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ABSTRACT 

To implement the tool condition monitoring system in a metal 
cutting process, it is necessary to have sensors which will be 
able to detect the tool conditions to initiate remedial action. 
There are different signals for monitoring the cutting process 
which may require different sensors and signal processing 
techniques. Each of these signals is capable of providing 
information about the process at different reliability level.   
To arrive a good, reliable and robust decision, it is necessary 
to integrate the features of the different signals captured by 
the sensors.  In this paper, an attempt is made to fuse the 
features of acoustic emission and vibration signals captured 
in a precision high speed machining center for monitoring the 
tool conditions. Tool conditions are classified using machine 
learning classifiers. The classification efficiency of machine 
learning algorithms are studied in time-domain, frequency-
domain and time-frequency domain by feature level fusion of 
features extracted from vibration and acoustic emission 
signature. 

1. INTRODUCTION 

Various sensors are used in tool condition monitoring to 
classify the tool conditions with an objective of improving 
the productivity in a metal cutting environment. It is well 
known fact that variation in parameters such as cutting forces, 
vibration, acoustic emission, temperature, motor current, etc. 
are some of the indicators for identifying different conditions 
of the cutting tools such as good, worn-out, tool breakage, 
and chipping etc. Process monitoring and control can be 
achieved by detecting tool conditions in real time and cutting 
tools can be replaced using adaptive control methods without 
inspecting the condition of tools using offline methods. The 

essential elements of tool condition monitoring system are 
shown in the Figure 1 (Zhang et al., 2016).  

A typical tool condition monitoring system consists of 
sensors for monitoring the tool condition, signal processing 
unit and related hardware and software for tool condition 
classification and monitoring.  In tool condition monitoring 
systems, tool conditions are generally correlated using 
signals received from sensors such as sound, optical, 
vibration, current, force and acoustic emission (Teti et al., 
2010).  

 
Figure 1. Tool condition monitoring framework 

Acoustic Emission (AE) and vibration based techniques are 
found to be very effective in monitoring the tool conditions 
in a variety of metal cutting operations. During metal cutting, 
cutting forces are generated. These cutting forces produce 
self-excited vibrations. These vibrations are the primary 
cause for the surface roughness generated during the 
machining process. Accelerometers are used for the 
measurement of acceleration produced during metal cutting 
operation. Accelerometers generate electrical signals based 
on the amplitude of the vibration of the equipment where the 
sensor is attached. A typical vibration measurement chain is 
shown in the Figure 2. Many researchers studied the tool 
conditions using vibration signatures for identifying the tool 
conditions for various metal cutting processes. Dimla, D. E. 
(2002) extracted vibration features and correlated with the 
tool wear in a turning process. Salgado et al. (2009) predicted 
surface roughness in a turning process using vibration 
signature. A study has been carried out by Zhong et al. (2010) 
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in a milling operation using vibration signals with and 
without lubricants. Lamraoui et al. (2014) studied chatter and 
its influence in a milling process. Tool conditions in a high 
speed precision milling machine was studied by 
Krishnakumar et al. (2015) using vibration signals. Tool 
condition classification efficiency of various machine 
learning algorithms was studied by them. Zhang et al. (2016) 
used wireless sensors and tool prognostic studies have been 
carried out using vibration signals. 

 
Figure 2.Vibration signature measurement chain 

AE sensors are used to detect high frequency elastic waves 
that are generated during the metal cutting process (Dornfeld, 
D. A. (1991). Piezo-electric sensor is attached with the work-
piece using a suitable couplent. The transient and continuous 
elastic waves generated during the machining process are 
sensed by the piezo-electric sensor. The sensor output is 
amplified by the low-noise pre-amplifier. The signals are 
further filtered to remove the unnecessary noise present in the 
signals usually occur at lower frequencies. It is to be noted 
that AE will happen in the higher frequency range from 100 
KHz to 1 MHz. The main advantage of AE based tool 
condition monitoring is that AE signal will not meddle with 
the cutting process. The frequency range of the AE emissions 
is much higher than the vibration signals. The unwanted noise 
during the cutting process can be easily filtered out. The AE 
signature produced during machining operation is of transient 
and continuous in nature. The features of AE signature will 
have an influence on the tool wear and the surface roughness 
generated on the work piece (Lamraoui et al. 2014). AE has 
been used widely to detect the tool conditions by the 
researchers. Ravindra et al. (1997) correlated the acoustic 
emission signal with the tool wear in metal cutting operation. 
Inasaki, I. (1998) studied the application of AE sensors for 
various metal cutting processes. Hutton and Hu (1999) 
carried out time domain studies in end milling operation 
using AE signature. Karpuschewski et al. (2000) used power 
and AE sensors for monitoring the grinding process. 
Marinescu and Axinte (2008) studied the tool and work piece 
malfunction in a milling process using AE signature. Han and 
Wu (2013) analyzed the AE in a precision grinding process. 
Cutting phenomenon in turning process was studied by Hase 
et al. (2014) with the AE signal. Arun et al. (2018) studied 
cylindrical grinding process using AE sensor.                               

A comprehensive review detailing sensors, signal processing 
methods and application areas were presented by the 
researchers in the recent past (Teti et al.,2010;  Roth et al., 
2010; Stavropoulos et al., 2013; Lauro et al., 2104; Bhuiyan 
et al.,2016). 

The principle of AE measurement is shown in Figure 3. In 
this study, AE and vibration sensors are used to detect the tool 
conditions during machining. Signal processing is carried out 
and tool conditions are identified using machine learning 
classifiers. 

 
Figure 3. AE measurement system 

1.1. Signal processing 

The raw analogue signal acquired from the sensors contains 
wealthy information about the condition of the tool. From the 
raw signal, it is difficult to make a decision about the 
condition of the tool. It is important to process the raw signals 
to derive suitable useful information from the signal. The 
analogue signal has to be filtered, amplified and transformed 
into digital structure in the pre-preprocessing stage. The 
signals from the metal cutting process like milling is a non-
linear and non-stationery. Some of the significant signals 
processing techniques are time-domain analysis, frequency 
domain analysis and time-frequency domain analysis. The 
important steps in the signal processing of vibration and AE 
signal in time domain and frequency domain are shown in 
Figure 4. 

Time-frequency domain analysis is used to study the signal 
in both time and frequency domains concurrently (Zhu et al., 
2009). In frequency domain analysis there is no time 
component of the signal. In time domain analysis there is no 
frequency component. Time-frequency formulations can be 
made using short time Fourier transforms, wavelet 
transforms, and bilinear time-frequency distribution and 
modified Wigner distribution function. 
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Figure 4. Signature analysis in time-domain and frequency-

domain 

2. SENSOR FUSION 

Sensor fusion is the integration of information acquired from 
the various sensors (Hall, and Llinas, 1997). The resulting 
information after integration is better than the informations 
derived from the sensors separately. We have considered 
sensor fusion in this work with an intension of achieving high 
signal-to-noise ratio, higher reliability in case of failure of a 
sensor, lesser uncertainty, and higher resolution of the results 
obtained from the multiple sensors.  

Different types of configurations are used in sensor fusion 
such as parallel, serial and combination of parallel and serial 
was presented by Acharya (2015). In parallel configuration, 
the individual sensors collect the tool condition data from the 
metal cutting operation. The collected data will be sent to the 
dedicated processor for decision making. The decision made 
by the processor will be sent to data fusion center for global 
decision making. The architecture is shown in the Figure 5.  
In the serial architecture, sensors collect the information and 
the information is processed by the individual processors. 
After processing, the decision will be taken based on its own 
information and as well as information received for the 
preceding sensor information. The last sensor processor take 
the collective decision integrating the informations received 
from the previous sensors processors in a tandem manner as 
shown in Figure 6. A tree topology based on parallel and 
serial and combination is also used in practice for sensor 
fusion is shown in the Figure 7. In this study, serial topology 
used for fusing the vibration and AE signature for tool 
condition prediction. 

 
Figure 5. Sensor fusion – Parallel topology 

 
Figure 6. Sensor fusion – Serial topology 

 
Figure 7. Sensor fusion – Tree topology 

2.1. Decision level and feature level fusion 

There are two techniques for fusion of sensor information, 
one is at decision level and the other is at feature level 
(Gunatilaka and Baertlein, 2001). In decision level method, 
system using single sensor or multi sensors work as a 
decision maker within its feature space. After making 
individual decision, all the decisions are pooled together and 
an opinion is made by based on majority vote rule. The 
methodology is shown in the Figure 8. Feature is a parameter 
extracted from the raw signature which is having rich 
information relevant to the problem considered for the study. 
In feature level fusion method, features from multiple sensors 
are pooled into a single set, and the combined data set is fed 
to the classifiers for tool condition identification. Individual 
classifiers will have larger input data space and this may 
affect the accuracy in classification. Feature level fusion 
gives advantages like redundancy and complementariness. 
Feature level fusion methodology is shown in Figure 9.   
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Figure 8. Decision level fusion 

 
Figure 9. Feature level fusion 

 

Aliustaoglu et al., (2009) proposed a fuzzy based tool wear 
monitoring system using sensor fusion approach.  Cho et al., 
(2009) designed a multiple sensor fusion model for milling 
tool condition prediction. Wang et al., (2007) developed an 
on-line tool condition monitoring for milling operation using 
sensor fusion approach. Banerji and Das (2012) carried out 
data fusion for motor fault detection. Saimurugan and 
Nithesh (2016) proposed a fault analysis model for rotary 
machinery using sound signals based on data fusion. Results 
observed by many researches shows that there is an 
improvement in fault detection efficiency by incorporating 
fusion approach and fusion approach is suitable for 
developing an on-line monitoring system. In this study, 
feature level fusion of AE and vibration data was carried out. 
Machine learning algorithms are utilized to predict the tool 
conditions. 

3. TOOL CONDITION MONITORING: EXPERIMENTAL SETUP 

The overall methodology and experimental set-up established 
in this study is shown in the Figure 10. In this study, the 
vibration and acoustic emission sensors were used to acquire 
signals for monitoring tool conditions during the precision 
high speed machining of titanium alloy. Signal processing is 
carried out and relevant features containing information 
about the tool conditions were extracted in time-domain, 
frequency domain and time-frequency domain. Machine 
learning algorithms were used to classify the tool conditions. 
With an objective of improving the classification efficiency, 
the information content of AE and vibration sensors at fused 
at feature level. The statistical features from vibration and 
acoustic emission signal features are combined into a single 
matrix and given as input to the classifiers to identify the state 
of the tool.  

Piezo-electric accelerometer is mounted on the spindle head 
for measuring the vibration signals generated during 
machining. The accelerometer is connected to FFT analyzer 
(signal-conditioning unit), where the acquired signals go 
through a charge amplifier and an analogue-to-digital 
converter (ADC).  The vibration signal in digital form is fed 
to the computer through a USB port.  The software RT Pro-
series that accompanies the signal conditioning unit is used 

for recording the signals directly in the system memory.  FFT 
analyser used in this study is supplied by Dytran Instruments, 
USA. The sampling frequency was set to 12 kHz and 
sampling length chosen was 8192 samples per signal. 

 
Figure 10. Experimental set-up 

 

AE sensor used in this study is ‘Micro 30D’ and its operating 
frequency is 100 to 350 kHz. ‘Micro-30D’ is a differential 
sensor designed for applications where high background 
noise is a major concern. The two signal leads from the 
sensing element feed into a differential pre-amplifier which 
eliminates common-mode noise resulting in a lower noise 
output from the pre-amplifier. The AE sensor is mounted on 
the work-piece material. AE sensor along with the data 
acquisition card and software (‘AE-Win’) were supplied by 
Physical Acoustics Corporation (PAC), USA.  The sampling 
rate of 1MSPS is chosen for collecting the AE data during 
machining.  

A precision high speed milling machine is used for machining 
titanium alloy with optimum cutting parameters. Titanium 
alloys are very hard to machine due to their low thermal 
conductivity and modulus of elasticity.  Titanium alloys are 
used in variety of application in aerospace, bio-medical and 
automotive industries. Researchers and practicing engineers 
are working towards finding optimum cutting conditions for 
machining titanium alloy with an objective of improving the 
tool life. Cutting tools such as tungsten carbide and cubic 
boron nitride are found to be suitable for machining titanium 
alloys. Usually titanium alloys are machined in CNC 
machine tools with higher cutting velocities. Higher cutting 
velocity found to be improving the cutting life of the tool 
compared with conventional cutting range. In an automated 
environment, it is important to have tool condition 
monitoring system so that in real-time condition of the tool 
can be monitored. This type of system will give warning to 
the operators to change the tool or to stop the machine if the 
tool condition becomes poor or worn-out. There by any 
wastage in terms material, time can be saved.   

In this work, AE and Vibration data were collected during 
high speed milling of titanium alloy. Cutting conditions are 
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chosen based on maximizing the tool life. Preliminary 
experiments were carried out to find optimum process 
parameters for obtaining maximum tool life condition. Depth 
of cut and feed rate are fixed as 0.3mm and 300mm per min 
respectively. Cutting speed is varied between 150m/min to 
350m/min in the interval of 25m/min. A tungsten carbide 
4mm end-mill cutter is used in this study. For each 
experiment, from good condition of the tool to the worn-out 
condition, tool flank wear is monitored. The rationale behind 
considering the flank wear is that during machining of 
titanium and its alloys tool failures are mainly due to the flank 
wear. Surface roughness obtained in the work piece surface 
is also recorded. A cutting speed of 225mm/min is found to 
be providing maximum tool life. 

Three tool conditions such as good, worn-out and 
intermediate conditions were chosen based on the tool wear 
profile. Tool wear profile is plotted based on the flank wear. 
For plotting the tool wear profile surface roughness in the 
work piece is monitored at fixed time interval until the cutting 
tool become worn-out. Using the tool wear profile, tool 
conditions are defined as good, intermediate and worn-out 
based on the surface roughness value. The tool wear profile 
indicating the tool conditions (a, b and c) is shown in the 
Figure 11. Up to the point ‘a’ tool is defined as good 
condition based on the flank wear of the tool. From the point 
‘a-b’ is intermediate condition and ‘b-c’ the tool wear 
progresses rapidly and fails at point ‘c’. 

 
Figure 11. Tool wear profile 

Under optimum condition, machining is carried out for full 
cycle starting from the good tool condition. Machining is 
carried out until the tool become worn-out. For the entire 
cycle AE and vibration signatures were acquired and signal 
processing is carried out to identify the tool conditions. Raw 
AE and vibration signals are processed in time-domain, 
frequency domain and time –frequency domain. Features are 
extracted from the AE and vibration signature and machine 
learning algorithms are used for tool condition classification.  

AE and Vibration (time series) data was collected for the 
entire machining cycle from good tool condition to the Worn-
out condition. Optimum cutting parameters are chosen for the 

machining.  For each condition of the tool, 28 data points 
were used for the time domain data analysis using vibration 
signature (i.e a total of 84 data points) and for AE signature, 
a total of 256 data points were used for each tool condition 
(i.e a total of 768 data points).  In frequency domain analysis, 
45 data points for each tool condition is chosen for vibration 
data (i.e a total of 135 data points) and 100 data points for 
each tool condition is chosen for AE data (i.e a total of 300 
data points). In wavelet domain, 45 data points for each tool 
condition is chosen (i.e a total of 135 data points) for 
vibration data and for AE signature in 100 data points for 
each tool condition is chosen (i.e a total of 300 data points). 

For time-domain fusion of AE and Vibration data, a total of 
84 data points were used for the classification (i.e 28 data 
points for each of the tool condition).  For the future level 
fusion in frequency domain and wavelet domain, 135 data 
points were used (i.e 45 data points for each of the tool 
condition).  

4. MACHINE LEARNING ALGORITHMS FOR TOOL 
CONDITION CLASSIFICATION 

Machine learning (Carbonell et al., 1993) is a process of both 
‘Learning’ (Learning to Label) and ‘Labeling’ (Identifying 
the object as a member of a class to which it belongs). In this 
study, machine learning classifiers are used to identify the 
tool wear status from the signal pattern during machining. 
One of the important reasons for adopting machine learning 
classifier is to achieve automatic tool condition monitoring 
system. The tool condition identification using machine 
learning classification has three phases namely feature-
extraction, feature-selection / reduction and feature-
classification. In feature-extraction phase, statistical, 
histogram, and wavelet features are extracted from the 
vibration and acoustic emission signal induced during the 
machining process.  

In the feature selection phase, features which have relevant 
information about the tool conditions are selected. Feature 
selection process is also called as dimensionality reduction. 
Dimensionality reduction techniques will reduce the 
computation time by eliminating the redundant or unwanted 
data and also help to improve the classification efficiency of 
the machine learning algorithm.  Techniques such as 
Principal Component Analysis (PCA), Decision Tree (DT) 
and Independent Component Analysis (ICA) are used for 
feature selection. 

Machine learning classifiers are used to classify the features 
based on the tool conditions. Classification algorithms are 
initially trained with features whose tool conditions are 
known. After training, the classifier is used to predict the tool 
conditions for the features whose tool conditions are not 
known. Various machine learning classifiers are tried by the 
researches for tool condition classification.  
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A comprehensive review on application of ANN was made 
by Sick (2002) for decision making. Shi and Gindy (2007) 
proposed a least square SVM model for tool wear prediction.  
Elangovan et al. (2010, 2011(a-b)) used Bayes classifier, 
SVM, and decision tress for classification of single point 
cutting tool conditions using vibration signals. Wang et al. 
(2011) proposed the tool condition prediction model using 
SVM. Decision tree and ANN were used for end mill tool 
condition monitoring by Krishnakumar et al. (2015).  Zhang 
et al., (2016) proposed a neuro-fuzzy model to predict the tool 
wear.  Krishnakumar et al. (2018) proposed a wavelet based 
tool condition classification using vibration and AE data. 
Machine learning classifiers are used in their study to predict 
the tool conditions. In this work C 4.5 decision tree, two 
variants of SVM algorithms namely C-SVC and nu-SVC, 
Naïve Bayes and artificial neural networks are considered as 
classifiers for tool condition classification. 

In this study, machine learning classifiers such as Decision 
Tree, Naïve Bays and Neural Network are implemented in 
the Weka open-source platform (https: //www. cs. waikato. 
ac. nz ). SVM algorithms are implemented using ‘DTREG 
predictive modeling software’ (https://www.dtreg.com/).  

4.1. Decision trees 

Decision trees are popular supervised learning algorithm and 
used for data classification type of problems. The decision 
tree split the features in to different diverse groups using 
criterions such as gini index, information gain strategy, chi-
square value and entropy. A decision tree algorithm C4.5 
proposed by Quinlan (1993) is one of the commonly used 
algorithm to generate decision tree. In the process of 
generating decision trees, the training sets with attributes are 
recursively partitioned until all the data in a partition have the 
similar class. For the entire training set, the decision tree will 
have the single root node for the entire training set. A new 
node is added to the decision tree for every division. Splitting 
criterion in C4.5 algorithm is based on the entropy. 

The training set, ‘S’ for C4.5 consisting of known classified 
samples ‘s1, s2,… si’. The sample ‘si’ is a ‘p’ dimensional 
vector.  The feature of the sample and its corresponding class 
is represented as ‘si’. At each node, the algorithm selects the 
feature that most efficiently divides the data into one class or 
the other based on the entropy.  The decision will be made 
based on the feature with highest entropy (information gain). 
Let D is the total number of features and iD is the number 
of features classified as class ‘i’. The probability (pi) of no. 
of features classified in the ith class is expressed as iD / D . 
The entropy is computed using the equation (1). 

k

i i
i 1

Entropy, D p log p


       (1)  

C4.5 algorithm for building decision trees is implemented in 
Weka as classifier called J48.  Tenfold cross validation has 

been used for evaluation, i.e. 90% of the data is used for 
training and 10% of data is used for testing. The confidence 
factor for pruning is set to 0.25. 

4.2. Support vector machines 

Support vector machines (SVM) are supervised learning 
algorithm, proposed by Cortes and Vapnik (1995) based on 
statistical learning theory. In a two class classification 
problem, input data corresponds to the two classes is shown 
in the Figure 12.  SVM tries to find the hyper plane, which 
separates the data belongs to each class.  The main objective 
in SVM is to maximize the ‘margin’ where by clear 
distinction between the classes can be made. The margin is 
separated by bounding planes. The data points which lie on 
the bounding planes are called as support vectors. There are 
two parameters in SVM used to quantify the margin are a) the 
orientation parameter (w) and b) location parameter which is  
relative to origin separating the hyper plane ( ).  The 
mathematical forms of hyper plane and bounding planes are 
shown in Figure 12. The margin is defined in the equation 
(2). 

Margin = 
2 2 2 2
1 2 1 2

1 1

w w w w

   


 
   (2) 

The classification error is quantified based on the distance of 
the data points from the bounding planes for every class. For 
example, the distances between the data points belong to a 
class say, y1, y2,… yn.   The total error is computed using the 
Equation (3). 

The classification error = 
n

i
i 1

y

    (3) 

 
Figure 12. SVM algorithm – 2 class problem representation 

In SVM, both the objectives i.e., maximizing the margin and 
minimizing the error has to be considered for arriving the 
maximum classification efficiency.  In SVM, the problem has 
to be formulated to find the optimum hyper plane which 
classifies the data into two classes in a two class problem. The 
data belong to the class 1 and 2 will have to satisfy the 
equations (4) and (5) respectively. Combining equations (4) 
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and (5) a decision function is formed as shown in equation 
(6). Data fitting to a particular class is arrived based on the 
definiteness of the objective function.  The data is set to the 
class 2, if the objective function value is positive. If the 
function value is negative, the data is set to the class 1. 

 TData belong to class 1: w .x 1      (4) 

TData belong to class 2 : w .x 1      (5) 

TDecision function f (x) sign (w .x )      (6) 

For improving the efficiency of classification, kernel 
functions are used to transform the data into higher 
dimensional space. In higher dimensional space linear 
separation is carried out. Kernel functions like linear, 
polynomial, sigmoid, Radial Basis Function (RBF), etc, are 
used to convert the data from linearly non-separable domain 
to a linearly-separable domain.  

Two variants of SVM such as C-SVC and nu-SVC are 
popular in data classification.  The parameters ‘C’ and ‘nu’ 
are used to implement penalty for mis-classification. By 
properly tuning these parameters classification accuracy of 
the algorithm may be improved. The parameter ‘C’ usually in 
the range ‘0’ and ‘infinity’.  The parameter ‘nu’ operates 
between ‘0’ and ‘1’.  A ‘V’ fold cross validation is performed 
in this study. In this study all the results were taken by 
considering V=10. The classification efficiency of c-SVC 
and nu-SVC for various kernel functions are evaluated. SVM 
variants, c-SVC and nu-SVC are implemented in ‘DTREG’ 
predictive modeling software. 

4.3. Naive Bayes 

Naive Bayes is a probabilistic classifier working based on 
Bayes theorem (Russell et al., 2003). It is supervised learning 
approach. The features are represented as a vector, x = x1, x2, 
…, xn.  Probabilities are assigned to features belonging to the 
class Ck such as  k 1 2 np C x , x , , x . The conditional 
probability for a feature belongs to a particular class can be 
express as given in the Equation (7).  

     
 

k k
k

p C p C x
p C x

p x
    (7) 

A 10 fold cross validation is used in this study for simulating 
the Naive Bayes algorithm implemented in the open source 
Weka suite. Cross validation is performed to describe a 
dataset to "test" the model in the training stage itself. The 
cross validation process divides the sample  dataset into sub-
sets. It performs the analysis on one set (training set), and 
validate the analysis on the other set (testing set). To 
reduce variability, multiple times of cross-validations are 
performed. 

4.4. Artificial Neural Network 

Artificial Neural Network (ANN) is a machine learning 
classifier that models human intelligence in decision making 
(Rumelhart et al., 1988). The network consists of an input 
layer, output layer and hidden layers. Input, output and 
hidden layers consisting of neurons which are inter-
connected in parallel. The network is trained using the 
features obtained from the AE and vibration signals 
considered in this study for tool condition classification.  

A multi-layer perceptron with feed forward back propagation 
Neural Network model available in Weka suit is selected in 
this study for classifying the vibration feature data according 
to the tool condition. In this study, the inputs to ANN are the 
dominant features selected by C4.5 algorithm. For the 
Vibration signals, the input features are standard error, 
kurtosis and median.  Neurons are given with sigmoid 
activation functions. The output layer of the neural net 
contains the neurons representing the stages of tool condition 
such as good tool, tool at mid of it life and worn out tool. One 
hidden layer with 10 hidden neurons is used for training and 
testing of ANN for both vibration and AE based features.  No. 
of hidden layers and no. of neurons in the hidden layers are 
arrived by conducting trial experiments.  

 
Figure 13. ANN Architecture for vibration data  

 
Figure 14. ANN Architecture for AE data  

 

A 10 fold cross validation is used in this study for testing and 
simulating the neural net. Cross validation is performed to 
describe a dataset to "test" the model in the training 
stage itself. The cross validation process divides the data set 
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into sub-sets. It performs the analysis on one set (training 
set), and validate the analysis on the other set (testing set).  
To reduce variability, multiple times of cross-validations are 
performed. The architecture of the ANN for vibration based 
studies is shown in the Figure 13.  For AE based features the 
architecture is shown in Figure 14.   

5. FEATURE LEVEL FUSION OF AE AND VIBRATION SIGNALS 

In this work, feature selection is followed by data fusion as 
indicated in the Figure 15. All the features of AE and 
vibration are fed into common data base (Fusion matrix).  
Separate matrix is created for time-domain, frequency 
domain and wavelet domain.  The dominating features are 
selected using the decision tree algorithm. The dominating 
features of AE and Vibration are fed into machine learning 
classifiers. In this work a C4.5 decision tree algorithm is used 
for feature reduction. Dominant features contain rich 
information about the tool conditions. The feature reduction 
will help in reducing the time complexity and classification 
accuracy of the algorithm. The selected features are used to 
train the machine learning algorithm for tool condition 
classification. The feature level fusion approach is shown in 
the Figure 16. This data fusion is carried out in time domain, 
frequency domain and wavelet domain. 

 
Figure 15. Data fusion methodology 

 

The acoustic emission statistical features that are fed into the 
feature fusion matrix are count, average signal level and 
amplitude. Count refers to the number of times the signal 
crosses the threshold. Based on the magnitude of the AE 
event and the characteristics of the material, one hit may 
produce one or many counts. Average Signal Level (ASL) is 
the rectified, time averaged AE logarithmic signal, measured 
on the AE amplitude logarithmic scale. Amplitude is the 
maximum value of the signal measured in volts, which is used 
to find the traceability of the signature. From the vibration 
signal, features that are fed to the data fusion matrix are 
standard error, mean and kurtosis. Standard error is the 
measure of spread. Mean is the average of ‘n’ number of 
vibration data points of the signal and kurtosis is the measure 
of peakedness of the signal. 

 
Figure 16. Feature level fusion of AE and vibration signal 

features 

5.1. Feature level fusion in time-domain  

The statistical features from acoustic emission and vibration 
signals are fed into C 4.5 decision tree algorithm. The 
standard error from vibration signal and ASL from the 
acoustic emission signal are at the root nodes of the decision 
tree.  These are the dominating features which have higher 
information content compared to other features from 
vibration and acoustic emission signals considered in this 
study. The decision tree is shown in Figure 17. Standard Error 
from vibration data and ASL from AE data are chosen as 
dominant features. These features are provided as an input to 
classifiers for training and testing. 

 
Figure 17. Decision tree of fused data in time domain 

5.2. Feature level fusion in frequency domain  

The time domain signals are converted in to frequency 
domain using Fourier transforms. The statistical features 
were extracted from AE and Vibration signals in frequency 
domain. They are sum, mean, median, minimum, maximum, 
standard deviation, variance, kurtosis and skewness from 
both vibration and acoustic emission signals. The statistical 
features of both the signals in frequency domain were given 
as an input to Decision Tree to identify the best features for 
classification. From the decision tree shown in Figure 18, it 
is found that maximum, skewness, standard deviation from 
vibration signal and the standard deviation from AE signals 
are the best statistical features in frequency domain to classify 
the tool condition. 
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Figure 18. Decision tree of fused data in frequency domain 

5.3. Feature level fusion in time-frequency domain 
(Wavelet domain) 

The wavelet coefficients were extracted from the vibration 
and AE signals to obtain the time frequency resolution of the 
signal using wavelet transforms. The extracted wavelets are 
Haar, biorthogonal (bior 3.9, bior 4.4 and bior 5.5), 
Daubechies (db11, db12, db13 and db 14) and reverse 
biorthogonal (rbio 4.4, rbio 5.5 and rbio 6.8).  From the 
extracted wavelets best performing wavelets are identified. 
The best performing wavelets identified are Haar wavelet 
from vibration signature and the bior 4.4 wavelet from 
acoustic emission signals. The wavelet coefficients are fused 
together to form a single data set. The fused data set is used 
for tool condition classification. Decision tree generated for 
the fused data in wavelet domain is shown in the Figure 19.  

 
Figure 19. Decision tree for fused data in wavelet domain 

The root nodes in the decision tree indicate the dominating 
coefficients in tool condition classification at different levels 
of decomposition.  In Figure ‘a’ and ‘e’ indicates the first and 
fifth level decompositions of vibration signal.  

6. TOOL CONDITION CLASSIFICATION 

The selected features using decision tree are standard error 
from vibration and ASL from acoustic emission signals. 
These features are used as input in the decision tree 
algorithm, Naive Bayes, Support vector machines and 
artificial neural network to identify the tool condition.  A 10 
fold cross validation method was used in simulating the 
machine learning classifiers. The idea of cross validation is 
to define a dataset to "test" the model in the training 
phase itself. The cross validation involves dividing 
the sample  dataset into subsets, performing the analysis on 
one subset (training set), and validating the analysis on the 
other subset (testing set). To reduce variability, multiple 
times of cross-validation were performed using different 
divisions, and the validation results are averaged over the 
number of times. 
The performances of the classifiers are studied using the 
confusion matrix. Confusion matrix is a table, which 
describes the performance of the classifier. A typical 
confusion matrix for a 3-class problem is shown in the           
Table 1. From the confusion matrix classifier performances 
such as overall classification efficiency (accuracy), error rate 
and kappa statistics can be obtained.  

In this study we have computed overall accuracy of the 
classifiers for the performance evaluation of the classifiers. 
The performance of a classifier is depends on the counts of 
test records correctly and incorrectly predicted by the model. 
These counts are tabulated in the form of confusion matrix.  

The confusion matrix for a 3- Class problem is shown in 
Table 1. Each entry ‘Fij’ in this table denotes the number of 
records from class ‘i’ predicted to be of the class ‘j’. For 
instance, ‘Fba’ is the number of records from class ‘B’ 
incorrectly predicted as class ‘A’. The total number of correct 
predictions made by the classifier is ‘Faa + Fbb + Fcc’. The total 
number of incorrect predictions made by the classifier is    
‘Fab + Fac+Fba+Fbc+Fca+Fcb’. 

Table 1. Confusion matrix for a 3-class problem 

 
The confusion matrix present the details needed to decide 
how well a classification model performs. Summarizing this 
detail with a single number would be more convenient to 
compare the performance of different algorithms. This can be 
done using the performance metric such as accuracy and error 
rate. 
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aa bb cc

aa ab ac ba bb bc ca cb cc

Classification Efficiency,%
Number of correct predictions= ×100
Total number of predictions

F F F 100
F F F F F F F F F

 
 

       

(8) 

ab ac ba bc ca cb

aa ab ac ba bb bc ca cb cc

Error rate,%
Number of incorrect p r edictions 100

Total number of p r edictions
F F F F F F 100

F F F F F F F F F

 

    
 

       

(9) 

6.1. SVM variants 

Two variants of SVM models such as c-Support Vector 
Classifier (c-SVC), nu-Support Vector Classifier (nu-SVC) 
were tried with different kernel functions.  In nu-SVM a 
parameter ‘µ’ is introduced with an objective of optimizing 
the number of support vectors to reduce the training errors. 
The classification efficiency of c-SVC and nu-SVC for 
various kernel functions are presented in the Table 2 and 3 
for the vibration and AE data respectively. Comparisons were 
made using the kernel functions namely linear, polynomial, 
sigmoid and Radial Basic Function (RBS). 

Table 2:  Classification efficiency of c-SVC and nu-SVC 
with different kernel functions (Vibration data) 

 
Table 3:  Classification efficiency of c-SVC and nu-SVC 

with different kernel functions (AE data) 

 
The results shows c-SVC with radial Basic Function (RBF) 
is performing better in terms of classification efficiency for 
vibration and AE data for the test cases considered in this 
study.  SVM classifier referred in this study is c-SVC variant 
with Radial Basis Function (RBS) Kernel function.  

6.2. Confusion matrix of  the non-fused data  

Confusion matrix of the non-fused data of vibration and AE 
signatures in time-domain, and frequency-domain are shown 

in Table 4, 5, 6 and 7. The table also indicates the 
classification efficiency of respective classifiers.  

Table 4: Confusion matrix for non-fused data in time 
domain for vibration data 

 
Table 5: Confusion matrix for non-fused data in time 

domain for AE data 

 
Table 6: Confusion matrix for non-fused data in frequency 

domain for vibration data 
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Table 7: Confusion matrix for non-fused data in frequency 
domain for AE data 

 

6.3. Confusion matrix of  the fused data  

Confusion matrix of the fused data in time-domain, 
frequency-domain and time-frequency (wavelet) domain are 
shown in the Table 8, 9 and 10.  Confusion matrix provides 
information related to individual classes and over all 
classification efficiency of the algorithm.  For an example, in 
the case of frequency domain data, as shown in Table 7, a 
Decision Tree classifier mis-classifies five data points belong 
to class ‘a’ (Good condition) as class ‘b’ (Intermediate 
condition).  Five data points belong to class ‘b’ (Intermediate 
condition) were misclassified as class ‘a’ (Good condition) 
and  1 data points belongs to class ‘c’ (Worn out condition) 
is misclassified as class ‘a’ (Good condition). Out of 135 data 
points presented to the classifier, 11 instances are                   
misclassified and 124 instances are correctly classified. The 
overall classification efficiency of the Decision tree 
algorithm is 91.85% and the error rate is 8.15%. Confusion 
matrix is used as an effective tool to study the performance 
of machine learning classifiers.   

 Table 8: Confusion matrix of the fused data in time domain  

 

Table 9: Confusion matrix of the fused data in frequency 
domain  

 
Table 10: Confusion matrix of the fused data in Wavelet 

domain  

 

6.4. Performance of classifiers based on classification 
efficiency 

The extracted features of AE and vibration signals in time-
domain, frequency domain and time-frequency domain are 
trained using machine learning algorithms.  After training the 
classifiers are tested using the tool condition features of AE 
and vibration data. Classification efficiency of the algorithms 
considered separately without feature level fusion is studied 
using confusion matrix. The classification efficiencies of 
machine learning classifiers without fusion are shown in 
Figure 20.  

Time – frequency analysis has been carried out by extracting 
wavelet coefficients from the various wavelets of AE and 
vibration signals. Wavelet coefficients were extracted using 
haar, daubechies (db11, db12, db13 and db14), biorthogonal 
(bior 3.9, bior 4.4 and bior 5.5) and reverse biorthogonal  
(rbio 4.4, rbio 5.5 and rbio 6.8) wavelets. The performances 
of the wavelets are shown in the Table 11 for vibration and 
AE data. 
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Table 11:  Classification Efficiency in wavelet domain for 
classifiers (non-fused AE and Vibration data) 

 
In time-frequency (wavelet) domain, Using AE data, ANN 
classifier is producing 100% classification efficiency for all 
wavelets considered in this study. For the vibration data rbio 
6.8 wavelet is producing classification efficiency of 99.30% 
for vibration data. SVM classifier was able to classify the AE 
data with 90% classification efficiency for 3 wavelets namely 
bior 4.4, bior 5.5 and rbio 6.6. For vibration data, db14 
wavelet is producing 99.26% classification efficiency.  Naïve 
bayes classifier is able to achieve 91.85% classification 
efficiency using haar wavelet for vibration data and 79.66% 
efficiency for rbio 4.4 wavelet with AE data.  Decision tree 
classifier is producing classification efficiency of 94.07% for 
vibration data and 86.66% for AE data using haar and bior 
4.4 wavelets respectively. Classification efficiencies of best 
performing wavelets (time – frequency domain) are shown in 
the Figure 20.  

 
Figure 20. Classification efficiency of machine learning 

algorithms without feature–level fusion 

The performance of machine learning algorithms in 
frequency domain is not as good as performance in time 
domain and time-frequency domain. Frequency domain 
analysis was found to be constructive in analyzing the 
stationary signals.  The process considered in this study is 
milling, which is an intermittent cutting process and produces 
a non-stationary signal.  This may be the reason for not 
getting good results in frequency domain.  

In the next step, feature level data fusion of AE and vibration 
data is carried out in time-domain, frequency domain and 
time-frequency domain. The results are shown in Figure 21. 
From the results, it is found that the feature level fusion is 
more effective in time domain compared to frequency 
domain and wavelet transforms. Except decision tree, all the 
other three machine learning algorithms considered in this 
study are giving their maximum performance in time domain 
and producing 100% classification efficiency for the test 
cases considered for predicting the tool condition.  ANN is 
producing 100% classification efficiency in time domain and 
time-frequency domain. Variant of SVM, C-SVC is able to 
produce 100% classification efficiency in time-domain.   

 
Figure 21. Classification efficiency of machine learning 

algorithms with feature–level fusion 

Overall, from the results it is observed that fusion 
methodology adopted in this study is improving the 
classification efficiency in time-domain, frequency domain 
and time-frequency domain. Feature level fusion is appears 
to be a promising area of research in the area of tool condition 
monitoring. Using the fusion approach a reliable real-time 
tool condition monitoring systems can be developed. 

7. CONCLUSIONS 

In this study, an experimental set-up was established to 
classify the tool condition using vibration and acoustic 
emission signals in a high speed milling center. Dominant 
features of the vibration and acoustic emission signals were 
extracted using decision tree based algorithm for tool 
condition classification in time-domain, frequency-domain 
and time-frequency domain. C4.5 decision tree, Support 
Vector Machine (SVM), Naive Bayes and Artificial Neural 
Networks (ANN) were used for tool condition classification.  

For the non-fused system in time–domain, for vibration data 
ANN classifier is producing maximum classification 
efficiency of 97.4% and for the AE data, SVM is producing 
classification efficiency of 99.48%.  In frequency domain, 
ANN is found to be predicting the maximum classification 
efficiency of 95.56 % and 89 % for the vibration data and AE 
data respectively. In time –frequency domain (Wavelet), 
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ANN is out-performing the decision tree, SVM and Naïve 
bayes classifiers for AE and Vibration data. 
The performance of Machine learning algorithms in 
frequency-domain is not as good as performance in time 
domain. Using the vibration signatures, the Machine learning 
algorithms produced better classification efficiency than the 
acoustic emission signature. Among all the Machine learning 
algorithms considered in frequency domain, ANN using 
vibration signature has produced a maximum classification 
efficiency of 95.56%. 

In order to capture the time-frequency resolution of the 
vibration and acoustic signal, wavelets were extracted using 
discrete wavelet transform.  A total of 11 wavelets from the 
families of daubechies, haar, bi-orthogonal and reverse bi-
orthogonal were considered.  The performance of C- SVC, is 
consistent and producing better classification efficiency in all 
the wavelets for the vibration data. ANN is the best 
performing algorithm and producing a classification 
efficiency of 100% for all the wavelets using acoustic 
emission data.   The performance of algorithms using 
acoustic emission signals are better comparing to vibration 
signals in wavelet domain. 

Classification efficiencies of the algorithms were improved 
by adopting feature level fusion of vibration and acoustic 
emission data. Feature level fusion is more effective in time-
domain compared to frequency domain and time-frequency 
domain (wavelet transforms). In time-domain, naïve bayes, 
SVM and ANN classifiers are producing 100% classification 
efficiency for test cases considered for predicting the tool 
conditions. It is also to be noted that ANN classifier is 
producing 100% classification efficiency in time-domain and 
also in time –frequency domain (Wavelet). The data fusion 
methodology adopted in this work is proved to be useful in 
developing a reliable online tool condition monitoring 
system. 
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