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ABSTRACT 

Loss of wind turbine power production identified through 

performance assessment is a useful tool for effective 

condition monitoring of a wind turbine. Power curves 

describe the nonlinear relationship between power generation 

and hub height wind speed and play a significant role in 

analyzing the performance of a turbine. 

Performance assessment using nonparametric models is 

gaining popularity. A Gaussian Process is a nonlinear, non-

parametric probabilistic approach widely used for fitting 

models and forecasting applications due to its flexibility and 

mathematical simplicity. Its applications extended to both 

classification and regression related problems. Despite 

promising results, Gaussian Process application in wind 

turbine condition monitoring is limited. 

In this paper, a model based on a Gaussian Process developed 

for assessing the performance of a turbine. Here, a reference 

power curve using SCADA datasets from a healthy turbine is 

developed using a Gaussian Process and then was compared 

with a power curve from an unhealthy turbine. Error due to 

yaw misalignment is a standard issue with a wind turbine, 

which causes underperformance. Hence it is used as case 

study to test and validate the algorithm effectiveness.  

1. INTRODUCTIONS 

Use of wind energy to meet energy needs is considered as a 

vital alternative option to deal with existing global fossil fuel 

crisis and climate change. Wind energy is one of the fastest 

growing sources of power production in the world today, but 

still considered to be expensive, hence there is a constant 

need to reduce the cost of operating and maintaining them, 

i.e., Operation and maintenance (O&M) cost, especially 

offshore, (Hyers, R. W et al.2006). Active condition 

monitoring can help ensure a low cost of energy (COE),  

 

increase life expectancy and improve the efficiency of a 

turbine. Condition monitoring is a widely used tool for early 

detection of failures and or faults to minimize the downtime, 

maximize the productivity and prevent turbines from 

catastrophic damage. 

Readily available Supervisory control and data acquisition 

(SCADA) datasets obtained from operational wind turbines 

are a cost-effective condition monitoring approach since 

these data sets are freely available and contain vital 

information about the wind turbines (Zaher, A et al.2009). 

Proper understanding of these SCADA datasets is useful for 

constructing robust models for condition monitoring and thus 

helpful in reducing the operation and maintenance (O&M) 

costs, which could reach up to 1/3rd Of the total project cost, 

especially for offshore wind turbines where O&M costs are 

high, (Martin, R et al. 2016).  

Power curves are significant for developing robust models for 

condition monitoring purposes; they record the power 

generation of a turbine at different hub height wind speeds. 

SCADA datasets obtained from healthy turbine were used to 

fit bivariate probability distribution functions, illustrating the 

power curve of existing turbines, which is useful for 

identifying the anomalous or abnormal behavior, (M. Lydia 

et al.2014). Both parametric and nonparametric models have 

used for fitting the power curve for wind turbine condition 

monitoring. Polynomial regression (a parametric model) 

gives a smooth power curve fitting, however, as suggested in 

(S. Shokrzadeh et al.2014), it is very much responsive to 

anomalies within the observations and requires the high 

degree polynomial regression model to give suitable and 

accurate fitting to the measured data sets. Also, it is worth 

noting that parametric models are mostly based on 

fundamental equations of power available in the wind and do 

not represent the precise characteristics of actual turbines, 

(Thapar V et al.2011) hence nonparametric models come into 

play and are described in next paragraph. 
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Non-parametric models are in the wind turbine area since 

they are relatively more accurate than parametric models 

because they do not impose any pre-specified model 

formulations, see Ref. (S. Shokrzadeh et al.2014),  Neural 

networks (Leszek Romański et al.2017), fuzzy logic methods 

(Lorenzo Dambrosio.2017), kNN (Raik Becker et al.2017), 

cubic spline regression (T. Ouyanga et al.2017), Non-linear 

state estimation technique (NSET) (Y. Wang & D. 

Infield.2013), random forest (Y. Si et al.2017), Gaussian 

Process (GP) (R. K. Pandit & D. Infield.2017), are widely 

used non-parametric models for wind turbines, for further 

details about these nonparametric methods see (S. 

Shokrzadeh et al.2014) and (Thapar V et al.2011). 

A Gaussian Process (GP) is a nonparametric, nonlinear 

machine learning approach increasingly used in recent times 

for wind turbine modeling due to its flexibility and simplicity 

in constructing the nonlinear models. In contrast, Ref (Neal, 

R. M.,1994), Artificial Neural Networks (ANN), a 

nonparametric model constructed which entirely depends on 

training parameters and the input function for the 

convergence makes the ANN model complex, while a 

Gaussian Process model is easy to understand and uses few 

assumptions for developing a useful GP model. Also, GP 

models can be optimized precisely for a given value of their 

hyper-parameters: the weight decay and the spread of a 

Gaussian kernel, Ref. (C. E. Rasmussen & C. K. I. 

Williams.2006). These strengths make GPs an ideal choice 

for solving problems related to fitting, forecasting and 

anomaly detection related to operation and maintenance 

(O&M), rightly described in (Xueru Wang et al.2014) and 

(Niya Chen et al.2013). GPs are also useful for constructing 

a preventive model for early detection of faults or anomalies 

which will be helpful in preventing the turbine experience 

catastrophic damage. GP algorithms allow continuous 

monitoring of turbine health by constructing automated 

failure detection algorithms; this improves reliability and 

reduces the O&M cost by eliminating unnecessary scheduled 

maintenance. 

This paper introduces the application of a Gaussian Process 

in assessing the performance of wind turbine based on power 

curves. Yaw misalignment affects the performance of a wind 

turbine. Hence, this is used here as a test case to validate the 

proposed GP model effectiveness. The ability to highlight 

performance deviations and GP model effectiveness 

investigated by use of real measurements available in the 

form of SCADA datasets obtained from the operational wind 

turbine (Kim K et al.2011). The strength and weakness of GP 

models will be assessed and summarised at the end of the 

paper. 

2. SCADA DATA DESCRIPTION, IMPORTANCE 

AND PRE-PROCESSING 

Supervisory control and data acquisition (SCADA) system 

reflect the useful information such as for condition 

monitoring and or operation and maintenances 

(O&M). Using SCADA based condition monitoring 

considered as cost-effective (since this information is freely 

available without extra cost) unlike existing condition 

monitoring approaches, e.g., Vibration analysis and oil debris 

detection are expensive, which increases the overall cost of 

O&M, (Kusiak A & Zhang Z. 2010) and (P. Dao et al.2018). 

SCADA datasets play a vital role in constructing a preventive 

model for early fault or anomaly detections. 

SCADA data comes with operational and technical details of 

a turbine component and typically 10 minutes’ average data 

used in wind industries for fault diagnosis and prognosis 

activities, (Zaher AS et al.2007). Despite such advantageous; 

SCADA datasets are not free from measurement error which 

recorded in SCADA datasets due to sensor malfunction and 

or failures and if such error allowed in the model analysis 

then the result would be inaccurate. Hence, it is desirable to 

minimize these errors before making further analysis. Criteria 

for examples; timestamp mismatches, out of range values, 

negative power values, and turbine power curtailment being 

used as per Ref. (M. Schlechngen & I. F. Santos.2011) to 

remove deceptive data and being used to model measured 

power curve in which air density correction applied as per 

IEC standards 61400-12-1, (IEC 61400-12-1. 2006) 

described in the next section. The 2.3 MW Siemens turbines 

(located in Scotland) SCADA datasets of 2009 a year 

considered in this paper for constructing a reference fitted GP 

power curve described in section 5. 

3. POWER CURVE MODELING FOR 

PERFORMANCE ASSESSMENT OF A WIND 

TURBINE 

Power curve widely used to assess, monitor and analyze the 

performance of a wind turbine with the help of the 

operational data of wind power plant which is available in the 

form of SCADA data points. Due to the continuous evolution 

of turbine rotor sizes, the importance of the SCADA system 

and a met mast became more dominating to evaluate the 

turbine performance, and with the use of up-to-date 

technology (e.g., Remote sensing), a better understanding of 

turbine performance can be explained. 

IEC standards 61400-12-1 suggests the ‘methods of bins’ for 

constructing the measured power curve of wind turbines 

which is useful for annual energy estimations.  Though it is 

worth to note that the fast wind fluctuations in 10 min 

averaging datasets may not include IEC binning methods, and 

hence particular attention needs to be paid, (IEC 61400-12-1. 

2006).   

Power curve used to describe the relationship between the 

power output of a turbine and the wind speed at the turbine 

site and mathematically expressed as,                              

                      𝑃 = 0.5 𝜌𝐴𝐶𝑝(λ, 𝛽 ) 𝑣3                (1) 
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where ρ is Air density (𝑘𝑔 𝑚3⁄ ), A is swept area (𝑚2) , 𝐶𝑝 is 

the power coefficient of the wind turbine and 𝑣 is the hub 

wind speed (𝑚 𝑠𝑒𝑐⁄ ) . The equation (1) report the simple 

relationship with limited precision due to the complexity and 

the influences of these parameters on turbine 

productivity. The power coefficient is a strong function of the 

tip speed ratio  and pitch angle  (β) . Although, WTs also 

depends on flow conditions for examples; terrain, wind shear, 

turbulence intensity and air density, Ref. (Vaishali Sohoni et 

al.2016) and needs to be investigated its impact on Gaussian 

Process model and reserved for a future task. 

IEC binned power curve influenced by ambient temperature, 

humidity, and pressure and hence affects the power 

production of a wind turbine. Out of these parameters, the 

temperature has the highest contribution to air density, and 

therefore IEC recommend air density correction prior making 

further analysis for accurate power curve modeling. The 

SCADA datasets used in this paper are from a pitch-regulated 

wind turbine and hence as per IEC standard, air density 

correction being applied using equations (2) and (3) where 

corrected wind speed 𝑉𝐶 is calculated as follows, 

                 ρ = 1.225 [
288.15

T
] [

B

1013.3
]                    (2) 

     and,     VC =  VM [ 
ρ

1.225
 ]

1

3
                                    (3) 

where, 𝑉𝐶 and 𝑉𝑀 are the corrected and measured wind speed 

in m/sec and the corrected air density is calculated by 

equation (2) where B is atmospheric pressure in mbar and T 

the temperature in Kelvin in which 10 minute average values 

obtained from SCADA data are used. Using above equations, 

a corrected and filtered (using section 2) power curve being 

constructed and is shown in figure 1 and these datasets would 

be used in upcoming sections for developing GP algorithm 

related to performance assessments. 

 

Figure 1. Filtered and corrected power curve 

4. YAW MISALIGNMENT- A CASE STUDY 

A significant loss of wind turbine power can be due to yaw 

misalignment. Ref. (Avent lidar technology. 2013) suggests 

that an average of misalignment causes an estimated 2 

% reduction in annual energy production (AEP) with roughly 

a loss of 2 - 3% for of average yaw error. Yaw error not only 

reduces the power production but also increases component 

loads, for instance (J. G. Schepers.2007) suggested that yaw 

misalignment had effects on blade root and shaft loads. 

Another article, (K. Boorsma.2012), found that for a 2.5 MW 

wind turbine that edgewise fatigue equivalent loads increased 

with an increase in yaw error. Theoretically, power output is 

reduced by the cube of the yaw misalignment error, though 

Ref. (M. Spencer et al.2013) and (K. A. Kragh & P. Fleming. 

2012) suggests a better relationship could be cosine-squared 

instead of cosine-cubed, as validated by empirical data. 

Principally, yaw position regulated in response to the wind 

direction change to extract maximum power productions 

from a wind turbine. Various machine learning approaches 

have been developed for wind direction prediction, for 

example, in Ref. (Song, D et al.2017) Two models proposed, 

namely; a univariate auto-regressive integrated moving 

average (ARIMA) model and a hybrid model that merges the 

ARIMA model into the Kalman filter (KF). The results 

suggest that the hybrid model performs better in terms of 

various performance indicators. 

Active yaw alignment increases performance and power 

production of a wind turbine. For example, (PMO Gebraad et 

al.2016), applying a game-theoretic optimization approach to 

yaw misalignment, increases the power production of a 

simulated wind farm. Wind tunnel testing of two turbines has 

evaluated a Bayesian optimization model, using yaw and 

blade pitch as inputs as described in (Jinkyoo Park & Kincho 

H Law.2015). Ref (PMO Gebraad et al.2016) suggest that 

combined optimization of yaw control and layout can reduce 

the cost of energy from wind farms. In short, yaw 

misalignment impacts on power output and loads. 

Based on the above discussion, yaw error and or 

misalignment is considered to provide an appropriate case 

study for validating the effectiveness of performance 

assessment algorithms of a GP model. SCADA datasets from 

an unhealthy turbine over the time period from 13th April 

2009 to 18th April 2009 has been selected since the yaw 

misalignment error is apparent, as shown in figure 2 and this 

is further confirmed by figure 3 indicating that the nacelle is 

stuck in a fixed position for an extended period despite 

changes in wind direction. This dataset would be used in a 

GP power curve algorithm for performance analysis of a wind 

turbine. 
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Figure 2. Absolute yaw error in time series 

 

Figure 3. yaw misalignment via wind direction and nacelle 

direction in time series 

5. GAUSSIAN PROCESS MODELS FOR WIND 

TURBINE PERFORMANCE ASSESSMENTS 

A Gaussian process (GP) is a stochastic, nonlinear and 

nonparametric model whose distribution function is the joint 

distribution of a collection of random variables and widely 

suitable for classification and regression problems, (C. E. 

Rasmussen & C. K. I. Williams.2006) and (Ping Li & 

Songcan Chen.2016). GP is a machine learning algorithm 

using a lazy learning approach and uses the measure of 

similarity between the points (via covariance functions) to fit 

and or estimate the future value from a training dataset. In 

Bayesian inference, a GP can be used as a prior probability 

distribution over the functions, (Rasmussen and Williams 

2006). Multivariate Gaussian distributions control the 

manipulation of the GP model when a finite number of data 

points observed. A Gaussian Process 𝑓(𝑥) is fully defined by 

mean function 𝑚(𝑥) and covariance function 𝐾(𝑥, 𝑥′) as 

follows,                           

                𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥) , 𝐾(𝑥, 𝑥′))           (4) 

Here, mean functions 𝑚(𝑥) is an 𝑛 × 1 vector and 𝐾(𝑥, 𝑥′) 

is an 𝑛 × 𝑛 matrix as described below,  

  𝑚 = [
𝑚(𝑥)

𝑚(𝑥′)
] , 𝐾 =[

   𝑘(𝑥, 𝑥)       𝑘(𝑥, 𝑥′)

         𝑘(𝑥′, 𝑥)     𝑘(𝑥′, 𝑥′)     
] 

The covariance functions define the correlations between 

different points, i.e., calculates the likeness between these 

points and considered to be sole of any GP models and 

decided factor for judging the GP models accuracy. There are 

varieties of covariance functions (or kernel) available and 

well described in Ref. (C. E. Rasmussen & C. K. I. 

Williams.2006). For this paper, a squared exponential 

covariance function used since it has been shown to work 

well with wind turbine power curve estimation. For any finite 

collection of input {𝑥1, 𝑥2, … . . , 𝑥𝑛} , squared exponential 

covariance functions (SECov) mathematically defined as 

below, 

         𝑘𝑆𝐸 (𝑥, 𝑥′) =   𝜎𝑓
2exp (−

(𝑥−𝑥′)
2

2𝑙2
 )           (5) 

SCADA data of the wind turbine comes with measurement 

errors, so to compensate these error effects, it is desirable to 

add a noise term to the covariance function to minimize its 

impact and improve the accuracy of the GP model. Hence 

equation (5) modified to be: 

   𝑘𝑆𝐸 (𝑥, 𝑥′) =   𝜎𝑓
2exp (−

(𝑥−𝑥′)
2

2𝑙2  ) + 𝜎𝑛
2𝛿(𝑥, 𝑥′)   

(6) 

where 𝜎𝑓
2 , 𝜎𝑛

2  and 𝑙 are known as the hyper-parameters. 𝜎𝑓
2 

signifies the signal variance and 𝑙 is a characteristic length 

scale which describes how quickly the covariance decreases 

with the distance between points. σ𝑛 is the standard deviation 

of the noise fluctuation and gives information about model 

uncertainty. 𝛿 is the Kronecker delta. Effective Optimization 

of these hyper parameters govern GP models behaviour and 

accuracy. The optimization of these hyper parameter 

described in next paragraph. 

To construct a GP power curve, the first step is to estimate 

the mean value and variance for the given training data set A 

of n observations,  𝐴 = {(𝑈𝑖 , 𝑃𝑖), 𝑖 = 1, … … , 𝑁} , where 𝑈𝑖 

and 𝑃𝑖   are the wind speed and power values respectively. For 

our application, consider the observed values 𝑦𝑖  are modeled 

as the sum of true function 𝑓(𝑥𝑖) plus added Gaussian noise 

as follows: 

                          𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖                       (7) 

The above equation is theoretically used to define the 

underlying function of the data modeled where 𝑥 are values 

from the training datasets and 𝜖 is Gaussian white noise of 

variance 𝜎𝑛
2 such that, 𝜖 = 𝑁(0, 𝜎𝑛

2).   

A prior distribution is used to describe the information about 

an uncertain parameter, and it can be either uninformative or 

informative, which is vital for effective GP modeling. This 

together with probability distributions of new data points is 

used to generate the posterior distribution. The training 

datasets are used to calculate the posterior distribution of 𝑃∗ 

for a given input 𝑈∗ , which is defined as p(𝑃∗|𝑈∗, 𝑈𝑡𝑟 , 𝑃𝑡𝑟) in 
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which {𝑃∗ , 𝑈∗}  are the future power and wind speed 

values. 𝑃𝑡𝑟 , 𝑈𝑡𝑟  are the training SCADA datasets of power 

and wind speed respectively. 

The squared exponential covariance function depends on 

hyper-parameters which needed be optimised before the 

posterior distribution of 𝑃∗ is calculated in order to ensure GP 

model accuracy. Maximization of the log marginal likelihood 

has been used here to optimize the hyper parameters (𝜎𝑓
2 , 

𝜎𝑛
2 and 𝑙),  (see for example Rasmussen and Williams 2006), 

through the application of the following equation: 

   𝑙𝑜𝑔(𝑝(𝑃𝑡𝑟|𝑈𝑡𝑟)) = −0.5𝑃𝑡𝑟
𝑇 𝐾−1𝑃𝑡𝑟 −

                    0.5𝑙𝑜𝑔(|𝐾|) −  05𝑛𝑙𝑜𝑔(2𝜋)          (8) 

A quasi-Newton optimization method was used to optimize 

the hyper-parameters through the likelihood function 

(equation 8) in simple ML-II fashion, (C. E. Rasmussen & C. 

K. I. Williams.2006) and (Jie Chen & Nannan Cao.2013). 

This optimization approximates the Hessian and uses a trust-

region method with a dense, symmetric rank-1-based(SR1). 

After optimization, the prediction of the distribution of 𝑃∗ for 

a given 𝑈∗  is simple and straightforward. The predicted 

distribution of 𝑃∗ , p (𝑃∗|𝑈∗, 𝑈𝑡𝑟 , 𝑃𝑡𝑟)  follows a Gaussian 

distribution with mean and variance expressed by following 

equations, 

                      𝑚(𝑃∗) = 𝑘∗
𝑇𝐾−1𝑃𝑡𝑟                          (9) 

         𝜎2(𝑃∗) = 𝑘∗∗ − 𝑘∗
𝑇𝐾−1𝑘∗ + 𝜎𝑛

2              (10) 

where,  

𝑘∗ = [𝑘(𝑈∗, 𝑈1)𝑘(𝑈∗, 𝑈2)𝑘(𝑈∗, 𝑈3) … … … 𝑘(𝑈∗, 𝑈𝑛)]𝑇  are 

covariance values between test and training data points in the 

form of column vector and 𝑘∗∗ = 𝑘(𝑈∗, 𝑈∗)  is the auto 

covariance function of the testing data points. The obtained 

𝜎2 is the variance of the predicted function and is used to 

estimate the confidence intervals (chosen to be 95% ) of the 

GP power curve model using equation (11). 

                                𝐶𝐼𝑛 = 𝑚𝑛 ± 2𝜎𝑛          (11) 

Despite having advantages especially in dealing with 

nonlinear models, GP accuracy suffers when dealing with a 

large number of data points due to the well-known cubic 

inversion issue. Some  of the proposed non-

parametric methods, for example (J.Hartikainen et al. 2010), 

(S. Sarkka et al.2013) and (Jie Chen & Nannan Cao.2013) 

aim to solve this issue but these methods need high 

processing power and computational cost.  Finding an 

appropriate balance between computational cost and 

processing power is the key to effective GP modeling for 

anomaly detection for wind turbine condition monitoring. 

Using the filtered and air density corrected power curve of 

figure 1, a GP algorithm for power curve estimation was 

developed and realized in MATLAB, with the result shown 

in figure 4. The GP power estimation closely matches the 

measured power, as shown in figure 6 where power has been 

plotted as a time series (of 10-minute points). The accuracy 

of the model is confirmed by the statistical error metrics 

(RMSE, MAE,𝑅2), shown in table 1. 

GP 

model 

RMS

E 

MAE 𝑅2 Prediction speed 

Power 

curve 

69.38 48.16 0.99 ~29000 obs/sec 

      Table1: Statistical error metrics 

 

Figure 4. Fitted GP power curve 

 

Figure 5. Fitted GP power curve with confidence intervals 
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Figure 6. Fitted GP power comparison with measured power 

in time series 

The unique feature regarding GP estimation is the provision 

of not only an estimate for that point in question but also 

information about uncertainty via its confidence intervals 

(CIs), which plays a vital role in using a GP model for early 

fault detection. These GP confidence intervals provide 

knowledge about the uncertainty surrounding an estimation, 

but is itself a model-based estimate, see for example 

(Neyman, J. 1937). In (Alain Bensoussan et al. 2014), 

confidence intervals for annual wind power productions 

defined whereas in (Breno Menezes.2014), confidence 

intervals for reservoir computing’s wind power generation 

applied. The datasets recorded in the form of SCADA 

datasets are considered as noisy hence GP estimates of 

confidence do not include this, but the model does separately 

estimate the magnitude of the associated uncertainty.  For a 

practical GP model, it is desirable to modify the confidence 

intervals to minimize the noise impacts, (Andrew 

McHutchon & Carl Edward Rasmussen.2011). Hence the 

fitted GP power curve with adjusted confidence intervals is 

plotted in figure 5. It is worth noting that in figure 5, the 

confidence intervals (CIs) represent the pointwise mean plus 

and minus two times the standard deviation for given input 

value (corresponding to the 95% confidence region which 

represents the significance level of 0.05), for the prior and 

posterior respectively. 

Unhealthy data due to yaw misalignments (described in 

section 4) used to assess in terms of a probabilistic approach 

where each new data point compared with the constructed GP 

reference power curve and if these data points lie outside of 

the confidence intervals of the GP reference power curve then 

this indicates anomalous behavior and possible fault; results 

shown in figure 7. A common cause of turbine 

underperformance is due to nacelle misalignment, and other 

reasons such as error due to pitch and controller also 

contribute to the turbine underperformance, (Alain 

Bensoussan et al.2014) and (Breno Menezes.2014). The 

power curve is used here as the primary indicator for turbine 

performance assessments, derived from nacelle anemometry 

which can be misleading; for example, interpreted as over 

performance (identified by GP model and is shown in figure 

8) and these over performance reading is may be due to the 

control operator sides. 

 

Figure 7. GP underperformance                      

 

Figure 8. GP over performance                      

6. CONCLUSION  

In this paper, a novel way to assess wind turbine performance 

using a Gaussian Process (nonparametric, nonlinear) 

algorithm has been proposed. A case study with known yaw 

error has been used to validate and evaluate the effectiveness 

of this model. SCADA datasets obtained from wind farm 

industry were used to train the GP model and verify its 

effectiveness. The results confirm the effectiveness of GP 

approach in dealing with performance assessment of a wind 

turbine. It is worth noting that the GP model accuracy is 

directly influenced by its confidence intervals. Also, a GP 

model can suffer from incorporating a large number of data 

points due to the cubic inverse matrix issue, described in 

section 5. Hence striking a balance between the number of 
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data points and computational cost is key to developing 

effective Gaussian Process algorithms for condition 

monitoring purposes. 

Future work includes considering other nonparametric 

models for validating GP model effectiveness. 

ACKNOWLEDGMENT 

This project has received funding from the European Union’s 

Horizon 2020 research and innovation programme under the 

Marie Sklodowska-Curie grant agreement No 642108. 

REFERENCES 

Hyers, R. W et al.,2006. Condition Monitoring and Prognosis 

of Utility Scale Wind Turbines. Energy Materials, vol. 

1, no. 3. pp. 187-203. 

Zaher, A et al.,2009. Online wind turbine fault detection 

through automated SCADA data analysis. Wind Energy., 

12: 574–593. doi:10.1002/we.319. 

Martin, R et al., 2016.Sensitivity analysis of offshore wind 

farm operation and maintenance cost and availability. 

Renewable Energy, 85, pp. 1226-1236. 

M. Lydia et al., 2014. A comprehensive review on wind 

turbine power curve modeling techniques. Renew. 

Sustain. Energy Rev., 30, pp. 452-460. 

S. Shokrzadeh et al., 2014. Wind Turbine Power Curve 

Modeling Using Advanced Parametric and 

Nonparametric Methods.  IEEE Transactions on 

Sustainable Energy, vol.5, no.4, pp.1262-269.doi: 

10.1109/TSTE.2014.2345059. 

Thapar V et al.,2011. Critical analysis of methods for 

mathematical modelling of wind turbines. Renew 

Energy,36:3166–77. 

http://dx.doi.org/10.1155/2016/8519785. 

Leszek Romański et al.,2017. Estimation of operational 

parameters of the counter-rotating wind turbine with 

artificial neural networks. Archives of Civil and 

Mechanical Engineering, Volume 17, Issue 4, Pages 

1019-1028. 

Lorenzo Dambrosio.,2017. Data-based Fuzzy Logic Control 

Technique Applied to a Wind System. Energy Procedia, 

Volume 126, Pages 690-697. 

Raik Becker et al.,2017. Completion of wind turbine datasets 

for wind integration studies applying random forests and 

k-nearest neighbors. Applied Energy, Volume 208, 

Pages 252-262. 

T. Ouyanga et al.,2017. Modelling wind-turbine power 

curve: a data partitioning and mining approach Renew. 

Energy, 01102 (A), pp. 1-8. 

Y. Wang & D. Infield.,2013. Supervisory control and data 

acquisition data-based non-linear state estimation 

technique for wind turbine gearbox condition 

monitoring. IET Renewable Power Generation, vol. 7, 

no. 4, pp. 350-358, doi: 10.1049/iet-rpg.2012.0215.  

Y. Si et al.,2017, A data-driven approach for fault detection 

of offshore wind turbines using random forests. IECON 

2017 - 43rd Annual Conference of the IEEE Industrial 

Electronics Society, Beijing, China, pp. 3149-3154. doi: 

10.1109/IECON.2017.8216532. 

R. K. Pandit & D. Infield.,2017. Using Gaussian Process 

theory for wind turbine power curve analysis with 

emphasis on the confidence intervals. 6th International 

Conference on Clean Electrical Power (ICCEP), Santa 

Margherita Ligure, pp.744-749.                                                                  

doi: 10.1109/ICCEP.2017.8004774. 

Neal, R. M.,1994. Bayesian Learning for Neural Networks. 

PhD thesis, University of Toronto, Canada. 

C. E. Rasmussen & C. K. I. Williams., 2006.Gaussian 

Processes for Machine Learning, the MIT Press, ISBN 

026218253X. 

Xueru Wang et al.,2014. Wind turbine gearbox forecast using 

Gaussian Process model. Control and Decision 

Conference, The 26th Chinese. 

Niya Chen et al.,2013. Short-Term Wind Power Forecasting 

Using Gaussian Processes, Twenty-Third International 

Joint Conference on Artificial Intelligence. 

Kim K et al., 2011. Use of SCADA data for failure detection 

in wind turbines. Energy Sustainability Conference and 

Fuel Cell Conference, NREL/CP-5000-51653. 

Kusiak A & Zhang Z., 2010. Analysis of wind turbine 

vibrations based on SCADA data. J Sol Energy Eng. 

doi:10.1115/1.4001461. 

P. Dao et al.,2018. Condition monitoring and fault detection 

in wind turbines based on cointegration analysis of 

SCADA data. Renew. Energy, 116 (Part B), pp. 107-122. 

Zaher AS et al., 2007.A multi-agent fault detection system 

for wind turbine defect recognition and diagnosis. IEEE 

Lausanne Power Tech, pp:22–27. 

M. Schlechngen & I. F. Santos.,2011. Comparative analysis 

of neural network and regression based condition 

monitoring approaches for wind turbine fault detection. 

Mech. Syst. Signal Process., vol. 25, no. 5, pp. 1849–

1875. 

IEC 61400-12-1., 2006.Wind Turbines—Part 12-1: Power 

Performance Measurements of Electricity Producing 

Wind Turbines, British Standard,  

Vaishali Sohoni et al.,2016. A Critical Review of Wind 

Turbine Power Curve Modelling Techniques and Their 

Applications in Wind Based Energy Systems. Journal of 

Energy, Article ID 8519785, 18 pages, 

doi:10.1155/2016/8519785. 

Avent lidar technology., 2013. Flexible solutions to optimize 

turbine performance. Available online at 

http://www.aventlidartechnology.com/en/applications/y

aw-error-correction_116.html.  

J. G. Schepers.,2007. Dynamic Inflow effects at fast pitching 

steps on a wind turbine placed in the NASA-Ames wind 

tunnel. ECN Reports. 

K. Boorsma., 2012.Power and loads for yawed flow 

conditions. ECN Reports. 

http://dx.doi.org/10.1155/2016/8519785
http://www.aventlidartechnology.com/en/applications/yaw-error-correction_116.html
http://www.aventlidartechnology.com/en/applications/yaw-error-correction_116.html


INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

8 

M. Spencer et al.,2013. Predictive yaw control of a 5MW 

wind turbine model. AIAA Aerospace Sciences Meeting 

Including the New Horizons Forum and Aerospace 

Exposition. 

K. A. Kragh & P. Fleming., 2012.Rotor speed dependent yaw 

control of wind turbines based on empirical data. AIAA 

Aerospace Sciences Meeting Including the New 

Horizons Forum and Aerospace Exposition. 

Song, D et al., 2017. Wind direction prediction for yaw 

control of wind turbines. Int. J. Control Autom. Syst. 15: 

1720. https://doi.org/10.1007/s12555-017-0289-6. 

PMO Gebraad et al.,2016. Wind plant power optimization 

through yaw control using a parametric model for wake 

effects—a cfd simulation study. Wind Energy, 19(1):95–

114. 

Jinkyoo Park & Kincho H Law., 2015. A Bayesian 

optimization approach for wind farm power 

maximization. In SPIE Smart Structures and Materials+ 

Nondestructive Evaluation and Health Monitoring, pp 

943608– 943608. International Society for Optics and 

Photonics. 

Ping Li & Songcan Chen., 2016.Gaussian Process Latent 

Variable Models. CAAI Transactions on Intelligence 

Technology. Volume 1, Issue 4, pp 366-376. 

J. Hartikainen et al., 2010.Kalman filtering and smoothing 

solutions to temporal Gaussian Process regression 

models. IEEE International Workshop on Machine 

Learning for Signal Processing. 

S. Sarkka et al., 2013.Spatiotemporal learning via infinite-

dimensional Bayesian filtering and smoothing. IEEE 

Signal Processing Magazine, vol. 30, no. 4, pp. 51–61. 

Jie Chen & Nannan Cao., 2013.Parallel Gaussian Process 

Regression with Low-Rank Covariance Matrix 

Approximations. Proceedings of the Twenty-Ninth 

Conference on Uncertainty in Artificial Intelligence 

(UAI2013). https://arxiv.org/abs/1408.2060. 

Neyman, J., 1937.Outline of a Theory of Statistical 

Estimation Based on the Classical Theory of Probability. 

Philosophical Transactions of the Royal Society A. 236: 

333–380. doi:10.1098/rsta.1937.0005. 

Alain Bensoussan et al., 2014.Confidence intervals for 

annual wind power production. ESAIM: Proc., 44,pp 

150-158. doi: https://doi.org/10.1051/proc/201444009. 

Breno Menezes.,2014. Creating Confidence Intervals for 

Reservoir Computing’s Wind Power Forecast Use of 

Maximum Likelihood Method and the Distribution-

based Method. COGNITIVE 2014: The Sixth 

International Conference on Advanced Cognitive 

Technologies and Applications. 

Andrew McHutchon & Carl Edward Rasmussen.,2011. 

Gaussian Process Training with Input Noise. 

http://mlg.eng.cam.ac.uk/mchutchon/papers/NIGP.pdf. 

 

 

 

BIOGRAPHIES 

Mr Ravi Kumar Pandit is a PhD student under Marie Curie 

fellowship in the Department of 

Electronics and Electrical Engineering, 

University of Strathclyde. Mr Pandit 

received Bachelor of Engineering in 

Electrical from Jadavpur University and 

Master of Technology in Instrumentation 

Engineering from Indian Institute of 

Technology, Kharagpur. From April 2014 

to Jan 2016, he worked as assistant professor at Jadavpur 

University. He previously worked as assistant professor in 

Vellore Institute of Technology (Dec 2011 to April 2014). 

His areas of Interest Are Instrumentation, Power forecasting, 

wind turbines O&M and Characteristics Analysis of Wind 

Speed. 

 Professor David Infield received a B.A. degree in 

mathematics and physics from the University of Lancaster, 

Lancaster, U.K. and the PhD degree in 

applied mathematics from the 

University of Kent, Canterbury, U.K. 

He worked for the Rutherford 

Appleton Laboratory in Oxfordshire, 

U.K., from 1982 to 1993 researching 

into wind electricity systems. From 

1993 to 2007, he was with Loughborough University, 

Leicestershire, U.K., where he established CREST, the 

Centre for Renewable Energy Systems Technology. He is 

now Professor of Renewable Energy Technologies with the 

Institute for Energy. 

https://doi.org/10.1007/s12555-017-0289-6
https://arxiv.org/abs/1408.2060
https://doi.org/10.1051/proc/201444009
http://mlg.eng.cam.ac.uk/mchutchon/papers/NIGP.pdf

