 1, 
pages 531–538. 

Yuan, J., He, Z., and Zi, Y. (2010). Gear fault detection 
using customized multiwavelet lifting schemes. Mechan-
ical Systems and Signal Processing, 24(5):1509 – 1528. 

 


