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ABSTRACT

Unscheduled or reactive maintenance on wind turbines due to
component failure incurs significant downtime and, in turn,
loss of revenue. To this end, it is important to be able to per-
form maintenance before it’s needed. To date, a strong effort
has been applied to developing Condition Monitoring Sys-
tems (CMSs) which rely on retrofitting expensive vibration
or oil analysis sensors to the turbine. Instead, by performing
complex analysis of existing data from the turbine’s Super-
visory Control and Data Acquisition (SCADA) system, valu-
able insights into turbine performance can be obtained at a
much lower cost.

In this paper, fault and alarm data from a turbine on the South-
ern coast of Ireland is analysed to identify periods of nomi-
nal and faulty operation. Classification techniques are then
applied to detect and diagnose faults by taking into account
other SCADA data such as temperature, pitch and rotor data.
This is then extended to allow prediction and diagnosis in
advance of specific faults. Results are provided which show
recall scores generally above 80% for fault detection and di-
agnosis, and prediction up to 24 hours in advance of spe-
cific faults, representing significant improvement over previ-
ous techniques.

1. INTRODUCTION

Wind turbines see highly irregular loads due to varied and
turbulent wind conditions, and so components can undergo
high stress throughout their lifetime compared with other ro-
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tating machines (Zaher, McArthur, Infield, & Patel, 2009).
This significantly contributes to the cost of operations and
maintenance (O&M), which can account for up to 30% of
the cost of generation of wind power (European Wind En-
ergy Association (EWEA), 2009). The ability to remotely
monitor component health is even more important in the wind
industry than in others; wind turbines are often deployed to
operate autonomously in remote or offshore locations where
highly regular visual inspections can be impractical. Unex-
pected failures on a wind turbine can be very expensive -
corrective maintenance can take up a significant portion of
a turbine’s annual maintenance budget. Scheduled preventa-
tive maintenance, whereby inspections and maintenance are
carried out on a periodic basis, can help prevent this. How-
ever, this can still incur some unnecessary costs - the com-
ponents’ lifetimes may not be fully exhausted at time of re-
placement/repair, and the costs associated with more frequent
downtime for inspection can run quite high. Condition-based
maintenance (CBM) is a strategy whereby the condition of
the equipment is actively monitored to detect impending or
incipient faults, allowing an effective maintenance decision
to be made as needed. This strategy can save up to 20-25% of
maintenance costs vs. scheduled maintenance of wind tur-
bines (Godwin & Matthews, 2013). CBM can also allow
prognostic analysis, whereby the remaining useful life (RUL)
of a component is estimated. This can allow even more gran-
ular planning for maintenance actions.

Condition monitoring systems (CMSs) on wind turbines typ-
ically consist of vibration-sensors, sometimes in combination
with optical strain gauges or oil particle counters, which are
retrofitted to turbine sub-assemblies for highly localised mon-
itoring (Tamilselvan, Wang, Sheng, & Twomey, 2013). How-
ever, CBM and prognostic technologies have not been taken
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up extensively by the wind industry, despite their supposed
benefits (Godwin & Matthews, 2013).

Whereas the aim of wind turbine CMSs is to provide detailed
prognostics on turbine sub-assemblies through fitting addi-
tional sensors, there already exist a number of sensors on the
turbine related to the Supervisory Control and Data Acqui-
sition (SCADA) system. In recent years, there has been a
concerted effort to apply CM techniques to wind turbines by
analysing data collected by the SCADA system. SCADA data
is typically recorded at 10-minute intervals to reduce trans-
mitted data bandwidth and storage, and includes a plethora
of measurements such as active and reactive power, genera-
tor current and voltages, anemometer measured wind speed,
generator shaft speed, generator, gearbox and nacelle temper-
atures, and others (Zaher et al., 2009). By performing statis-
tical analyses on this data, it is possible to detect when the
turbine is entering a time of sub-optimal performance or if a
fault is developing. This is all done without the added costs
of retrofitting additional sensors to the turbine (Yang, Tavner,
Crabtree, Feng, & Qiu, 2014).

A number of approaches use the turbine’s power curve, the re-
lationship between power output and hub-height wind speed
for a particular turbine, as a point of reference. The power
curve is modelled under normal operating conditions, and any
changes in its characteristic shape can be visually diagnosed
by an expert as the cause of a specific incipient fault, e.g. cur-
tailed power output due to faulty controller values (Lapira,
Brisset, Davari Ardakani, Siegel, & Lee, 2012). Other ap-
proaches compare the modelled curve to on-line values and
a cumulative residual is developed over time. As the resid-
ual exceeds a certain threshold, it is indicative of a problem
on the turbine (Gill, Stephen, & Galloway, 2012; Skrimpas
et al., 2015; Uluyol, Parthasarathy, Foslien, & Kim, 2011).
However, these methods simply detect when the turbine is
entering abnormal operation and do not diagnose the faults.

An expansion of the above methods is to use performance
indicators other than the power curve. Work by Du et. al
showed some successes in using anomaly detection to show
residuals from normal behaviour in advance of a fault oc-
curring (Du et al., 2016). By using a much wider spectrum
of SCADA parameters, fault diagnosis and limited fault pre-
diction has been successfully demonstrated by Kusiak et. al
(Kusiak & Li, 2011). A number of models were built using
machine learning to evaluate their performance in predicting
and diagnosing faults. It was found that prediction of a spe-
cific fault, a diverter malfunction, was possible at 68% ac-
curacy, 73% sensitivity (also known as recall - the ratio of
true positives to true positives and false positives) and 66%
sensitivity (the ratio of true negatives to true negatives and
false positives) 30 minutes in advance of the fault occurring.
Unfortunately, when this was extended out to two hours in
advance, accuracy, recall and sensitivity fell to 49% and 25%

and 34%, respectively. It should also be noted that, signifi-
cantly, the testing set used for specific fault prediction in this
paper did not represent the distribution of the underlying la-
belled SCADA data. Instead, there were just over twice as
many “fault-free” instances as there were of a specific fault.
This is in contrast to the true distribution where there could be
upwards of 1,000 times more fault-free than fault instances,
and does not reflect the real-world performance of the mod-
els developed. As well as this, the precision (the ratio of true
positives to false positives) was not recorded.

The prediction of specific blade pitch faults was demonstrated
by Kusiak and Verma, using genetically programmed deci-
sion trees (Kusiak & Verma, 2011). Here, the maximum pre-
diction time was 10 minutes, at a 69% accuracy, 71% recall
and 67% specificity. The SCADA data was also at a resolu-
tion of 1s rather than the more common 10 minutes. Once
again, no precision score was given for this task.

It is clear from the literature that for relatively minor but
frequent faults which contribute to degraded turbine perfor-
mance, such as power feeding, blade pitch or diverter faults,
prediction more than a half hour in advance is currently very
poor. These faults can contribute to failures related to the
power system; in a study carried out by the EU FP7 Reli-
aWind project, it was found that just under 40% of overall
turbine downtime can be attributed to power system failures
(Gayo, 2011).

In this paper, we widen the prediction capability for these
types of faults. We analyse data from a coastal site in the
South of Ireland where a 3 MW turbine has been installed at
a large biomedical device manufacturing facility to offset en-
ergy costs, and use it to detect and diagnose faults. In Section
2, we describe the turbine site and the data we use. In Sec-
tion 3.1, we describe the process for labelling the data and
the different types of classification performed. In Section 3
we describe the specific models used for detecting, diagnos-
ing and predicting faults. Finally, in Section 4 we give the
results obtained and evaluate the performance of our models,
and compare them with previous results from the literature.

2. DESCRIPTION OF DATA AND FAULTS

The data in this study comes from a 3 MW direct-drive tur-
bine which supplies power to a major biomedical devices
manufacturing plant located near the coast in the South of
Ireland. There are two separate datasets taken from the tur-
bine SCADA system; “operational” data and “status” data.
The data covers an 11 month period from May 2014 - April
2015.

2.1. Operational Data

The turbine control system monitors many instantaneous pa-
rameters such as wind speed and ambient temperature, power
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Table 1. 10 Minute Operational Data

TimeStamp Wind Speed Wind Speed Wind Speed Power Power Power Ambient Temp Bearing Temp
(avg.) (max.) (min.) (avg.) (max.) (min.) (avg.) (avg.)
m/s m/s m/s kW kW kW ◦C ◦C

09/06/2014 14:10:00 5.8 7.4 4.1 367 541 285 17.9 25.0
09/06/2014 14:20:00 5.7 7.1 4.1 378 490 246 17.5 24.6
09/06/2014 14:30:00 5.6 6.5 4.5 384 447 254 17.6 25.1
09/06/2014 14:40:00 5.8 7.5 3.9 426 530 318 18.1 23.7
09/06/2014 14:50:00 5.4 6.9 4.5 369 592 242 18.2 24.6

Table 2. WEC Status Data

Timestamp Main Sub Description
13/07/2014 13:06:23 0 0 Turbine in Operation
14/07/2014 18:12:02 62 3 Feeding Fault: Zero

Crossing Several
Inverters

14/07/2014 18:12:19 80 21 Excitation Error:
Overvoltage DC-link

14/07/2014 18:22:07 0 1 Turbine Starting
14/07/2014 18:23:38 0 0 Turbine in Operation
16/07/2014 04:06:47 2 1 Lack of Wind: Wind

Speed too Low

Table 3. Frequently occurring faults, listed by status code,
fault incidence frequency and number of corresponding 10-
minute SCADA data points

Fault Main Status f No. Pts.
Feeding Fault 62 92 251
Excitation Error 80 84 168
Malfunction Air Cooling 228 20 62
Generator Heating Fault 9 6 43

characteristics such as real and reactive power and various
currents and voltages in the electrical equipment, as well as
temperatures of components such as the generator bearing
and rotor. The average, min. and max. of these values over
a 10 minute period is then stored in the SCADA system with
a corresponding timestamp. This is the “operational” data. A
sample of this data is shown in Table 1. This data was used to
train the classifiers and was labelled according to three differ-
ent processes explained in Section 3.1. The initial operational
data contained roughly 45,000 data points, representing the
11 months analysed in this study.

2.2. Status Data

There are a number of normal operating states for the turbine.
For example, when the turbine is producing power normally,
when the wind speed is below the cut-in speed, or when the
turbine is in “storm” mode, i.e., when the wind speeds are
above a certain threshold. There are also a large number of
statuses for when the turbine is in abnormal or faulty oper-

ation. These are all tracked by status messages, contained
within the “status” data. Each time the status changes, a new
timestamped status message is generated. Thus, the turbine is
assumed to be operating in that state until the next status mes-
sage is generated. Each turbine status has a “main status” and
“sub-status” code associated with it. See Table 2 for a sample
of the status message data. Any main status code above zero
indicates abnormal behaviour, however many of these are not
associated with a fault, e.g., status code 2 - “lack of wind”.

2.3. Faults Classified

As mentioned in Section 2.2, any “main status” above zero
indicates abnormal behaviour, but not necessarily a fault. Al-
though over forty different types of faults occurred in the
eleven months of data, only a small number occurred fre-
quently enough to be able to accurately classify them. These
faults are summarised in Table 3. Note that the fault fre-
quency refers to specific instances of each fault, rather than
the number of data points of operational data associated with
it, e.g., a generator heating fault which lasted one hour would
contain 6 operational data points, but would still count as one
fault instance. Feeding faults refer to faults in the power
feeder cables of the turbine, excitation errors refer to prob-
lems with the generator excitation system, malfunction air
cooling refers to problems in the air circulation and internal
temperature circulation in the turbine, and generator heating
faults refer to the generator overheating.

3. METHODOLOGY

In this paper, we attempt three levels of classification: fault
detection, fault diagnosis and fault prediction. The general
methodology for all three types of classification is shown in
Figure 1. As can be seen, there are four main steps following
a general machine learning process, described in detail in this
section.

3.1. Data Labelling

The processes for labelling the data for each classification
level are given below.
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Figure 1. Methodology, following a typical machine learning
approach. The abbreviations in step 3 are a selection of the
approaches described in section 3.3

3.1.1. Fault Detection

The first level of classification is distinguishing between two
classes: “fault” and “no-fault”. The fault data corresponds to
times of operation under a set of specific faults mentioned in
Section 2.3. For these faults, status messages with codes cor-
responding to the faults were selected. Next, a time band of
600s before the start, and after the end, of these turbine states
was used to match up the associated 10-minute operational
data. The 10 minutes time-band was selected so as to defi-
nitely capture any 10-minute period where a fault occurred,
e.g., if a power feeding fault occurred from 11:49-13:52, this
would ensure the 11:40-11:50 and 13:50-14:00 operational
data points were labelled as faults. No matter the type of fault,
all faults were simply labelled as the “fault” class. All the re-
maining data in the operational dataset was then given the la-
bel “other”, representing all other data. This is because the
remaining data didn’t necessarily represent fault-free data;
it just meant it didn’t contain the faults mentioned in Sec-
tion 2.3, but could have included other, less frequent faults or
times when the turbine power output was being curtailed for
any one of a number of reasons mentioned previously.

3.1.2. Fault Diagnosis

Fault diagnosis represents a more advanced level of classifica-
tion than simply fault detection. The aim of fault diagnosis is
to identify specific faults from the rest of the data. Faults were
labelled in the same way as in the previous section, but this
time, each fault was given its own specific label. Again a time
band of 600s before the start and after the end of each fault
status was used to match up corresponding 10-minute opera-
tional data. Any data that remained, i.e., was not labelled as

Table 4. Values of T and W , in hours, used for fault predic-
tion

Case T W

A 1 0
B 2 1
C 3 2
D 5 2
E 12 2
F 24 12

one of the faults mentioned in Section 2.3, was again given
the “other” label, for a total of five different classes (the four
fault classes as well as the “other” class). If two faults oc-
curred concurrently, then the data point was duplicated, with
each point having a different label.

3.1.3. Fault Prediction

Fault prediction represents an even more advanced level of
classification than fault diagnosis. The aim of this level of
classification was to see if it was possible to identify that a
specific fault was imminent from the full set of operational
data. After initial tests, it was decided to focus prediction only
on generator heating and excitation faults as these showed
the greatest promise for early detection. Details of this can
be found in Section 4. The other faults were included in the
“other” label along with the rest of the data, for a total of three
classes.

For fault prediction, the times during which the turbine was
in faulty operation were not labelled as such. Instead, op-
erational data points leading up to each fault were labelled
as “pre-fault”, for each specific fault. When a specific fault
started at time t, then all operational data points between time
t−T and t−W were labelled as that fault’s “pre-fault” data.
This means that by looking at a window of time between T
andW before a fault occurs, useful warning could be given of
an imminent fault at least W minutes/hours before it occurs.
A number of separate cases representing different values of T
and W were tried to see how far in advance an accurate pre-
diction could be made. These can be seen in Table 4. For ex-
ample, for case F , all data points with timestamps between 24
and 12 hours before a generator heating fault occurred were
labelled as “generator heating fault”. The same was applied
to excitation faults. All remaining unlabelled data points were
labelled “other”. Once again, if different faults occurred con-
currently, the data points were duplicated and given different
labels.

This would mean that, for case F , for example, if the trained
classifier detected a new, live, data point as “generator fault”,
it would mean that a generator heating fault is likely to occur
in the next 12 hours. The technician or maintenance opera-
tor would then have between 12 and 24 hours between this
point being detected and the fault actually occurring to re-
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motely or manually inspect the generator and organise any
necessary maintenance actions ahead of time. If maintenance
is needed, this can reduce the logistics lead time or allow it to
be scheduled in conjunction with other maintenance activities
for maximum economic benefit.

3.2. Feature Selection

The full operational dataset had more than sixty features, many
of which were redundant, incorrect or irrelevant. Because
of this, only a subset of specific features were chosen to be
included for training purposes. It was found that a number
of the original features corresponded to sensors on the tur-
bine which were broken, e.g., they had frozen or blatantly in-
correct values, while others contained duplicate or redundant
values. These were removed. A number of the remaining
features which were deemed as obviously irrelevant based on
some basic domain knowledge were also excluded, e.g. fea-
tures relating to the cumulative uptime of the anemometer or
the open/closed state of the tower base door. This resulted in
39 remaining features. A subset of these, corresponding to
12 temperature sensors on the inverter cabinets in the turbine,
all had very similar readings. Because of this, it was decided
to instead consolidate these and use the average and standard
deviation of the 12 inverter temperatures. This resulted in
29 features being used to train the SVMs. It was decided
to scale all features individually to unit norm because some,
e.g., power output, had massive ranges from zero to thou-
sands, whereas others, e.g., temperature, ranged from zero to
only a few tens.

3.3. Model Selection

Support Vector Machines are a widely used and successful
machine learning algorithm for the type of classification prob-
lem seen in this study, where the relationship between a high
number of parameters (e.g., the many different parameters
collected by a SCADA system) can be complex and non-
linear (Cortes & Vapnik, 1995; Boser, Guyon, & Vapnik,
1992). The basic premise behind the SVM is that a deci-
sion boundary is made between two opposing classes, based
on labelled training data. A certain number of points are
allowed to be misclassified to avoid the problem of over-
fitting. They have been used in other industries for condi-
tion monitoring and fault diagnosis with great success. A re-
view by Widodo showed that SVMs have been successfully
used to diagnose and predict mechanical faults in HVAC ma-
chines, pumps, bearings, induction motors and other machin-
ery (Widodo & Yang, 2007) . CM using SVMs has also found
success in the refrigeration, semiconductor production and
chemical and process industries (Laouti, Sheibat-othman, &
Othman, 2011). Previous work by the authors demonstrated
promising early results that SVMs are successful in detecting
wind turbine faults using SCADA data (Leahy, Hu, Konstan-
takopoulos, Spanos, & Agogino, 2016).

Table 5. Summary of different training approaches taken,
showing their general category and which classification levels
used these approaches.

Approach Category Classification Levels
Base General Det/Diag/Pred
CW General Det/Diag/Pred
RUS Undersample Det/Diag/Pred
CC Undersample Det/Diag/Pred
TL Undersample Diag/Pred
ENN Undersample Diag/Pred
SM Oversample Diag/Pred
EE Ensemble Diag/Pred
Bag-CW Ensemble Pred
Bag-RUS Ensemble Pred

Each of the labelled datasets mentioned in section 3.1 were
randomly shuffled and split into training and testing sets, with
80% being used for training and the remaining 20% reserved
for testing. The data in all cases was heavily imbalanced - the
number of fault-free samples was on the order of 102 times
that of fault samples. This can sometimes be a problem for
SVMs, so a number of different approaches were taken to ad-
dress the issue. These included adding an extra “class weight”
hyper-parameter, or under/oversampling the training data be-
ing fed into the SVM. In addition to this, because fault diag-
nosis and prediction represented a greater classification chal-
lenge, approaches using ensemble meta-learners were used to
reduce bias and variance in the results. In any case, the test
data was not altered in any way so as to preserve the imbal-
anced distribution seen in the real world.

The various approaches used can be broken into four gen-
eral categories: “general”, “undersampling”, “oversampling”
and “ensemble methods”. Because of the simpler problem
it posed, fault detection was only carried out using a small
subset of these methods, whereas both diagnosis and pre-
diction were carried out using additional approaches, sum-
marised in table 5. Additionally, fault prediction used two
bagging-based approaches. These are described in detail in
the sections below.

Note that each level of classification above fault detection
used multi-class classification based on the “one-against-one”
approach (Knerr, Personnaz, & Dreyfus, 1990). For all three
levels of classification, the models were trained using scikit-
Learn’s implementation of LibSVM (Chang & Lin, 2011; Pe-
dregosa et al., 2012). For the fault prediction case, all ap-
proaches were initially trained based on the labelled dataset
representing fault prediction window A from Table 4, as de-
scribed in Section 3.1.3. The best performing approach was
then used to train classifiers on fault prediction windows B,
C, D, E and F .
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3.3.1. General Approaches

Base Case (Base)
In the base case, i.e. “vanilla” SVM, a randomised grid search
was performed over a number of hyperparameters to find the
ones which yielded the best results on the full set of training
data. These were then verified using 10-fold cross valida-
tion. The scoring metric used for cross validation was the
F1 score (see Eq. 4). The hyperparameters searched over
were C, which controls the number of samples allowed to be
misclassified, γ which defines how much influence an indi-
vidual training sample has, and the kernel used. The three
kernels which were tried were the simple linear kernel, the
radial-basis (Gaussian) kernel and the polynomial kernel.

The training data from all undersampling and oversampling
methods were fed into an SVM following this approach. Ad-
ditionally, the meta-learners using the ensemble methods also
followed this approach.

Addition of Class Weight (CW)
In this approach, an additional hyperparameter, the class weight,
c.w., is added during training. This is a weighted scaling fac-
tor used when calculating C for the minority class. The new
value for C for the fault class, Cw, is calculated as in Eq. 1.

Cw = C ∗ c.w. (1)

Training is then performed as in the base case. A number of
different class weights ranging from 1 (Cw = C) to 1,000
(Cw = 1000 ∗ C) were added to the set of hyperparameters
being searched over for this approach. There is no over- or
undersampling used in this method.

3.3.2. Undersampling Methods

Random Undersampling (RUS) This approach randomly un-
dersamples the majority fault-free class (without replacement),
so that the number of fault-free samples in the training data
was equal to the number of fault samples.

Cluster Centroids (CC) This undersampling method splits
all the samples of the majority class into k clusters using the
k-means algorithm. The centroids of these clusters are then
used as the new samples for this class. In this case, the value
of k used was equal to the number of samples in the minority
class.

TomekLinks (TL) TomekLinks is an undersampling method
based on a modification of the condensed nearest neighbour
algorithm (Tomek, 1976). For our application, the fault free
class was undersampled to bring the number of samples down
to near the number of samples in the largest fault class.

Edited Nearest Neighbours (ENN) The Edited Nearest Neigh-
bours method is a slight modification of the k-nearest neigh-
bours method used to undersample from the majority class

(Wilson, 1972).

3.3.3. Oversampling

SMOTE (SM) SMOTE (Synthetic Minority Over-Sampling
Technique) is an algorithm that generates synthetic samples
for the minority class along the line connecting each sam-
ple in the minority class to its k-nearest neighbours (Chawla,
Bowyer, Hall, & Kegelmeyer, 2002). In this case, a number
of new synthetic samples were generated for each fault class
to bring the number of samples in line with the number of
fault-free samples.

3.3.4. Ensemble Learners

Bagging (Bag-CW, Bag-RUS) Bagging, or BootstrapAggre-
gating, is an ensemble technique designed to reduce overall
variance and avoid overfitting (Breiman, 1996). Two differ-
ent bagging classifiers were trained; one using the additional
“class weight” hyperparameter, as described in section 3.3.1;
and another using a randomly undersampled training set, as
described in section 3.3.2.

EasyEnsemble (EE) EasyEnsemble is a modification of the
AdaBoost algorithm (Freund & Schapire, 1995) which uses
random undersampling to addresses problems of class imbal-
ance (Liu, Wu, & Zhou, 2006).

3.4. Model Evaluation

A number of scoring metrics were used to evaluate final per-
formance on the test sets for fault detection and fault diagno-
sis, as well as the six test sets representing the time windows
A-E for fault prediction. A high number of false positives can
lead to unnecessary checks or corrections carried out on the
turbine, and this was captured with the precision score (where
a higher score represents a lower false positive rate). A high
number of false negatives, on the other hand, can lead to fail-
ure of the component with no detection having taken place
(Saxena et al., 2008). This is captured by the recall score,
where a higher number indicates a low ratio of false nega-
tives. The F1-Score was also used, which is the harmonic
mean of precision and recall. Confusion matrices were used
where appropriate to give a visual overview of performance
and show absolute numbers.

The formulae for calculating precision, recall, the F1-score
and specificity can be seen below:

Recall = tp/(tp+ fn) (2)

Precision = tp/(tp+ fp) (3)

F1 = 2tp/(2tp+ fp+ fn) (4)

6
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Table 6. Results for Fault Detection

Method Used Pre. Rec. F1 Spec.
Base .02 .78 .04 .49
CW .04 .83 .07 .82
RUS .02 .9 .04 .67
CC .02 .95 .03 .5

Specificity = tn/fp+ tn (5)

where tp is the number of true positives, i.e., correctly pre-
dicted fault samples, fp is false positives, fn is false nega-
tives, i.e., fault samples incorrectly labelled as no-fault, and
tn is true negatives.

The overall accuracy of the classifier on each test set was not
used as a metric due to the massive imbalance seen in the
data. For example, if 4990 samples were correctly labelled as
fault-free, and the only 20 fault samples were also incorrectly
labelled as such, the overall accuracy of the classifier would
still stand at 99.6%. Specificity was not used as a metric for
a similar reason, though was used in one specific case for
benchmarking against specificity scores in a previous study.

4. RESULTS & DISCUSSION

4.1. Fault Detection

For fault detection, the recall score was generally high, rang-
ing from .78 to .95, as seen in Table 6. However, the F1 score
was brought down by poor precision scores all-round, repre-
senting a degree of false positives. Specificity was highest us-
ing the CW method with a score of .82, followed by RUS with
.67, but suffered on the Base and CC methods, with .49 and
.5, respectively. The best balanced performance was seen on
CW, with good recall and specificity scores of .83 and .82, re-
spectively. The precision of .04 was very low, but was among
the highest of all results seen. The scores here were not as
high as the fault detection scores in (Leahy et al., 2016), but
this is to be expected due to the extra data included in this
dataset which may not be clearly faulty or fault-free. Despite
this, the scores were still an improvement on those obtained in
(Kusiak & Li, 2011), where the best recall and specificity for
fault detection were 0.84 and 0.66, respectively (compared
with .95 and .82 here).

4.2. Fault Diagnosis

The scores on each fault for every fault diagnosis method are
summarised in Figure 2. As can be seen, scores for the SVM
trained using the CW method were generally slightly worse
than RUS, apart from in the case of aircooling faults with
a recall score of 0.7 (up from the randomly undersampled
training set score of 0.33). This increase, however, may be
because there were only 7 instances of air cooling fault in

Figure 2. Precision, Recall and F1 scores for fault diagnosis
across various training methods

the test set, leaving it open to different test scores in each
case. The CC and EE methods both performed slightly worse
again, with CC slightly beating EasyEnsemble. The SVM
trained on data undersampled using the ENN approach per-
formed worse than both the EE and CC methods overall, but
achieved a better F1 score on generator heating faults than
the “vanilla” RUS method (0.82 vs. 0.8). However, this was
down to improved precision (0.88 vs. 0.73) at the expense
of recall (0.78 vs. 0.89). In the realm of fault detection and
diagnostics, recall usually has a higher priority than precision
due to the costs involved in missing a fault vs. a false alarm.
Both TL and SM performed by far the worst overall. SM uses
synthetic data to populate the minority class, so its poor per-
formance suggests that using synthetic data is not suitable for
this application.

The RUS method performed the best overall. Results for this
can be seen in the confusion matrix in Figure 3. Generator
heating faults showed a low proportion of false positives, as
well as correctly catching 89% of faults. Excitation faults
similarly showed a high proportion of caught faults at 97%,
but was let down by a high number of false positives leading
to a low precision score of .04. 67% of feeding faults were
caught, but here also the number of false positives led to a
precision score of .22.

4.3. Fault Prediction

Early results on fault prediction showed that generator heat-
ing and excitation faults showed the best promise for effec-
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Figure 3. Confusion Matrix showing the ratio of correctly
classified samples for fault diagnosis using the RUS training
method

tive prediction. Feeding and air cooling faults showed very
poor performance, possibly due to a separating hyperplane
for these faults being hard to find in the limited data available
for these particular faults. For this reason, it was decided to
focus on generator heating and excitation faults.

As described in Section 3.3, the various training methods
were first tried on the labelled dataset representing fault pre-
diction windowA from Table 4. The best performing of these
was then used on the other fault prediction windows.

Figure 4. Precision, Recall and F1 scores on fault prediction
for various training methods

The scores for each training method across the different faults
using prediction window A are shown in Figure 4. Surpris-
ingly, the best test scores were not seen on any of the ensem-

Table 7. Results for Fault Prediction Using CW Method on
Fault Prediction Window A

Faults Pre. Rec. F1
Generator Heating Fault 0.24 .98 0.38
Excitation Fault 0.04 0.96 0.07

ble classifiers, but on the SVM trained with the CW method,
using a linear kernel. The full results for CW can be seen
in Table 7. As can be seen, the recall score is very good, but
again theF1 is brought down by poor precision. RUS came in
close behind, but with lower precision on both faults. EE and
CC both performed worse, with lower scores on precision for
generator heating faults. ENN and SM both performed bet-
ter than CW on generator heating faults, but were let down
by a zero F1 score on excitation faults. TL performed very
badly, with F1 scores of zero for both faults. Both bagging
methods also performed very poorly. The poor performance
of all three ensemble methods was surprising, and may not
have performed as well as hoped because of the heuristic fea-
ture selection used. With a feature selection algorithm, test
scores may improve.

The test results from CW for various cases of time in advance
of a fault, as described in Section 3.1.3, can be seen in Figure
5. The recall score for both generator heating and excitation
faults stays relatively high for all cases. Both have a recall
score of .97-.99 for cases A & B. This falls to around 0.8
for cases C & D for generator heating faults, but rises again
to above 0.9 for cases E & F . Excitation faults start to drop
just below 0.8 for cases E and F , but this is still quite high.
These results show that good indicators of a developing fault
are seen up to 12-24 hours in advance of a fault solely looking
at 10-minute SCADA data. Previous work done in (Kusiak &
Li, 2011) showed a recall score of just .24 one hour in ad-
vance of a specific fault, and this was the furthest window
tested. It should also be noted that the results in that work
represented a test set which did not fully sample the fault-free
class. In (Kusiak & Verma, 2011), the maximum prediction
time was 10 minutes, with a recall score of .71 when detect-
ing blade pitch faults, using SCADA data at a 1s resolution
(rather than the 10 minute data sued in this study). Hence,
these results are extremely promising.

Confusion matrices for case A and D are shown in Figure 6.
For excitation faults, although nearly all faults were success-
fully predicted in advance, there were a high number of false
positives, leading to a low precision score of below 10% in
both cases. Generator heating faults saw more success. There
was a 40% precision score for case A, and a 22% score for
case D. Although these scores are quite low, the inherent
value of a SCADA-based system is that it does not require
the installation of any additional sensors or other hardware,
so can sit alongside existing systems with little additional
cost. Any alarms generated by the system showing impend-
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Figure 5. Precision, Recall and F1 scores for using CW train-
ing method to predict generator heating and excitation faults
for the cases shown in Table 4

Figure 6. Confusion matrices showing the ratio of correctly
classified samples for fault prediction using the CW training
method on prediction cases A and D

ing faults can be remotely investigated to determine if action
needs to be taken. Work by the authors in (Hu et al., 2016) has
shown promising early results in improving precision scores
for fault detection by using time-lagged and statistical fea-
tures, and will be applied to both fault diagnosis and predic-
tion in future work.

5. CONCLUSION

Various classification techniques based on the use of SVMs to
classify and predict faults in wind turbines based on SCADA
data were investigated. Three levels of fault classification
were looked at: fault detection, i.e. distinguishing between
faulty and fault-free operation; fault diagnosis, whereby faulty
operation was identified and subsequently the nature of the
fault diagnosed; and, fault prediction, where a specific fault
was identified as being likely to occur in advance of the fault

actually occurring. The classification techniques employed
involved various different ways of training SVMs, including
resampling the data as well as using ensembles of SVMs. The
results were very promising and show that distinguishing be-
tween fault and no-fault operation is possible with very good
recall and specificity, but the F1 score is brought down by
poor precision. In general, this was also the case for clas-
sifying a specific fault. More importantly, predicting certain
types of faults was possible up to twelve hours in advance of
the fault with very high recall scores. Although F1 score was
brought down by a poor precision, this still represents a sig-
nificant increase over what was previously possible using 10
minute SCADA data. Improving the precision scores would
represent a very important step forward in being able to rely
on SCADA data for accurate fault prediction.

The data used in this study related to a single turbine over
an eleven month period. This represents a limitation in what
can be achieved; with additional data, i.e., from more tur-
bines over a longer period, better fault prediction will be pos-
sible due to more positive examples being available for train-
ing. As well as this, advanced feature extraction and selec-
tion would enable even higher scores. Work done by the au-
thors in (Hu et al., 2016) showed improved precision scores
on fault/no-fault classification by using domain knowledge,
temporal and statistical features, followed by using feature
selection methods to find only the relevant features and speed
up training time. The feature extraction and selection meth-
ods described in that work will be applied to the fault diagno-
sis and prediction described in this paper to improve predic-
tion performance. Furthermore, an additional classification
step will be performed to determine which window a poten-
tially faulty test point is most likely to fall into, be it 2, 3, 5
or 12 hours in advance. For commercial viability, the ideal
balance between precision and recall will be explored, i.e., is
it cheaper to have many false positives with associated main-
tenance checks, or more false negatives and the associated
replacement costs. An important next step is also to inves-
tigate whether trained models will still be accurate after a
significant change in the turbine, e.g. after having a major
component replaced.
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