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ABSTRACT  

In literature, prognostics and health management (PHM) 

systems have been studied by many researchers from many 

different engineering fields to increase system reliability, 

availability, safety and to reduce the maintenance cost of 

engineering assets. Many works conducted in PHM 

research concentrate on designing robust and accurate 

models to assess the health state of components for 

particular applications to support decision making. Models 

which involve mathematical interpretations, assumptions 

and approximations make PHM hard to understand and 

implement in real world applications, especially by 

maintenance practitioners in industry. Prior knowledge to 

implement PHM in complex systems is crucial to building 

highly reliable systems. To fill this gap and motivate 

industry practitioners, this paper attempts to provide a 

comprehensive review on PHM domain and discusses 

important issues on uncertainty quantification, 

implementation aspects next to prognostics feature and tool 

evaluation. In this paper, PHM implementation steps 

consists of; (1) critical component analysis, (2) appropriate 

sensor selection for condition monitoring (CM), (3) 

prognostics feature evaluation under data analysis and (4) 

prognostics methodology and tool evaluation matrices 

derived from PHM literature. Besides PHM 

implementation aspects, this paper also reviews previous 

and on-going research in high-speed train bogies to 

highlight problems faced in train industry and emphasize 

the significance of PHM for further investigations.   

1. INTRODUCTION 

Reliability, availability, safety and maintenance cost 

effectiveness have been an important concern in many 

industries. Company profit and competitiveness depend on 

designing and producing highly reliable systems and/or 

good quality products. However, designing such 

sophisticated systems brings about many difficulties and 

concerns such as component maintenance cost, along with 

its merits. For industry, an important issue is how to reduce 

maintenance cost and manage business risks while 

increasing asset reliability, availability, and safety. Hence 

there is a need to design and develop sophisticated health 

assessment technologies, such as PHM, which are easily 

implementable by maintenance technicians or engineers to 

improve component reliability and safety. 

The Prognostics and Health Management (PHM) discipline 

provides for viewing overall health state of machines or 

complex systems and assists in making correct decisions on 

machine maintenance. The main duties of PHM technology 

are to detect incipient component or system fault, perform 

failure diagnostics, failure prognostics, and health 

management. There are three main issues to be considered 

when building a robust PHM: an estimation of current 

health state, prediction of a future state along with time to 

fail, and determination of a failure’s impact on the 

performance of a system. For practitioners, to select and 

implement PHM technology is based on their ability and 

knowledge about PHM approaches, tools, etc. Models 

which involve mathematical interpretations, assumptions 

and approximations make PHM hard to understand and 

apply. Prior knowledge to implement PHM in complex 

systems is crucial to building highly reliable systems.  

The goal of this current review paper is to serve as a 

handbook for practitioners in industry to motivate and 

assist them through PHM implementation and help them to 

accomplish their duty more easily. In this paper, a four-step 

maintenance assessment approach is designed which 

consists of (1) critical component analysis, (2) right sensor 

selection for CM, (3) prognostics feature evaluation and (4) 

prognostics methodology and tool evaluation matrices 

derived from PHM approaches presented in the literature. 

_____________________ 
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Besides PHM approaches literature review and proposed 

an approach, this paper also reviews previous and on-going 

research in high-speed train bogies to highlight the 

problems faced in the railway industry and to emphasize 

the significance of PHM for further investigations.  There 

are several review papers in literature conducted in fault 

diagnostics and prognostics techniques. Condition Based 

Maintenance (CBM), which is one of the frequently studied 

and applied maintenance techniques in many engineering 

applications, was reviewed in (Jardine, Lin, & Banjevic, 

2006). Authors studied implementation issues of CBM for 

mechanical systems and reviewed diagnostics and 

prognostics developments, data preprocessing algorithms 

and data fusion techniques in the literature. Rotating 

machinery prognostics articles were reviewed and 

synthesized in (Heng, Zhang, Tan, & Mathew, 2009). 

Failure prediction methodologies for rotating machinery 

were classified as reliability models, condition based and 

integrated models with their merits and drawbacks. 

Sikorska and M. Hodkiewiczb (2011) reviewed RUL 

estimation and prognostics modeling approaches under 

knowledge-based, life expectancy, artificial neural 

networks (ANN) and physics models. Authors presented 

prognostics models with their limitations and merits and 

discussed an appropriate model selection for business 

cases.  J. Lee et al. (2014), presented comprehensive 

review, conducting in PHM of rotatory machinery and 

introduced a 5S systematic methodology for PHM design 

which was evaluated in different industrial case studies. 

Kandukuri et al. (2016) reviewed diagnostics and 

prognostics methodologies under reliability centered 

maintenance (RCM) and CBM for two critical 

components; planetary gearboxes and low-speed bearings 

of wind turbines. Authors analyzed different CM data for 

bearing and gearbox diagnostics and concluded that 

vibration signal was better in gearbox fault detection and 

acoustic emission for bearing fault detection. Furthermore, 

CBM based on RCM as an ideal maintenance strategy was 

suggested for farm-level wind turbine health assessment. 

Guillén et al. (2013) studied PHM integration framework 

main topics regarding monitoring and diagnostics 

techniques by synthesizing PHM review papers in different 

application areas. Then, they discussed PHM functionality, 

maintenance types, prognostics approaches and proposed 

the integration of PHM with e-maintenance for proactive 

decision making. State of the art of PHM for nuclear power 

plants (NNP) was presented in (Coble et al. 2015) where 

they reviewed prognostics and maintenance techniques for 

active and passive NNP components. An Kim, and Choi 

(2015) reviewed a data-driven and physics-based 

prognostics algorithms in terms of model definition, 

parameter estimation, robustness in noise and bias handling 

in CM data, to provide practical prognostics options for 

beginners. Kan, Tan, and Mathew (2015) reviewed data-

driven prognostics techniques for non-linear and non-

stationary machine processes. The authors studied 

prognostics techniques that can cope with non-linearity and 

non-stationarity and concluded with further improvements 

in prognostics. In (Rezvanizaniani, Liu, Chen, & Lee, 

2014) authors reviewed a techniques for the battery PHM 

approaches to provide cost effective solutions for battery 

health assessment. These reviewed papers can be used to 

understand the general concepts of system CM. In Table 1, 

we have summarized important issues and remarks pointed 

out by the review papers synthesized from the literature.  

 

Authors Domain Approach Classification Issues & Remarks 

 Jardine et al. (2006) Mechanical  Physics-based 

 Data-driven 

  

 Lack of communication between scientists 

and industry practitioners 

 Lack of data collection and efficient 

approach validation 

 Implementation difficulty due to rapid 

change of technology design and 

management executives 

 Heng et al. (2009) Mechanical  Physics-based 

 Data-driven 

 Integration of CM with event data (ED) 

 Proper usage of incomplete data 

 Maintenance action effects  

 Machine operating conditions  

 Analysis of nonlinearity between 

condition monitoring data and component 

health state 

 Consideration of different failure 

interactions 

 Practical requirements and assumptions 

 Developing uniform health measurement 

framework 

  Sikorska et al. (2011) Mechanical  Knowledge-based 

 Life expectancy 

 Physics-based 

 Prediction requirements; the goal of RUL 

prediction 

 Model-process compatibility; 

compatibility of the model with the real 

world. 
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 Resource requirements; availability of 

resources to undertake the modeling (data, 

skills/experience) 

 Approach readiness; proof of model 

reliability. 

 Lee et al. (2014) Mechanical  Physics-based 

 Data-driven 

 Hybrid 

 Stated importance of maintenance strategy 

transformation from fail-and-fix to the 

predict-and-prevent methodology. 

 PHM was treated as evolved form of 

CBM. 

 Future trends of PHM were concluded as 

self-maintenance, resilient systems, and 

engineering immune system. 

 Kandukuri et al. (2016) Renewable energy  Data-driven  Suggested CBM based RCM as an ideal 

maintenance strategy for wind turbine 

 Concluded that vibration signal was better 

in gearbox fault detection and acoustic 

emission for bearing fault detection 

 Guillén et al. (2013) Mechanical  Physics-based 

 Data-driven 

 Hybrid 

 Integration of PHM with 

 e-maintenance for proactive decision 

making was emphasized. 

 Coble et al. (2015) Nuclear plants  Physics-based 

 Data-driven 

Authors stated followings for detecting and 

managing degradation of reactor 

components; 

 Developing non-destructive measurement 

methods and analysis for anomaly 

detection,  

 Developing monitoring algorithms for 

component degradation  

 Developing prognostics tools for RUL 

estimation. 

 An et al. (2015) Mechanical  Physics-based 

 Data-driven 

 Model definition 

 Parameter estimation 

 Robustness in noise and bias handling in 

CM data was studied to provide practical 

solutions for machine prognostics  

 Kan et al. (2015) Mechanical  Model-based 

 Data-driven 

 Combination models 

 Lack of run-to-failure historical data 

 Improving prognostics techniques’ 

feasibility with minimum uncertainty 

 Good model validation establishment and 

simplification of techniques for real-time 

prognostics 

 Developing global prognostics technique 

ranking system to compare their 

performances for all kind of machinery 

Rezvanizaniani et al. 

(2014) 

Electrical  Model-based 

 Data-driven 

 Fusion models 

 Compared different approach drawbacks 

 The main challenges in battery health 

management were summarized as 

uncertainty in mobility, durability and 

safety 

Table 1. Main issues & remarks studied by review papers in literature. 

The paper is organized as follows: In Section 2, PHM main 

tasks are explained to introduce general ideology. Section 

3 presents PHM implementation challenges and/or issues 

System-level based PHM is presented in Section 4. Section 

5 presents uncertainty quantification. Section 6 reviews 

component-level PHM approaches and prognostics tools. 

Bogie component diagnostics and prognostics techniques 

are reviewed in Section 7. Section 8 contains PHM 

implementation steps for industry and Section 9 concludes 

the paper. 

2. PHM MAIN TASKS  

In this section, PHM implementation steps are discussed 

and explained in detail to instruct practitioners and make 

them familiar with PHM infrastructure. Steps involve data 

acquisition, data preprocessing, detection, diagnostics and 

prognostics, decision making and finally human-machine 

interface. PHM steps are depicted in Fig. 1. Each step will 

be explained in the following subsections. 
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Fig. 1. PHM steps. 

2.1 Data Acquisition 

Data acquisition is an initial and essential step of PHM 

which is known as a process of data collection and storage 

from physical component/system under investigation for 

further diagnostics and prognostics purposes. Collected 

data could be either sensory data or event data (ED). The 

ED include the information of maintenance actions (e.g. oil 

change, repairs etc.) taken on the events (e.g. failure, 

breakdown, installation etc.) that happened to the physical 

component. CM or sensory data are measurements tracked 

via installed sensors from asset under investigation, such 

as; acoustic emission data, vibration data, temperature, 

pressure, humidity, resistance, voltage, etc. Where ED 

includes events performed by maintenance technician, such 

as corrective maintenance, asset repairs, installation, 

breakdown, cleaning and oiling on the component/system. 

Data acquisition process is depicted in  Fig. 2 for a railway 

point machine example. ISO definition for data acquisition 

can be found in (ISO 13374-1:2003, n.d.). 

2.2 Data Preprocessing 

Data preprocessing involves data cleaning and data 

analysis steps. Cleaning errors/noise from raw data 

increases the chance of getting error-free data for further 

investigations. Data analysis, which is the second step of 

data preprocessing, involves feature extraction, feature 

evaluation, and selection processes. Cleaned sensory time 

series should undergo a feature extraction process to extract 

only the important and useful features that reflect system 

health state being monitored. Extracted features should 

indicate the failure progression of the system. The feature 

extraction techniques are categorized as time-domain 

based, frequency-based and time-frequency based 

techniques in the literature (Jardine et al., 2006). The time-

domain based feature extraction techniques (e.g. root mean 

square, kurtosis etc.) are used to analyze the global 

characteristics of data and to extract the features in time 

domain. The frequency-domain based feature extraction 

techniques (e.g. Fourier transform, envelop analysis etc.)  

transform the data into frequency domain and are used to 

detect and identify a faults which are not possible by time-

domain based techniques. The time-frequency domain 

based techniques (e.g. Fourier transform, envelop analysis 

etc. Hilbert-Huang transform, Wigner-Ville distribution 

etc.) analyze the data in both time and frequency domains. 

Feature evaluation and selection process is the second 

important step of data analysis after extraction. A feature 

evaluation can be defined as a feature goodness 

quantification process in feature selection. There are 

different techniques used to quantify the feature goodness 

(i.e. degradation trend) such as monotonicity, 

prognosability and trendability (J. Coble & Hines, 2009). 

The best features, which have clear degradation trend, are 

further selected in a feature selection process after 

evaluation (Kimotho & Sextro, 2014). More information 

on feature extraction techniques can be found in (Sharma 

& Parey, 2016; Zhu, Nostrand, Spiegel, & Morton, 2014) 

articles. 

 

Fig. 2. Data acquisition process for railway point 

machine. 
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Fig. 3. Data preprocessing procedure. 

An accurate prediction of remaining-useful-life (RUL) of 

assets depends on well evaluated and selected prognostic 

features. Overall data preprocessing  procedure is depicted 

in Fig. 3. ISO definition for data preprocessing can be 

found in (ISO 13374-1:2003, n.d.). 

2.3 Detection 

There are many factors that cause system components to 

degrade over time, losing their initial performance, and 

which therefore need to be considered in detection 

modeling. Health state detection is the process of detecting 

and recognizing incipient failures and/or anomalies from 

CM data. A fault detection is typically based on the 

quantification of the inconsistencies between the actual and 

the expected behavior of the system in nominal conditions. 

Fig. 4 illustrates failure propagation of component based on 

CM data. 

In Fig. 4, a component CM indicator increases with time as 

the component degrades. As illustrated in the figure, the 

evolution of the health state of the component can be 

divided into 3 phases; Phase-1 (T0 <T1) where the 

component is in a healthy state, Phase-2 (T1< T2) where the 

component is in a faulty state, Phase-3 (T2<) where the 

component is in the completely failed state. Predefining 

thresholds (T1 and T2) is very challenging, which needs 

serious experience for practitioners. Historical CM data can 

be also used to compare and set new thresholds for the same 

type of components. Time-to-failure estimation is 

performed in Phase-2 after the detection process where 

maintenance activities are planned based on estimated 

time-to-failure. Therefore, early detection of component 

failure is important. Fig. 5 illustrates features’ health state  

 

Fig. 4. Component failure propagation. 

 

Fig. 5. Feature health state transitions. 

transitions for slowly propagating failures (healthy-faulty- 

failed) and for sudden failures (healthy-failed). ISO  

definition for fault detection can be found in  (ISO 13374-

1:2003, n.d.). 

2.4 Diagnostics  

Fault diagnostics is a process of fault detection, isolation 

(i.e. which component is failed), failure mode identification 

(i.e. what is the cause of failure or fault) and degradation 

level assessment (i.e. quantification of the failure severity) 

in condition monitoring. Diagnostics can be conducted 

when a machine is either in complete failure state or in 

faulty state. Fig. 6 illustrates the post-mortem fault 

diagnostics for failed component. Diagnostics results can 

be used for reactive as well as proactive decision making 

(the latter when diagnosing a degraded condition, as 

opposed to a complete failure). ISO definition for fault 

diagnostics can be found in (ISO 13372:2012, n.d.). 

2.5 Prognostics 

Prognostics is defined as the process of predicting the time 

(RUL) at which a component will no longer perform a 

particular function and it is illustrated in Fig. 7. Prognostics 

results are used to support proactive decision making. ISO 

definition for fault prognostics can be found in (ISO 13381-

1:2005, n.d.). 

As illustrated in two examples (Fig. 6 and Fig. 7), 

prognostics serves as prevention of system from possible 

failures by predicting future states while diagnostics is 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

 

6 

concerned with fault isolation and classification process. 

Prognostics and diagnostics difference is depicted in Fig. 8. 

 

Fig. 6. Diagnostics. 

 

 

Fig. 7. Prognostics. 

 

Fig. 8. Prognostics vs. Diagnostics. 

2.6 Decision Making 

Decision making is a process resulting in the selection of 

logical and/or right maintenance action among several 

alternatives. Maintenance technician must evaluate the 

negatives and positives of each action based on the 

diagnostics or prognostics results. To make effective 

decisions, the technician also should be able to estimate the 

outcomes of each alternative as well. ISO definition for 

decision making can be found in (ISO 13374-1:2003, n.d.) 

Outcomes of decisions could be either operational or 

design based. Decisions made on operational actions could 

be maintenance interventions, hardware/software 

reconfigurations and fault tolerant control (FTC). Design 

based outcomes could be adding and/or replacing sensors 

observability and redesign and/or components placement. 

Decision-making process is illustrated in Fig. 9. 

2.7 Human-Machine Interface 

Human-machine interface is Graphical User Interface 

(GUI) which is used to visualize component health status, 

to execute tasks, to analyze data and to control the 

maintenance operations. 

3. PHM CHALLENGES 

This section will summarize general and step based 

challenges of PHM. PHM and its implementation is a very 

challenging task that requires several aspects in need for 

further investigation before applying it reliably in real 

applications. Hence, it is important to develop 

sophisticated reliable degradation models for the accurate 

estimation and prediction of its evolution. Safety-critical 

systems such as; automotive, train, nuclear, chemical and 

aerospace industries, need smart predictive maintenance 

systems with very high reliability due to potential 

catastrophic failure consequences. Due to this, smart and 

reliable PHM technology development is urgent to cope 

with maintenance optimization tasks of critical complex 

systems efficiently. Thus, developed PHM system should 
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take into account asset and system degradation, 

environmental effects, failure behaviors, failure 

interactions and related uncertainties (Qiao & Weiss, 

2016). These PHM challenges are illustrated in Fig. 10. 

Further challenges faced in PHM steps are data acquisition, 

data preprocessing, detection, diagnostics and prognostics 

and decision making. Challenges in PHM steps are 

synthesized in  Fig. 11. 

4. SYSTEM-LEVEL PHM 

In this section, scientific works conducted toward system-

level based PHM approaches are reviewed and challenges 

in implementation steps are discussed.  

Generally, most of the research conducted in failure 

diagnostics and prognostics of assets in literature are based 

on component-level health assessment. However, complex 

engineering systems are composed of multiple and 

interactively functioning individual components that can 

influence the system performance very seriously when they 

fail. Hence, development of PHM methodologies for 

system-level monitoring is also important as well as 

component-level PHM methodologies (Sankavaram et al., 

2016). (Khorasgani, Biswas, & Sankararaman, 2016) 

proposed comprehensive two-step analytic system-level 

prognostics methodology for rectifier systems which 

consist of estimation and prediction step. In estimation 

step, performance degradation models of individual 

components were combined and were adopted into particle 

filtering (PF) based estimation. Whereas in the prediction 

step, first order reliability method (FORM) based system-

level prediction model was built to predict system-level 

RUL. The proposed system-level stochastic approach was 

robust and accurate in RUL prediction but not 

computationally efficient when compared with inverse-

FORM.  Sai Sarathi Vasan, Chen, & Pecht (2013) proposed 

a model-based approach for system-level RUL prediction 

of the radio-frequency receiver system. The proposed 

model consists of three steps: knowledge-based creation, 

offline and on-line testing. In the knowledge-based creation 

step, system parameters and critical circuits were 

identified. Authors decomposed an electronic system into 

circuit components to detect only the critical ones to 

minimize the resources and complexity. In the off-line step, 

fault indicators and failure threshold were identified and 

finally, prognostics was performed by PF in an on-line step.  

Fault tree (FT) failure analysis technique which is widely 

used in safety analysis of aircraft systems, study 

interactions of sequences of sub-events with the top event. 

Daigle, Sankararaman, & Roychoudhury (2016) presented 

a methodology based on FT technique for system-level 

RUL prediction by combining individually independent 

components RULs of aircraft environmental control 

system. Ferri et al. (2013) combined system architecture 

information with individual component RULs to obtain 

system RUL of the simplified electrical system. 

Jie Liu & Zio (2016) proposed a reliability assessment and 

system RUL prediction framework based on a recursive 

Bayesian method for the system with multiple dependent 

components. The system states were estimated by the 

recursive Bayesian method and Monte Carlo simulation 

was applied accurately in RUL prediction of nuclear power 

plants’ residual heat removal system at system-level 

reliability. 

Although, some papers on system-level PHM exist, there 

remain many issues and/or challenges to be solved to 

develop system-level PHM methodologies. Challenges 

regarding system-level PHM can be stated as, model 

structure and parameters uncertainties, nonlinearity of 

system model, environmental effects, measurement noise 

and component degradation interactions. 

5. UNCERTAINTY QUANTIFICATION 

Since fault prognostics methodologies deal with machine 

future health state prediction, there are many uncertainties 

parameters that influence the prediction accuracy. Sources 

of fault prognostics uncertainty can be categorized as 

following; 

 

Fig. 9. Decision making. 
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.  

Fig. 10. PHM challenges. 

 

Fig. 11. Challenges faced in PHM steps. 
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Uncertainty in system parameters: this concerns the 

uncertainty in the values of the physical parameters of the 

system (resistance, inductance, stiffness, capacitance, etc.). 

This uncertainty is induced by the environmental and 

operational conditions where the system evolves. This can 

be tackled by using adequate methods such interval ones. 

Uncertainty in nominal system model: this concerns the 

imprecisions in the mathematical models which is 

generated to represent the behavior of the system. These 

imprecisions (or uncertainties) can be the result of a set of 

assumptions used during the modeling process and which 

lead to models that don’t fit exactly the real behavior of the 

system. Fig. 12 illustrates an example for this type of 

uncertainty for Micro Electro Mechanical Systems 

(MEMS) (Skima, Medjaher, Varnier, Dedu, & Bourgeois, 

2016a) which degraded differently under the same 

operational profiles. 

Uncertainty in system degradation model: the degradation 

model can be obtained from accelerated life tests which are 

conducted on different data samples of a component. In 

practice, the data obtained by accelerated life tests 

performed under the same operating conditions may have 

different degradation trend. This difference in the 

degradation trends can then be considered as an uncertainty 

in the degradation models derived from the data related to 

the accelerated life tests.  

Uncertainty in prediction: uncertainty is inherent to any 

prediction process. Any nominal and/or degradation model 

predictions are inaccurate which is impacted by several 

uncertainties such as uncertainty in the model parameters, 

the environmental conditions and the future mission 

profiles. The prediction uncertainty can be tackled by using 

Bayesian and online estimation and prediction tools (e.g. 

PF and Kalman filter etc.). 

Uncertainty in failure thresholds: the failure threshold is 

important in any fault detection and prediction methods. It 

determines the time at which the system fails and 

consequently the remaining useful life. In practice, the 

value of the failure threshold is not constant and can change 

in time. It can also change according to the nature of the 

system, operating conditions and in the environment which 

 

Fig. 12. Uncertainty in degradation model of MEMS 

(Skima et al., 2016a). 

it evolves. All these parameters induce uncertainty which 

should be considered in the definition of the failure 

threshold.  

Sankararaman, (2015) analyzed the uncertainty in fault 

prognostics by quantifying the sources of uncertainty from 

different aspects of view. In (Sun, Zuo, Wang, & Pecht, 

2014), the authors developed state-space-based 

degradation model to reduce the crack growth prediction 

uncertainty based on data fusion. A similar work conducted 

in fault prognostics uncertainty quantification can be found 

in (Duong & Raghavan, 2017; Sankararaman & Goebel, 

2013; Zhao, Tian, & Zeng, 2013) articles. Hence, it’s 

important to quantify the uncertainty sources in fault 

prognostics.   

6. PHM APPROACHES- A REVIEW 

In this section, we have reviewed scientific papers which 

have been published in component-level PHM, especially 

in complex components which have a high maintenance 

cost and severe failure consequences. And they were 

summarized under three categories, in general: model-

based (or physics-based), data-driven and hybrid approach 

with their drawbacks and merits. The Experience-based 

approaches, which is solely based on expert-knowledge, is 

not presented in this paper. Only the most studied 

approaches are presented and reviewed. PHM approaches 

are illustrated in Fig. 13 with their pros and cons. 

6.1 Model-based Prognostics Approaches 

In Model-based prognostics approaches, the behavior of a 

system/component degradation process leading to failure is 

described by mathematical models and/or equations 

derived from physical systems. Derived mathematical 

model is combined with condition monitoring data to 

identify model parameters, then used to predict the future 

evolution of component health state. Model-based 

approaches are more accurate than other approaches and 

have long-term RUL prediction horizon but need good 

expert knowledge. Deriving models from real physical 

systems is very challenging due to system complexity and 

stochastic degradation behavior of components. A model-

based approach for Li-ion cells is illustrated in Fig. 14.  The 

equivalent battery circuit degradation model was adapted 

from Mohamed et al. (2010). 

Commonly used model-based prognostics approaches in 

literature are Paris-Erdogan law  (Irwin & Paris, 1971; 

Paris & Erdogan, 1963) and Forman law (Forman, 1972). 

In (LI, Kurfess, & Liang, 2000), stochastic defect-

propagation model was presented based on Paris equation 

for bearing defect prognostics. 

Feasibility of proposed approach was tested by numerical 

simulations. Gearboxes are force transmission components 

of mechanical systems that need health assessment due to 

its importance. In (C. J. Li & Lee, 2005), was proposed 

model-based methodology based on Paris crack 

propagation to predict RUL of cracked gears. Gear meshing 

stiffness was identified by embedded model from measured  
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Fig. 13. PHM approaches. 

 

Fig. 14. Model-based prognostics approach for Li-ion battery. 

vibration data. Experimental results showed that model-

based approach could accurately predict RUL of gear crack 

with minimum error. In (Marble & Morton, 2006), was 

developed a model-based approach for turbine engine 

bearing spall progression prognostics. Depending on 

operating conditions, presented model could compute 

failure time and spall growth trajectories very well and 

prediction uncertainty was reduced by model updating. In 

(Choi & Liu, 2007), was studied spall progression life 

model due to crack formation and wear of rolling contact. 

Crack initiation and propagation models were combined 

with developed spall progression model to predict finish 

hard machined specimens’ total life. Developed spall 

progression life model was experimentally tested and was 

less sensitive to different machine operations when 

compared with fatigue life models. 

Cracks in mechanical components of complex machines 

can cause serious failures in the industry unless diagnosed 

well. In (Pennacchi & Vania, 2008), was presented model-

based diagnostics approach for failure identification in gas 

turbines. They analyzed shaft vibrations caused by crack 

propagation during load coupling of gas turbines and 

successfully obtained good diagnostics results to avoid 

catastrophic failures. 

In many safety-critic complex systems, such as bridges (J. 

He, Lu, & Liu, 2012) and aircraft (Campbell & Lahey, 

1984), fatigue crack growth prognostics is efficiently used 

for structural health management to avoid catastrophic 

failures. In (Guan et al. 2012), was proposed Maximum 

relative Entropy (MrE) to manage measurement 

uncertainties. Physics of fatigue crack was modeled using 

Paris-Erdogan law (Paris & Erdogan, 1963) and was 

validated on using Virkler (Virkler, Hillberry, & Goel, 

1979) fatigue crack propagation dataset. In comparison 

with the classical Bayesian method, proposed approach 

gave improved prediction results in fatigue crack 

prognostics. 

Self-adaptive RUL prediction methodology based on Paris 

law for rolling element bearing prognostics was studied in 
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(Liang et al., 2014) paper, using vibration data acquired by 

accelerated aging procedure and bearing defect 

propagation was effectively predicted without a priori 

knowledge about model parameters.   

Kalman Filter (KF) (Kalman, 1960), which is a widely 

known Bayesian method, has been used to model linear 

systems with additive Gaussian noise for estimation and 

prediction purposes. In (Lim & Mba, 2015), Switching 

Kalman Filter (SKF) was adopted for model estimation and 

RUL prediction of aircraft gearbox bearings using CM 

data. And it was concluded that, when CM data is available, 

using SKF for diagnostics and prognostics of bearing 

degradation, could support to make better maintenance 

decisions. Prognostics of Proton Exchange Membrane Fuel 

Cells (PEMFC) were studied in (Bressel et al. 2016). 

Extended Kalman Filter (EKF) was used in State of Health 

(SoH) estimation and RUL prediction of fuel cells and it 

was stated that EKF could offer good SoH estimation and 

accurate RUL prediction results using experimental data 

for degradation modeling. In (Andre et al. 2013), was 

proposed an online mathematical approach based on a 

combination of dual KF and Support Vector Machines 

(SVM) to estimate State of Charge (SoC) and SoH values 

of Li-ion batteries. The developed approach was validated 

using internal resistance features from real driving cycle 

test data which gave accurate and comprehensive results 

for both SoH and SoC estimation of aged Li-ion batteries 

in a laboratory environment. Since batteries are 

electrochemical substances, they have nonlinear 

degradation pattern due to many environmental effects. In 

(Burgess, 2009), was developed a methodology using KF 

to estimate remaining service life of the nonlinearly 

degraded lead-acid battery. Nonlinear capacity degradation 

of the lead-acid battery was modeled by dividing capacity 

time series data into two phases; phase-1which was 

assumed as healthy part and phase-2 which as the faulty 

part where degradation is more rapid. KF algorithm was 

conducted when capacity degradation reached to phase-2 

in order to predict the remaining service life of the lead-

acid battery. An important issue that was not handled in this 

paper is how to detect incipient failure from nonlinear 

capacity degradation time series before jumping to phase-

2. The uncertainty of degradation parameters due to 

environmental effects is one of the main problems in Li-ion 

SoC and SoH estimations. 

Particle filters (PF), which are known as state-space 

models, has been used in many prediction problems. Jouin 

et al. (2014) studied PEMFC stack degradation and 

developed prognostics model for RUL estimation using PF. 

Despite the PF’s robustness in prediction process, it has a 

degeneracy phenomenon. After some iteration, particle 

weights tend to zero affecting estimation result. This 

problem was handled in (H. Dong et al 2014) by adopting 

SVM to resample weights in order to avoid degeneracy 

problem. Internal resistance and capacity features were 

used as system health indicators to estimate SoH of Li-ion 

batteries. Integration of SVM-PF algorithm improved SoH 

estimation and RUL prediction when compared with 

standard PF itself. Piyush Tagade et al. (2016), developed 

an improved PF algorithm to indicate battery state 

estimation at different driving cycle protocols and was 

compared with KF algorithm. Proposed model accurately 

predicted battery parameters at different driving cycle 

protocols outperforming KF algorithm. Filtration, which is 

a process of cleaning and/or trapping suspended particles 

from a liquid, is an important process in many engineering 

applications, such as automotive, chemical industry, 

nuclear plants, etc. In (Omer F. Eker, Camci, & Jennions, 

2015), was presented a physics-based model for filter 

clogging phenomena. PF was integrated with presented 

physics model to estimate RUL of fuel filters and it was 

validated on experimental data acquired from test rig under 

laboratory environment. Zio & Peloni, (2011) presented 

PF-based prognostics framework for dynamic fatigue crack 

propagation. A tutorial on PF with Matlab code 

implementation was presented in (An, Choi, & Kim, 2013). 

Marine J. et al. (2016) presented comprehensive review. 

Even though model-based approaches have accurate 

prognostics results, they might not be a feasible solution in 

many industrial applications, due to failure type 

uniqueness, dynamic damage evolution and specific 

theoretical knowledge about the system. Failure 

progression of components and/or subsystems in a complex 

system might be different from each other which limits the 

applicability of physical models in system level 

prognostics. Model-based prognostics tools studied in the 

literature, are given in Table 2 below with their application 

areas, advantages, and disadvantages. 

6.2 Data-driven Prognostics Approaches 

Data-driven approaches attempt to build degradation 

models using information from CM data collected via 

installed sensors and to predict future health state instead 

of building physical models. Data-driven approaches can 

be easily applied in prediction problems and require more 

computational time than model-based approaches. The 

accuracy of data-driven approaches is highly dependent on 

the amount of CM data available. Data-driven prognostics 

approach is illustrated in Fig. 15. And battery degradation 

model in this present figure was adapted from the work of 

W. He et al. (2011). 

In traditional prognostics methodologies, results of 

multiple algorithms are compared and the one which gives 

the best result is selected for prediction of system health 

state while discarding other algorithms. Ensemble based 

prognostics approach which combines multiple algorithms 

using different weighted-sum functions for accurate RUL 

prediction was proposed to overcome this limitation in (Hu 

Y. et al. 2012). Proposed ensemble approach was tested 

using 2008 IEEE PHM challenge problem: power 

transformer and electric cooling fan problems, by 

combining 5 different prognostics algorithm which 

increased RUL prediction accuracy.  

ARIMA, which is the generalization of ARMA, is another 

widely-used approach in time series forecasting aiming to 

describe autocorrelation of the data. In (Wei Wu, 2007), 

was proposed an improved ARIMA model for rotating  
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Prognostics Tools Advantages Disadvantages Application 

Paris’ law (PL) -Model parameters are 

adaptable for conditional 

changes 

-Linear correlation with 

defect size and vibration 

RMS level 

-Empirical determination of 

material constants is needed 

-Bearings, gearbox, fatigue 

crack propagation 

Forman law (FL)  -Links both monitored data and  

crack growth physics to life 

models  

- Poor results for complex 

systems 

-Fatigue crack propagation 

Fatigue spall 

initiation/progression model 

(FSI/P) 

-Calculates time up to initiation 

and from initiation up to failure 

-Damage is cumulative 

-Many parameters to be 

determined 

- Bearings, fatigue crack 

propagation 

Kalman Filter (KF) -Estimates current/future states 

-Estimation error is corrected 

with the latest measurement  

-System/measurement model 

need to be defined 

-Sensitive to noise 

-Applicable to linear systems 

with Gaussian noise 

- Gearbox bearings, PEMFC, 

batteries 

Particle Filter (PF) -Applicable to non-linear 

systems with non-Gaussian 

noise 

-Better accuracy 

-Avoids degeneracy problem by 

resampling 

-System/measurement model 

need to be defined 

-High dimensional data 

increases computational cost 

-PEMFC, batteries, filter 

clogging, fatigue crack 

propagation 

Table 2. Model-based prognostics tools and their advantages and disadvantages. 

 

 

Fig. 15. Data-driven prognostics approach for Li-ion battery. 

machinery prognostics which could detect underlying 

changes from machine degradation data. It was validated 

on vibration signals collected from test rig and gave better 

prediction result than standard ARIMA. Furthermore, 

prognostics on miniature bulb degradation data was studied 

by modeling trend and seasonal components of time series 

analysis technique in (T. Huang et al. 2010).  

Jianbo L. et al. (2007) developed a novel prediction 

algorithm so-called Match Matrix (MM) with long 

prediction horizon. MM was formed by comparing two 

degradation data based on similarity distances. If the 

similarity or match value between currently developing 

degradation and historical one is bigger, then one can use 

historical degradation time series data in modeling to 

predict future behavior of currently developing 

degradation. MM prediction results were compared with 

Elman Recurrent Neural Network (ERNN) and gave better 

long term prediction accuracy. Gaussian Process 

Regression (RPG) statistical non-parametric method was 

adopted for nuclear plant prognostics in (Piero Baraldi, 

Mangili, & Zio, 2015). 

GPR was validated on simulated creep growth time series 

and real filter clogging degradation with accurate RUL 

prediction results. In (Yu, 2011), Gaussian Mixture (GM) 

was integrated with feature extraction methodology for 

bearing defect diagnostics. In (P. Wang, Youn, & Hu, 

2012), an offline-online methodology for structural health 

prognostics was proposed. In online step, the probabilistic 

recursive Bayesian algorithm was used for learning system 

health level whereas in offline step similarity-based 
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interpolation was used to predict the lifetime of an electric 

cooling fan. 

An offline-online methodology for prognostics of CNC 

machines using Bayesian network was proposed in (D. A. 

Tobon-Mejia, Medjaher, & Zerhouni, 2012). In an offline 

phase, reliable features were extracted from raw data and 

were fed for further modeling using Mixture of Gaussian 

Hidden Markov Model (MoG-HMM), whereas, in the 

online phase, the learned model was used in cutting tool 

health assessment and RUL estimation processes. Wavelet 

packet decomposition was adopted in feature extraction 

using vibration signals and MoG-HMM was used to model 

bearing degradation and RUL estimation in (Diego A. et 

al., 2012). In (M. Dong & He, 2007), was proposed 

diagnostics and prognostics framework for hydraulic pump 

health monitoring based on hidden semi-Markov Models 

(HSMM). Furthermore, authors modified the forward-

backward algorithm to estimate model parameters and 

using HSMM estimated time duration of hidden states 

performed RUL prediction which was better than 

traditional HMM. Research done in battery prognostics 

mainly aims to estimate State-of-Charge (SoH), State-of-

Health (SoH) and to predict RUL. Two prognostics 

methods; linear and artificial neural network (ANN), were 

implemented to predict RUL of batteries using capacity 

degradation time series in (S. Lee et al, 2012). ANN 

approach performed better than linear model since it gives 

better results in one-step-ahead RUL predictions. Li-ion 

self-recovery which is known as cell regeneration 

phenomenon was investigated and combined with capacity 

degradation data for prognostics of batteries utilizing a 

combination of GPR functions in (D. Liu et al., 2013). As 

a result presented approach reduced prediction uncertainty 

while increasing accuracy. Prognostics of Li-ion batteries 

based on capacity degradation time series was presented 

using Autoregressive (AR) model with Particle Swarm 

Optimization (PSO) algorithm in (Long, Xian, Jiang, & 

Liu, 2013) paper for PF. 

Reliability, availability and safety are subjects of great 

importance in many complex systems and indeed in the 

railway industry. Railway turnout systems, which are 

electro-mechanical structures, are key contributors to the 

reliability and availability of a railway network. In (Omer 

Faruk Eker et al., 2011), the authors developed a 

prognostics methodology to detect and forecast failures in 

electro-mechanical systems named as simple-state based 

prognostics method. Results of proposed methodology 

were quite good in comparison with Hidden Markov 

Models (HMM) using real datasets collected from a 

railway turnout machine. Time Delay Neural Network 

(TDNN) was used for failure prediction using real sensory 

data collected from a railway turnout machine in (Halis 

Yilboga, Ömer Faruk Eker, 2010). Data-driven prognostics 

approaches build degradation models using monitored data 

collected via installed sensors and they may be more 

practical and/or available solution for diagnostics and 

prognostics of complex systems in many applications 

instead of building physical models. However, those 

models have no or less physical meaning which makes 

them less sensitive to real system behavior. Table 3 

presents application areas, advantages, and disadvantages 

of data-driven prognostics tools.  

Prognostics Tools Advantages Disadvantages Application 

ARIMA Models  -Applicable to linear systems with 

stationary behavior 

-Uses less amount of data 

-Short term prediction 

-Not useful for non-stationary 

processes 

- Rotating machinery   

Match Matrix (MM) -Deals with high dimensional data 

-Provides long term prediction 

-Suitable for non-stationary 

processes 

-Needs sufficient historical data 

-Data should have degradation 

trend 

- Rotating machinery 

Gaussian Mixture 

(GM) 

-Many Gaussian functions can be 

used to approximate an arbitrary 

distribution and accuracy 

-Initialization methods are 

important in parameter 

optimization 

-Determining number of mixtures is 

difficult 

- Bearings, CNC machines 

Gaussian Process 

Regression (GPR) 

-Adaptable to environment and can 

learn from experience 

-Needs covariance function 

determination 

-Suitable for Gaussian likely hood 

- Nuclear power plants, 

batteries 

Artificial Neural 

Networks (ANN) 

-Applicable for complex systems and 

which have non-linear behavior 

-Adaptable to the system 

-Network structure is not 

determinable 

-Needs resources for computation 

- Bearings, batteries, 

turnout point machines 

Fuzzy Logic (FL) -Inputs can be imprecise 

noisy/incomplete 

-Appropriate for complex systems 

-Needs rule development based on 

expert knowledge 

- Bearings 

Bayesian Networks 

(BN) 

-The number of structure parameters 

are reduced by conditional 

probability distribution 

-Visualizes variable pair dependency 

links 

-Has complex and costly learning 

-Prior knowledge is needed 

- Bearings 

Table 3. Data-driven prognostics tools and their advantages and disadvantages. 
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6.3 Hybrid Prognostics Approach 

Both model-based and data-driven prognostics approaches 

have their own merits and limitations as was discussed in 

previous sections. The hybrid prognostics approach, which 

is a newly developing PHM approach, aims to integrate 

merits of different approaches while minimizing 

limitations for better system and/or component level health 

state estimation and RUL prediction. None of the 

prognostics approaches that is presented in the literature is 

superior to another. Hence, it’s important to note that 

superiority of prognostics approaches can only be case 

specific.  

In (Liao & Köttig, 2014), was presented a comprehensive 

literature review aiming to developed a hybrid prognostics 

approach combining advantages and disadvantages of 

different prognostics approaches. Authors validated 

developed a hybrid approach for Li-ion degradation as a 

case study to show potential benefits. They categorized 

prognostics models as experience-based, data-driven, and 

physics-based models and presented 5 different hybrid 

approach classes as illustrated in Fig. 16. Here we briefly 

explain those classifications with their advantages and 

disadvantages. Interested readers are kindly referred to the 

original paper (Liao & Köttig, 2014) for more information. 

Class 1 ─ combines Experience-based and Data-driven 

approach models. Experience-based approaches, which is 

solely based on expert-knowledge, is integrated with data-

driven models for asset prognostics. The advantage of this 

hybrid approach is that expert-knowledge can help to 

determine system faults and those rules can be used in data- 

driven models for RUL prediction. However, expert-

knowledge may not capture all faults occurring in system 

degradation and this hybrid approach is not a feasible 

option for long-term RUL predictions. Satish & Sarma 

(2005), presented a cost-effective method for bearing fault 

prognostics combining ANN and fuzzy logic. Results of 

developed hybrid approach were more suitable for bearing 

health assessment than ANN. 

Class 2 ─ combines Experience-based and Physics-based 

approach. This hybrid approach integrates expert-

knowledge to improve the physics-based model. This is 

similar to Class 1, the only difference is, it uses physics-

based models for prognostics. In (Swanson, 2001), was 

presented a hybrid approach for crack propagation problem 

using KF and fuzzy logic algorithms. KF was used to detect 

feature changes and estimate remaining time to failure 

where fuzzy logic was adopted to define failure thresholds 

for vibration signals of machines under different 

operational modes. 

Class 3 ─ combines multiple Data-driven approach 

models. In this hybrid approach, two or more data-driven 

models are combined to improve asset performance 

prediction by means of information fusion. In this class, 

one data-driven approach can be used to estimate the health 

state and a second one to predict asset residual life. In 

(Gebraeel et al., 2004), was developed a hybrid approach 

for bearing failure prediction based on ANN. Authors 

collected vibration signals from 25 accelerated bearing 

tests and trained 25 ANN for bearing failure time 

prediction. Then residual lifetime prediction was 

accomplished by weighting the outputs of ANNs. In (Peng 

& Dong, 2011), was proposed a hybrid approach for pump 

wear prognostics. Grey prediction model which also was 

studied in (Gu et al., 2010) for electronic prognostics was 

integrated with aging factor integrated HMM RUL 

prediction algorithm for asset prognostics. Only the 

drawback of this approach is RUL prediction process that 

is carried out by data fusion, could be computationally hard 

if multiple models are used. 

Class 4 ─ combines Data-driven and Physics-based 

approach models. This hybrid approach aims to integrate 

the strengths of both data-driven and physics-based 

approaches for accurate performance prediction. There are 

many research papers which have been studied in the 

literature falling into this class, only some of them are 

presented here. 

Kumar et al. (2008) proposed hybrid approach utilizing 

data-driven approach and model-based approach for 

electronic products prognostics. Hong-feng (2012), 

presented general fusion framework utilizing both merits of 

data-driven and model-based approaches to increase 

system reliability and to reduce maintenance cost. In many 

complex assets, performing online health measurement 

may not be practical and even impossible and thus model-

based approach such as PF is not applicable for machine 

prognostics. P. Baraldi et al. ( 2013) proposed a novel 

ensemble approach embedding ANN in the PF scheme for 

crack depth prediction problem. The main idea for this 

approach proposition is based on unavailability of 

measurement model but only dataset itself. Different 

datasets were generated to train different ANNs and their  

 

Fig. 16. Hybrid prognostics approaches (modified from (Liao & Köttig, 2014)). 
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outputs were combined to get ensemble output. It was 

validated on fatigue crack propagation dataset and results 

showed that if ANN is trained with large dataset it was 

possible to get accurate estimations. In (Goebel, Eklund, & 

Bonanni, 2006), was presented a fusion prognostics 

approach combining data-driven and physics-based 

prediction results for bearing prognostics to reduce 

prediction uncertainty. The physics-based approach was 

based on a spall-growth model where the data-driven 

model was based on load and speed measurements from 

bearing spall growth. Results of both different approaches 

were fused by well-known Dempster-Shafer regression. 

Yang et al. (2016) presented a hybrid approach that 

integrates relevance vector machine (RVM) with a model-

based model for Li-ion capacity degradation. Several 

batteries were aged under aging process and capacity 

features were extracted for RUL prediction. Combined two 

exponential physical model was fit to capacity features to 

track degradation trend. Furthermore, both selective kernel 

ensemble-RVM and an exponential regression model were 

used to predict RUL of aged batteries and proposed hybrid 

approach prediction was pretty accurate when it was 

compared with ANN and SVM. In (Liao & Köttig, 2016), 

was proposed a hybrid approach for Li-ion prognostics. 

They integrated two data-driven models and one physical 

model to reduce the uncertainty. Support vector regression 

was adopted to estimate measurement model and 

similarity-based prediction method in measurement 

prediction part. The output of second data-driven model 

was fed to PF algorithm for long-term Li-ion RUL 

prediction. They extracted internal resistance degradation 

features and used in hybrid model validation. It was 

concluded that prediction uncertainty and accuracy was 

better than traditional PF and data-driven method. Skima et 

al. (2016) presented a hybrid approach for  Micro Electro 

Mechanical Systems (MEMS) prognostics. An approach 

involves two phases; online and offline. In offline phase 

degradation model was constructed based on health indices 

(HI) extracted from experimental data. The combination of 

two exponential regression model was constructed to 

represent MEMS degradation phenomena. Furthermore, in 

an online phase, a model-based method which is PF was 

adopted. Online phase also had learning stage and 

prediction stage. In learning stage, PF parameters were 

estimated and in prediction stage, RUL prediction was 

carried out. They claimed that proposed hybrid approach 

could predict RUL of MEMS effectively. The authors in 

(Pillai, Kaushik, Bhavikatti, Roy, & Kumar, 2016) 

proposed a hybrid approach for gas turbine failure 

prognostics based on machine learning.  

Class5 ─ combines Experience-based, Data-driven and 

Physics-based approach models. This class of hybrid 

approach fuses the strength of experience-based, data-

driven and physics-based models. In (Orsagh, Sheldon, & 

Klenke, 2003), was proposed a hybrid approach that fuses 

data-driven, physics-based prediction results with expert-

knowledge information to predict RUL of bearings. This 

category of the hybrid approach is not practical and hard to 

implement in real applications due to designing appropriate 

data fusion methodology to combine different types of 

information, resulting from different prognostics 

approaches. 

In general, hybrid prognostics approach is a combination of 

heterogeneous models. It leverages advantages of different 

approaches to making robust RUL predictions. But the 

main challenge in hybrid approach is uncertainty 

management issue (Liao & Köttig, 2014), which needs 

further improvements.  

7. RAILWAY INDUSTRY – A CASE STUDY ON BOGIE 

DIAGNOSTICS AND PROGNOSTICS 

Reliability, availability and safety are subjects of great 

importance in many complex systems and indeed for the 

railway industry. When we compare railway vehicles with 

other industrial structures such as wind turbines and 

nuclear plants one can see a big difference between 

operating conditions. Wind turbines and nuclear plants are 

stationary where rail vehicles are mobile complex systems. 

Hence, maintenance and reliability policies can be slightly 

different than stationary complex systems for rail vehicles. 

Reliability-critical systems such as rolling stock may have 

longer life expectancy than other systems, which makes 

introducing new technology costly and difficult. To 

provide high safety and good comfort for passengers in 

rolling stock industry, wheel/rail contact, bogie design and 

component health assessment is very crucial especially for 

high-speed operations. Maintenance and online monitoring 

system platforms should be designed in such manner as to 

maintain train operations under different environmental 

conditions by optimizing maintenance to reduce costs and 

increase the fleet availability. 

The Bogie, which is the most important and complex part 

of the rolling stock, is responsible for fundamental 

functions such as supporting car body, transferring brake 

and traction forces, train stability at high speeds, safe rail 

curve passing, good and comfort ride. Main bogie 

components are as follows: bogie frame, wheelset, primary 

and secondary suspension systems. Bogie and its 

components are illustrated in Fig. 17. 

 Bogie frame is the main and largest structural 

component of the rail vehicle.  

 Wheelsets are a complex structural component of 

bogie which involves axles, brake systems, and 

wheels.  

 Primary suspension is the structural system that links 

wheelset to the bogie frame.  

 The secondary suspension is the system which links 

bogie frame to the car body. 

7.1 Failure Mode, Mechanism and Effect Analysis 

(FMMEA) 

To develop an effective and robust diagnostics and 

prognostics system for bogie condition monitoring, one 

should have a comprehensive understanding of the 

component degradation behaviors and mechanisms under 

different load or environmental conditions. Bogie  
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Fig. 17. Bogie components (adopted from (Ling et al., 2014)). 

components are exposed to different stress levels resulting 

in component fatigue or wear. Such failures can lead 

railway industry to costly shutdowns even may have human 

causalities. To avoid or minimize component failures, we 

should understand failure modes and causes to perform 

better diagnostics and prognostics. Failure mode, 

mechanism, and effect analysis (FMMEA) is an efficient 

tool used to analyze component failures, identify the main 

causes or mechanisms and failure effects on the system 

and/or component operation (Hendricks, Williard, 

Mathew, & Pecht, 2015; Mathew, Alam, & Pecht, 2012). 

FMMEA can be used at the system level, subsystem, and 

component level. Failure mode describes the way of how 

physical failure occurs. Failure mechanism, on the other 

hand, describes the fundamental causes or processes such 

as chemical, physical and mechanical stresses that lead to a 

failure mode. Finally, the failure effect describes 

consequences or impacts of failures on the system and/or 

component operation. In Table 4, we have summarized 

some failure modes and mechanisms for the following 

bogie components: bogie frame, wheels, axle bearings, axle 

box, suspension (primary and secondary) system and gear 

box. Since bogies are critical components, diagnostics, and 

prognostics policies should be carefully carried out to avoid 

bogie failures and prevent rail vehicle from catastrophic 

disasters. The scientific papers conducted for fault 

diagnostics and prognostics of bogie components are as 

follows: Shahidi et al. (2014) presented vibration signal 

based condition monitoring strategy to estimate bogie 

component deterioration to analyze bogie hunting and 

reviewed critical criteria affecting the performance of 

bogie. To increase the efficiency of monitoring strategy 

authors addressed monitoring algorithms nearby sensing 

techniques. In (Hong et al., 2014), was studied bogie frame 

health monitoring by deploying online structural health 

monitoring (SHM) and diagnostics system to high-speed 

trains. A huge amount of signals was acquired during 

different operational profiles. Furthermore, different 

features were extracted from those signals to form damage 

indices to detect bogie frame damages. They concluded that 

online SHM diagnostics system could detect any kind of 

damages that might occur in bogie frame and could be used 

efficiently in real-world applications. Similar work was 

also studied in (Q. Wang, Su, & Hong, 2014) to develop 

online SHM to increase the safety of high-speed train bogie 

frames. In (Shahidi et al., 2015), was presented a data-

driven method for bogie component fault classification 

based on mutual information (MI) measure feature 

selection and SVM. Features were extracted from 

acceleration signals and were divided into training and 

testing datasets. Features were ranked based on their 

similarity degree to the classified fault state by MI 

algorithm and were fed into SVM for bogie fault 

classification.  

7.2 Axles and Bearings 

One of the critical components of high-speed trains is 

rolling element bearings. In  (Pennacchi et al., 2013), was 

studied rolling element bearings diagnostics of high-speed 

trains. They built experimental test-rig to collect vibration 

signals for bearing diagnostics. Different signal processing 

techniques were adopted to process vibration signals for 

fault detection. Spectral kurtosis algorithm was used to 

detect bearing faults. Furthermore, based on fault detection 

results they also analyzed sensitivity metrics of sensors to 

the bearing faults to reduce the number of sensors 

employed in diagnostics. Symonds et al. (2015) studied 

axle-bearing damage analysis. Using collected vibration 

signals, tested different techniques to identify bearing 

failure causes by identifying physical damage links 

between CM signals. Xie et al. (2015) presented health 

state diagnostics methodology for high-speed train axles. 

Temperature CM data collected from test line underwent 

the pre-processing step to replace zero values and noise 

cancellation by adopting interpolation and discrete wavelet 

transform techniques. Smoothed temperature data were 

used to calculate rising rates by a presented methodology 
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for axle health state evaluation and it was concluded that 

this approach could be used effectively and was more 

practical when compared to other diagnostics approaches. 

In (Yi, Lin, Zhang, & Ding, 2015) was presented a novel 

approach for fault diagnostics of railway axle bearings 

based on ensemble empirical mode decomposition 

(EEMD) and Hilbert transform (HT) signal processing 

techniques. To overcome the limitations of EEMD, which 

decomposes signals into varying intrinsic modes, they 

proposed an improved EEMD approach by introducing 

Component Failure mode Failure mechanisms 

Bogie frame 

 

Surface defects  Fatigue cracks propagation 

 Impacts 

Loss of structural integrity  Fatigue cracks propagation 

 Impacts 

 Thermal shocks 

 Material deformations (Yielding, creep) 

Wheel 

 

Surface defects  Shelling 

 Spalling 

 Scaling 

 Metal build-up 

 Fatigue crack propagation 

Subsurface defects  Fatigue crack propagation 

Axle bearing 

 

Bearing rotates with difficulty or cannot rotate   Fatigue (Subsurface initiated fatigue / Surface-

initiated fatigue) 

 Wear (Abrasive wear / Adhesive wear) 

 Fracture and Cracking (Forced fracture / Fatigue 

fracture / Thermal cracking) 

Bearing rotates with difficulty or cannot rotate   Fatigue (Subsurface initiated fatigue / Surface-

initiated fatigue) 

 Wear (Abrasive wear / Adhesive wear) 

 Fracture and Cracking (Forced fracture / Fatigue 

fracture / Thermal cracking) 

Axle box Surface defects  Fatigue crack propagation 

Inner and outer springs 
Reduction of the primary suspension effect   Fatigue crack propagation 

 Material deformation (Yielding, creep) 

Centering springs 
Reduction of the centering effect  Fatigue crack propagation 

 Material deformation (Yielding, creep) 

Primary damper 
Reduction of the damping effect  Seals wear 

 Leakage 

Emergency springs 
Reduction of emergency suspension effect  Fatigue crack propagation 

 Material deformation (Yielding, creep) 

Air spring 
Reduction of the secondary suspension effect  Leakage 

 Fatigue crack propagation 

Vertical damper 
Reduction of the vertical damping effect  Seals wear 

 Leakage 

Lateral damper 
Reduction of the lateral damping effect  Seals wear 

 Leakage 

Gearbox 

 

Gearbox rotates with difficulty or cannot rotate  Bearings: 

o Fatigue (Subsurface initiated fatigue / Surface-

initiated fatigue) 

o Wear (Abrasive wear / Adhesive wear) 

o Fracture and Cracking (Forced fracture / Fatigue 

fracture / Thermal cracking) 

 Gears: 

o Subsurface initiated bending fatigue 

o Scuffing  

o Fretting corrosion 

o Micropitting/Macropitting 

Bad or insufficient lubrication  Oil reservoir leakage 

 Grease quality degradation 

o High Temperatures Ageing 

o Mechanical Ageing 

o Contamination 

Table 4. Bogie component failure modes and mechanisms.
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intrinsic mode function (IMF) confidence index to make 

EEMD automatic in IMF selection without any user 

assistance. And those selected IMFs were fed to HT to 

extract time-varying characteristics of signals for bearing 

fault diagnostics. Vibration signals were collected from test 

rig in different wheel speeds to analyze three type of 

artificially created bearing failure types under different 

operational modes. Improved EEMD with HT was 

effectively used for the axle bearing diagnostics. Zerbst et 

al. (2013) presented an overview paper on railway axles 

where they described different axle failure scenarios and 

impacts that can reduce fatigue strength during operation. 

7.3 Gearbox 

Due to the environment, high speed and complex structure, 

gearbox performance can be affected, threatening safety 

and reliability of high-speed trains. In (B. Zhang, Tan, & 

Lin, 2016), was studied high-speed train gearbox crack 

fault detection. They analyzed vibration signals collected 

from gear box body and train speed under different speeds, 

they believed that cracks cause on gearbox body were 

highly correlated with wheel-rail contact. Vibration signals 

were analyzed in three conditions, different speed levels, 

different measurement points and in using different gear 

boxes. They used the low-pass filtering technique to extract 

frequency features from vibration signals for crack fault 

detection. And concluded the paper with three suggestions 

to resolve the gear box structure crack problem, which are; 

improvement on the gear box structure length, viewpoint 

shape modification and improvement of weak points on 

body structure. In (Henao, Kia, & Capolino, 2011), was 

presented noninvasive measurement method in mechanical 

transmission of high-speed railway traction systems (RTS) 

for gear fault diagnostics. It was stated that gearbox 

torsional vibration had an influence on torque and it could 

be used for gear monitoring by demonstrating traction 

motor as a torque sensor based on electromagnetic-torque 

estimator without using any extra sensors. All 

measurements were carried out in reduced-scale of RTS in 

a laboratory environment, due to the high cost of 

performing different tests on real RTS. They also installed 

real sensors on different parts of gear box and torque to 

investigate correlations between estimated signals and real 

signals. Stationary component of estimated and measured 

torque vibration signals were analyzed by fast Fourier 

transform (FFT) and non-stationary frequencies were 

analyzed by spectrogram technique. All measurements 

were carried out to investigate effects of tooth damage and 

surface-wear faults on RTS gears and it was concluded that 

estimated electromagnetic torque and stator current 

signatures could be effectively used for gearbox fault 

diagnostics without installing physical sensors. In 

(Morgado, Branco, & Infante, 2008), was studied driving 

gearbox body crack problems in locomotives. They 

collected strain measurements via rosettes installed on gear 

box body for fatigue stress analysis from two routine 

locomotive journeys.  Measured strains from gear box body 

were used to analyze fatigue stress and linear Miner’s rule 

was adopted for fatigue crack calculation. They also 

investigated critical areas on box body where possible 

fatigue crack might occur by performing stress analysis on 

gear box body. 

7.4 Wheels and Suspension 

Railway wheel maintenance is essential in terms of safety 

and reliability of trains.  Cremona et al. ( 2016) proposed a 

novel approach in wheel wear RUL prediction based on 

local contact model and Archard’s equation. The proposed 

methodology is integrated with K wear coefficient on wear 

prediction. The approach was validated by the real case 

study and prediction results were better than the methods 

proposed in the literature. Simple railway wheel 

diagnostics was presented in (Skarlatos, Karakasis, & 

Trochidis, 2004) based on fuzzy-logic. Authors installed 

two accelerometers on the rail to track vibration signals of 

wheel-rail interaction. Vibration signals were collected 

from defected wheels and healthy wheels under different 

train speeds. Fuzzy-logic was used to detect the level of 

damage on the wheel to plan maintenance activities. In 

(Wei et al., 2012), was studied fiber Bragg grating sensors 

(FBG) ability to detect wheel defects based on real-time 

condition monitoring. Wu et al. (2015) studied incipient 

failure detection and estimation of a closed-loop secondary 

suspension system for high-speed trains. Authors, first of 

all, built a dynamic model of the suspension system and 

then proposed total measurable fault information residual 

(ToMFIR) estimation method.  The suspension system was 

simulated by Matlab/Simulink with external disturbance 

parameters to generate faulty signals for their study. They 

claimed that proposed approach was able to detect and 

estimate propagating faults. Alfi et al. (2011) presented 

condition monitoring approach for bogie suspension 

component fault detection and isolation using model-free 

and model-based methods. The model-free approach is a 

data-driven method based on Random Decrement 

Technique (RDT) signal processing technique. Lateral 

acceleration measurement signals were processed to extract 

features for bogie incipient failure detection which was 

virtually measured by simulation. A model-based approach 

is a combination of EKF and Bayesian statistics. Physical 

suspension system model was built and simulated to 

generate different faulty virtual measurements. Both 

proposed approaches performed well in incipient fault 

detection. Fault detection and isolation study were also 

carried out in (Ding & Mei, 2008)(Mei & Ding, 2008). 

Authors carried out fault detection and isolation for 

dampers which are one of the components of primary 

suspension systems. Cross-correlation function was used to 

detect changes from the acceleration signals. Fault 

detection methodology was effectively proven on a 

simulated dataset. Melnik et al. (2014) developed an on-

line monitoring system for suspension fault detection. 

Different acceleration signals were simulated by artificially 

creating faulty signals by playing with stiffness and 

damping parameters of the suspension system. For real 

dataset, they acquired acceleration signals for primary 

suspension via sensors located on the frame of bogie and 

for secondary suspension via sensors installed on the car 

body. Extracted features from both scenarios were used in 

fault detection by calculating Euclidean distances between 
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faulty signal and a normal one for suspension diagnostics. 

Interacting multiple-model (IMM) approach was used to 

detect faults in lateral dampers of the secondary suspension 

system in (Tsunashima & Mori, 2010). Measurement data 

were generated by full-vehicle model simulation for fault 

detection. IMM model was integrated with KF to update 

estimation model. And it was concluded that proposed 

approach could efficiently detect suspension system faults. 

It is important to note that, prognostics research conducted 

for train components is rarely mentioned in the literature 

when compared with rotatory machinery applications. 

Some of the reasons could be due to difficulty in either 

building expensive test rigs or real-time monitoring, 

difficulty in data acquisition process and harsh operational 

conditions for prognostics of bogie components.   

8. PHM IMPLEMENTATION STEPS FOR INDUSTRY 

PRACTITIONERS  

Many important issues have been covered in the literature, 

such as prognostics approaches, data extraction techniques, 

prognostics methods pros and cons nearby PHM 

implementation that attempted to resolve challenges faced 

in engineering applications (Sikorska et al., 2011; Jardine 

et al., 2006; Lee et al., 2014). There are still important 

points to be clarified to make PHM more practical and 

easily understandable by industry. All systems either 

complex or simple, are non-linear which makes system-

level health assessment applicability difficult. Due to this 

reason, we have proposed a simplified PHM design to 

guide industry to understand and apply PHM very 

effectively. The  PHM implementation  steps are as follows 

(see Fig. 18); 

Critical component identification: to identify critical 

components which have high maintenance and failure 

consequences.  

Sensor selection: to perform CM, we need robust and 

easily applicable sensors to get good quality data. Data 

preprocessing: to remove noise from raw data and perform 

data analysis for feature evaluation to get better prognostics 

feature. 

Hybrid prognostics approach and tool evaluation: 

proposes a suitable model for bogie component RUL 

prediction and to select an appropriate tool based on 

evaluation combining practitioners’ knowledge with tool 

performance matrices. 

Maintenance decision making: to make better maintenance 

decision based on RUL information. This part is out of the 

scope of this review paper and is therefore not evaluated 

here. 

8.1 Component Criticality Analysis 

Component criticality analysis can be assumed as the 

starting point before PHM implementation. Industrial 

complex systems are composed of many assets that were 

designed to perform specific jobs during their useful life 

period. Each component has its own cost but some have a 

higher cost of system downtime when failed. The goal of 

critical asset identification process is to identify an asset 

which has a substantial impact on system functioning in 

terms of maintenance and failure consequences. Failure of 

such components may result even in catastrophic accidents. 

ISO standards factors (ISO 17359:2011, n.d.) for machine 

 

 

Fig. 18. PHM implementation steps. 
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criticality assessment can be summarized as follows: 

machine downtime cost or lost production cost, machine 

failure rate and mean time spent to repair, machine 

replacement and maintenance cost, system monitoring cost 

and environmental impacts and machine safety. Using one 

or a combination of these factors, one can build a 

component priority list for machine health assessment. An 

example for critical components of high-speed train bogie 

is depicted in Fig. 19.  

In (Lee et al., 2014), was presented a good example for 

component criticality analysis and identification for 890 

SW Robots, which is illustrated in Fig. 20.They divided 

this graph into 4 quadrants, where each has its own 

meaning and suitable maintenance strategy for component 

falling into the associated quadrant. And each quadrant can 

be explained as follows: 

Quadrant 1 has high fault frequency and high system 

downtime. Quadrant 2 has high fault frequency but low 

system downtime. Quadrant 3 has low fault frequency and 

low system downtime. Quadrant 4 has low fault frequency 

but high system downtime where more critical components 

fall in this area. As explained in this example, criticality of 

components is highly dependent on average downtime 

rather than fault frequency. It is important to note that 

critical component identification analysis is an important 

step for PHM, in terms of reliability, availability and safety 

issues for complex systems. 

 

Fig. 19. Critical components for high-speed train bogie. 

 

Fig. 20. Critical component identification based on 4 

quadrants (modified from (J. Lee et al., 2014)). 

8.2 Right Sensor Selection for Condition Monitoring  

After identifying the critical component(s) before 

conducting PHM, one should deal with the sensor selection 

issue also. We all know that diagnostics and prognostics 

involve many complex tasks such as sensor selection, data 

acquisition, feature extraction, model selection and 

decision making. A performance metric of PHM 

approaches does not rely only on the diagnostics and 

prognostics tools used, but also on the performance metrics 

of sensors installed on the complex systems (see Fig. 21).  

Camci et al. (2016) analyzed different prognostics methods 

for railway turnout systems by individually analyzing CM 

data collected by 5 different sensors installed on a point 

machine. First of all, they compared different sensors based 

on their cost, installation and usage simplicity. After data 

collection process, performed prognostics and analyzed 

prediction accuracy results. Each sensor was evaluated 

based on the RUL performance results and their ability to 

represent system degradation efficiently. Initial evaluation 

of sensors they presented is shown in Table 5 based on 

authors’ findings. 

Installation column metrics depends on the ability of the 

technician mounting time and assistance. If its mountable 

without any modification, then it is considered as ‘easy’. If 

the installation is more than 2 hours and needs an extra 

labor, then it was considered as ‘difficult’. Where 

sensitivity column indicates sensor output fluctuations or 

changes after artificially fault creation process. If the 

change in output signal varies between 3 and 10%, then it 

is considered as ‘moderate’. If output signal change is less 

than 5%, then it is accepted as ‘low’. If sensors do not 

reflect any change in an output signal, then it is accepted as 

‘limited’. For the detailed information, interested readers 

are referred to the original paper. (G. Zhang, 2005) 

presented a comprehensive research on sensor localization  
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Fig. 21. Performance metrics for sensor selection. 

Sensor Cost (euro) 
Installation 

simplicity 
Reliability 

Failure 

sensitivity 

Force 360 + installation Difficult Reliable High 

Current 30 Easy Reliable Low 

Voltage 50 Easy Reliable Low 

Proximity 20 Easy 
Reliable for short 

distance 
Limited 

Linear ruler 250 Moderate Reliable Moderate 

Rotary encoder motor speed + 

position 
50 + installation Difficult  Reliable Low 

String encoder Gearbox output 

position + speed 
50 + installation Difficult Reliable Low 

Table 5. Sensor comparison for prognostics ( adapted from (Camci et al., 2016)).

and selection problem for fault diagnostics purposes. Right 

sensor selection could be performed as in this example. 

There are many issues to be considered in right sensor 

selection depending on the application area, such as 

installation and maintenance cost, fault detectability and 

cost of redundant sensors in the case of sensor failures, etc. 

which need further investigation. 

8.3 Data Preprocessing 

Data preprocessing involves data cleaning for errors/noise 

cancellation and data analysis for deep interpretation of 

acquired signals. Detailed explanation for data 

preprocessing is presented in subsection 2.2. The feature 

selection methods are categorized as filter, wrapper and 

embedded methods (Chandrashekar & Sahin, 2014) in the 

literature.  

Filter feature selection methods use general properties of 

the variables to eliminate the least interesting ones 

depending on some ranking threshold (e.g. correlation, 

monotonicity and entropy etc.). In (H. Li et al., 2014) 

features were selected based on entropy information for 

chatter classification in milling machines by ANN whereas 

features which are too sensitive to the system health level 

were selected using Euclidean distance technique for 

failure diagnostics of gearboxes. Not all sensors monitoring 

the system provide useful information about system failure 

progression. A study on sensor selection methodology 

using entropy criteria was also presented for aircraft engine 

condition monitoring purpose (L. Liu et al., 2015). 

Atamuradov and Camci (2016), presented a novel feature 

evaluation approach considering features’ dynamic 

behavior. Feature evaluation methodology is based on time 

series segmentation integrated with data fusion. It was 

evaluated using simulated and real Li-ion degradation data 

with accurate SoH estimation result. An online PCA was 

introduced to handle feature goodness in (Boutsidis & 

Garber, 2015). Feature selection was performed based on 

predictability criteria for prognostics of bearings in (Javed 

et al., 2011). 

Wrapper feature selection methods use searching 

algorithms (e.g. heuristic search algorithm) in variables’ 

interaction evaluation to find the optimum number of 

variables that maximizes the objective function of the given 

algorithm. In (Boukra & Lebaroud, 2014), a new feature 

selection methodology is presented adopting Particle 

Swarm Optimization (PSO) algorithm to figure out a good 

prognostics feature and employing particle filtering for 

remaining useful life prediction. Extracted features may 

have partial information about the system health state 

having low monotonicity property. Statistical degradation 

features from vibration, current and pressure measurements 

were extracted in (Liao, 2014) and a genetic algorithm was 

used to discover a new prognostics feature by data fusion. 

A fused feature having high monotonicity value was 

determined as a good prognostics feature.  
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Embedded feature selection methods combine the 

advantages of previous two methods in feature selection. A 

novel feature selection methodology was proposed in (B. 

Li et al., 2011) based on combination of filter and wrapper 

methods to enhance the fault classification accuracy for 

gearbox diagnostics.  

Performing diagnostics and prognostics analysis solely 

using one single feature may not be enough to characterize 

whole system degradation. Combining different sensory 

time series to achieve a more reliable prognostics feature is 

known as feature fusion. After extracting different non-

stationary parameters from an aircraft engine, RUL 

prediction with Kalman Filter algorithm was performed 

using information fusion and superstatistics (Junqiang L. et 

al., 2014). Data-level based feature fusion was developed 

for prognostics of aircraft gas turbine (K. Liu, Gebraeel, & 

Shi, 2013). Methane compressor prognostics was presented 

using multi-nonlinear regression model based on feature 

fusion by neural networks (Niu & Yang, 2010). Different 

degradation features obtained from aged batteries under 

different operational modes were compared and SoH of 

aged batteries was estimated by data fusion in (Williard, 

He, Osterman, & Pecht, 2013).  

An accurate prediction of RUL depends on good prognostic 

features which emphasize the importance of feature 

evaluation for prognostics. Feature evaluation and 

selection for prognostics is a newly developing research 

area which needs further investigations and developments. 

8.4 Hybrid Prognostics Approach and Tool 

Evaluation for Bogie Monitoring 

One of the crucial steps of PHM is selecting the right 

prognostics model for component health assessment. In the 

literature, a lot of research has been conducted in a hybrid 

approach which is a combination of heterogeneous models 

that leverage merits of different approaches to making 

robust RUL predictions. Due to better performance of this 

model here we propose a hybrid prognostics approach 

which combines data-driven and physics-based prognostics 

models for bogie component health assessment. A general 

scheme of hybrid prognostics approach is depicted in Fig. 

22.  

To apply hybrid prognostics approach to bogie health 

monitoring one should follow the steps which were 

illustrated in Fig. 22, stated as : bogie critical components 

identification (gearbox, suspension, wheels, axles, and 

bearings), appropriate sensor selection (vibration and 

acoustic sensors), data analysis based on feature evaluation 

(monotonicity, prognosability, and trendability) to select 

best prognostics feature and select right prognostics tool for 

RUL prediction. The main goal of PHM technology is to 

support maintenance practitioners to make right and fast 

decisions. To make right and fast decisions depend on the 

accurate results of component RULs. To make accurate 

component RUL prediction we need to select suitable 

prognostics tools which have accurate estimations about 

future failure progression of the system or component. 

Prognostics tool evaluation and selection are performed 

based on characteristics of data, expert-knowledge, model 

structure and associated tool performance metrics. 

Evaluation and selection process mostly rely on expert-

knowledge and experience. To perform tool evaluation and 

selection to suggest suitable prognostics tool, it is 

necessary to form a general ranking system that combines 

user requirements and tool performance matrices. A paper 

on tool performance metric evaluation for data-driven 

prognostics tools can be found in  (Saxena et al., 2009).  

In this paper we propose a new prognostics tool evaluation 

matrix enabling user to select appropriate tool for their 

prognostics tasks which involve basic requirements and 

tool efficiency parameters. Since model-based and data-

driven prognostics tools have different performance criteria 

and expert-knowledge requirements, they were evaluated 

in different matrices separately. 

 

Fig. 22. Hybrid prognostics approach for bogie monitoring. 
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8.4.1 Model-based Prognostics Tool Evaluation 

Basic requirements. In this section we guide an engineer 

and/or practitioner in industry to have some prior 

information before tool selection. Basic requirement 

criteria parameters are as follows: 

Expert-knowledge ─ states prior knowledge that 

practitioner and/or maintenance engineer has to have, such 

as mathematics, differential equations, statistics and 

probability theory before model development.  

Model structure ─ is information required about the model 

structure to use expert-knowledge in modeling physical 

phenomena. 

 Data ─ defines characteristics of data that is collected 

from the system under inspection, stating its noise level 

parameter whether it is Gaussian or non-Gaussian. Because 

not all model-based tools are able to deal with the same 

type of noise and system behavior. 

Tool efficiency. This section evaluates tools based on their 

performance and efficiency metrics. An appropriate weight 

is assigned to the corresponding metrics in the given  

Run time ─ it describes the running time of prognostics tool 

in estimation and prediction process. Run time metric is 

evaluated by assigning associated weights based on their 

speed in completing assigned task. If one of the model-

based prognostics tools need more time to perform 

estimation and/or prediction, then it's accepted as a 

disadvantage for the corresponding tool and lesser weight 

is assigned. Weight assignment is done based on those 

criteria: if running time is high (red colored inFig. 23) then 

we assign numerical value 1, if it is medium then 2, if it has 

lower (blue colored in Fig. 23) running time which predicts 

in shorter time, then we assign numerical value 3 as a 

weight parameter.  

Accuracy ─ describes the estimation and/or prediction 

accuracy of tools in prognostics tasks. If estimation and/or  

prediction accuracy are high, then it should have a 

maximum weight for evaluation. 

Robustness ─ describes the ability of prognostics tool in 

dealing with the noise level and system uncertainty 

situations. If prognostics tool is robust in noisy data, then it 

should have maximum weight parameter. 

Prediction horizon ─ describes prognostics tool ability to 

predict future failure evolution of assets under the 

investigation that is compatible with a time scale of asset 

residual life. If the prediction horizon is long, then that 

prognostics tool should be ranked with higher weights. 

Tool ranking ─ after considering tool efficiency or 

performance metrics we can rank the corresponding tool by 

summing up assigned weights. In this section, the user can 

choose an appropriate tool with higher ranking value for 

their application. One can choose a prognostics tool with 

the higher ranking value from the matrix given in Fig. 23 

below. Based on the weights assigned, tools which have 

higher ranking values are Paris’ law, Forman law, fatigue 

spall propagation and PF. If the user requirements meet 

those criteria, then one of those prognostics tools can be 

selected and applied in prognostics task. 

8.4.2 Data-driven Prognostics Tool Evaluation 

Data-driven prognostics tool evaluation matrix has the 

same parameters as was explained in section 8.4.1. Only 

the difference from model-based prognostics tool 

evaluation is the learning time metric under tool efficiency 

column. 

Learning time ─ describes the time for data-driven 

prognostics to train the measurement model using CM data. 

Learning time depends on the size, type, and quality of CM 

data. If the time spent on learning or training the tool is 

lower (blue colored in Fig. 24), then it should have higher 

weights in ranking. Based on the weights assigned, tools 

which have higher ranking values for data-driven tools are 

Gaussian Mixture, Gaussian Process Regression, ANN, 

 

Fig. 23. Model-based prognostics tool evaluation and selection matrix. 
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Fig. 24. Data-driven prognostics tool evaluation and selection matrix. 

and SVM which is illustrated in Fig. 24. If the user 

requirements meet those criteria, then one of those 

prognostics tools can be chosen and applied in prognostics 

task. 

9. CONCLUSION 

PHM technology is employed widely to enhance system 

availability and safety and to analyze the system 

performance based on time series data acquired from 

different sensors depending on component functionality. 

We have presented a general view of PHM and its steps to 

provide prior knowledge for users, reviewed different PHM 

approaches under model-based, data-driven and hybrid 

models, and discussed their merits and drawbacks. We 

have also reviewed previous and on-going research in 

bogie components PHM to highlight problems faced in the 

railway industry. As a result of PHM literature review on 

bogie components, we noticed that nearly all research 

conducted in bogie health assessment is mostly limited to 

diagnostics rather than prognostics tasks. Since railway 

vehicle bogies are critical components, research on 

prognostics for asset health management is also crucial to 

provide a safe and comfortable ride for customers. 

Consequently, if somebody wants to implement PHM 

technology at system or component level, the first step is to 

identify critical components in the system that have a great 

impact on system functionality when they fail. The 

secondly step is to select and install right and robust sensors 

on the system for accurate CM. Collected CM data should 

be properly processed for good prognostics feature 

extraction, as a third step. Finally, a suitable PHM approach 

should be carefully selected based on the user requirements 

as well as a prognostics tools selection process. Since 

accurate prognostics results are based on the tools used in 

prediction, the tools evaluation and selection process is an 

important task in PHM implementation. Two separate 

prognostics tools evaluation matrices were presented, for 

both model-based and data-driven approaches. Prognostics 

tools were evaluated and ranked based on a combination of 

user knowledge and tool performance metrics. As a result 

of our investigation, we can conclude that further 

investigations and improvements should be carried out in 

following areas for bogie prognostics; 

 High-speed train bogies have dynamic loads and 

environmental conditions which might affect 

component failures differently. To detect and monitor 

component behaviors under different loads, intelligent 

component criticality identification systems should be 

developed.  

 Intelligent on-board or off-board data preprocessing 

systems which analyze CM data efficiently and extract 

better health indicators for prognostics should be 

designed. 

Efficient and intelligent prognostics tool evaluation and 

selection systems that integrate user requirements with tool 

performance metrics, tool applicability, CM data 

characteristics and suggest a suitable tool for better 

component RUL prediction with minimum uncertainties 

should be developed. 
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