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ABSTRACT

This work presents a computationally-efficient, probabilistic
approach to model-based damage diagnosis. Given measure-
ment data, probability distributions of unknown damage pa-
rameters are estimated using Bayesian inference and Markov
chain Monte Carlo (MCMC) sampling. Substantial compu-
tational speedup is obtained by replacing a three-dimensional
finite element (FE) model with an efficient surrogate model.
While the formulation is general for arbitrary component ge-
ometry, damage type, and sensor data, it is applied to the
problem of strain-based crack characterization and experi-
mentally validated using full-field strain data from digital im-
age correlation (DIC). Access to full-field DIC data facili-
tates the study of the effectiveness of strain-based diagnosis
as the distance between the location of damage and strain
measurements is varied. The ability of the framework to ac-
curately estimate the crack parameters and effectively capture
the uncertainty due to measurement proximity and experi-
mental error is demonstrated. Furthermore, surrogate model-
ing is shown to enable diagnoses on the order of seconds and
minutes rather than several days required with the FE model.

1. INTRODUCTION

Structural health monitoring (SHM) is the driving technol-
ogy behind the transition from time-based to condition-based
maintenance. Motivated by both safety and economic drivers,
this paradigm shift from offline inspection to online (i.e., while
operating) monitoring is critically important to industries in-
cluding manufacturing, aerospace, and defense that seek to
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detect damage in structural and mechanical systems at the
earliest possible time. For example, an online monitoring
system onboard an aircraft would be capable of producing a
damage diagnosis well within the time period between flights
and, ideally, during the course of a single flight. While SHM
is in the process of making the transition into the application
domain, the evolution of the technology to enable damage
prognosis to forecast residual life has very few deployed ap-
plications (Farrar & Worden, 2013). As damage prognosis
is inherently probabilistic in nature and presumes a properly
characterized initial damage state, its practical use is pred-
icated on not just the detection and localization of damage
from SHM, but on a thorough assessment of the extent of the
damage along with rigorous uncertainty quantification (UQ).

In order to deliver a more comprehensive online health man-
agement system for practical use, a SHM system should pos-
sess several key characteristics to enable integration with dam-
age prognosis. Since an explicit quantification of damage is
required for prognosis, model-based (inverse problem) SHM
is preferred to a data-based approach since the latter is gen-
erally limited to detection and localization in the absence of
training data from damage states (Barthorpe, 2010). In this
case, high-fidelity modeling (e.g., finite element (FE) analy-
sis) is needed to allow for arbitrary geometries and damage
types to be considered (limited only by sensitivity of sen-
sors to the damage indices). The damage diagnosis approach
must also effectively incorporate UQ to facilitate probabilis-
tic prognostics rather than providing only deterministic as-
sessments. Finally, in order to make online application of
the framework feasible, the algorithms deployed must also be
computationally efficient. Unfortunately, model-based SHM
with high-fidelity modeling implies time-consuming simula-
tions and UQ often requires tens of thousands of such analy-
ses, so taking such an approach is generally impractical if not
impossible.
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Because of this, existing damage detection techniques have
largely been deterministic in nature and have identified struc-
tural anomalies based on changes in measured mechanical
response (e.g., vibrations (Kim & Stubbs, 2002; Mal, Ricci,
Banerjee, & Shih, 2005), ultrasonic wave characteristics (L. Wang
& Yuan, 2007; Kehlenbach & Hanselka, 2003), and strains
(Krishnamurthy & Gallegos, 2011; Hochhalter, Krishnamurthy,
Aguilo, & Gallegos, 2016)). While deterministic approaches
have been successfully used to accurately locate and some-
times quantify damage in a computationally-efficient manner,
these methods neglect the impact of uncertainty that is ubiq-
uitous SHM systems deployed in the field due to effects such
as sensor noise and modeling assumptions.

More recently, there has been increased focus on uncertainty
quantification for damage diagnosis using Bayesian inference
in order to explicitly account for measurement and model
uncertainties in practice. Several studies (Moore, Murphy,
& Nichols, 2011; Nichols, Link, Murphy, & Olson, 2010;
Huhtala & Bossuyt, 2011) have used noisy vibrations data to
detect structural damage, while in one such study (Nichols,
Moore, & Murphy, 2011), the emphasis was on the develop-
ment of an efficient numerical sampling algorithm for explor-
ing the resulting probability distribution. A Bayesian imaging
method was developed to probabilistically estimate delami-
nation location and size in composite laminates using Lamb
wave measurements (Peng, Saxena, Goebel, Xiang, & Liu,
2014). Additionally, Bayesian inference and the extended
FE method has been used to inversely estimate the probabil-
ity distribution of crack location and size using strain data
(Yan, 2012). Most recently, displacement data were used
to estimate the parameters of a continuum mechanics model
within a Bayesian framework while Kalman filters were sub-
sequently used to update and evolve the system state in time
(Prudencio, Bauman, Faghihi, Ravi-Chandar, & Oden, 2015).

Compared to deterministic methods, Bayesian approaches have
the advantage of quantifying uncertainty in the estimates pro-
vided, but also incur a substantial computational penalty. Here,
the computational expense results from the numerical sam-
pling algorithms, e.g., Markov Chain Monte Carlo (MCMC)
(Gamerman & Lopes, 2006), which can exhibit slow con-
vergence and involve the evaluation of a potentially time-
consuming computational model for each sample drawn. To
alleviate this computational burden, advanced MCMC meth-
ods have been developed to reduce sampling time by im-
proving sampling convergence (Haario, Laine, & Mira, 2006;
Nichols et al., 2011) or through parallelization of the algo-
rithms themselves (Vrugt et al., 2009; Neiswanger, Wang, &
Xing, 2013; Prudencio & Cheung, 2012; Warner, Zubair, &
Ranjan, 2017). Another common approach is to replace the
original physics-based model with a computationally-efficient
surrogate model using probabilistic spectral methods (Marzouk,
Najm, & Rahn, 2006) or machine learning algorithms (Meeds
& Welling, 2014).

The development of surrogate model-accelerated Bayesian
approaches for model-based SHM applications remains rela-
tively limited in comparison to data-based approaches. How-
ever, machine learning has been used in conjunction with
physics-based models to learn the inverse-map directly from
measurement to damage directly, rather than the forward-map
in traditional surrogate modeling (Katsikeros & Labeas, 2009;
Sbarufatti, Manes, & Giglio, 2013). Most notably, this inverse-
mapping approach was demonstrated using artificial neural
networks (ANNs) to perform damage localization and quan-
tification using experimentally measured strains in a simpli-
fied structure resembling a helicopter fuselage (Sbarufatti et
al., 2013). The uncertainty quantification effort, however,
was limited to confidence intervals based off the scatter in
predictions from various ANNs.

Motivated by online, integrated SHM and damage prognosis,
this study demonstrates an efficient and general approach to
probabilistic model-based damage diagnosis. Given measure-
ment data, probability distributions of unknown damage pa-
rameters are estimated using Bayesian inference and MCMC
sampling. The framework is applicable to arbitrary compo-
nent geometries and damage types as well as different sensor
data and is formulated as such. This generality is enabled
under the assumption that a properly-calibrated, high-fidelity
model (e.g., via FE modeling) is available with adequate pre-
dictive capability of the quantity being measured by sensors.
For computational speedup, it is proposed that this potentially
expensive model is only used offline to generate training data
for the development of surrogate models that can be used for
rapid online diagnosis. Furthermore, the surrogate training
data can also be used to generate an informed initial guess
for the unknown damage, which can significantly improve
convergence of MCMC sampling for additional gains in ef-
ficiency.

The general model-based diagnosis approach is applied to
the problem of strain-based crack characterization and ex-
perimentally validated using digital image correlation (DIC)
(Peters & Ranson, 1982) strain data from two cracked lab
specimens. Access to full-field DIC data facilitates the study
of the effectiveness of strain-based diagnosis as the distance
between the locations of damage and strain measurements is
varied. It also demonstrates the ability of the Bayesian frame-
work to capture the growing uncertainty in diagnosis as the
signal-to-noise ratio is decreased in this way. It is shown
that surrogate modeling provides orders of magnitude com-
putational speed up with respect to using a FE model while
retaining satisfactory accuracy.

With respect to the preliminary work done on the damage
diagnosis framework (Warner, Hochhalter, Leser, Leser, &
Newman, 2016), this study emphasizes the practicality of the
approach and provides explicit quantification of the accuracy
versus efficiency tradeoff associated with surrogate modeling.
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The formulation provided here serves as a general, application-
independent procedure for probabilistic damage diagnosis in
terms of a generic damage model and sensor data type. It also
provides more details on the required model calibration step,
a commonly-stated hurdle to implementing model-based SHM.
The strain-based crack characterization example is tailored
in this paper to mimic a practical scenario where fiber optic
strain sensors (Meltz & Snitzer, 1981; Li, Li, & Song, 2004)
are used to provide monitoring data. It is shown that accurate
damage diagnoses can be obtained with just one component
of strain along two linear arrays (as opposed to two strain
components used in the preceding study). Finally, a rigorous
comparison of the surrogate-accelerated diagnosis framework
versus a reference implementation with a FE model is pro-
vided here to quantify the gains in performance obtained. The
comparison includes a demonstration of the improvements
in MCMC convergence obtained by the simple scheme for
generating a favorable initial guess versus a randomly chosen
guess.

The remainder of the paper is organized as follows. First, a
complete formulation of the proposed damage diagnosis ap-
proach is provided in the following section, with individual
subsections devoted to model-based diagnosis, Bayesian in-
ference, MCMC sampling, and surrogate modeling. Next, the
specifics of applying the diagnosis framework to the problem
of strain-based crack characterization are illustrated. Experi-
mental validation of the approach is then provided, including
the experimental strain data obtained with digital image cor-
relation, the development and performance of the surrogate
models used, and results of the damage diagnosis method ap-
plied to both damage localization and characterization in two
separate lab specimens containing cracks are presented. The
gains in computational efficiency enabled through surrogate
modeling are explicitly quantified here. Finally, the findings
of the study are summarized in the conclusion section.

2. FORMULATION

In this section, the proposed probabilistic approach for model-
based damage diagnosis is presented. Starting from a deter-
ministic model-based approach, Bayesian inference is then
used to deduce the probability distribution of damage param-
eters conditional on available sensor data. MCMC sampling
is employed to explore the resulting distribution. Finally,
surrogate modeling is introduced to provide computational
speedup in the approach. These points are elaborated on in
detail in the subsequent subsections.

2.1. Model-Based Diagnosis

Damage diagnosis methods operate under the assumption that
the mechanical response of a structural component is altered
in the presence of damage. To this end, the goal of diagno-
sis is to use measured response data dmeas ∈ Rm to detect

if damage is present and then ideally estimate some parame-
ters c ∈ Rd that characterize the damage (location, size, etc.).
Model-based approaches to diagnosis require a model of the
structural component,M, capable of predicting the mechan-
ical response y ∈ Rm for a given set of damage parameters

M(c; f) = y ∈ Rm, (1)

where f are any additional free parameters (material proper-
ties, boundary conditions, etc.) affecting the output.

Prior to diagnosis, the parameters f must be properly pre-
scribed for the specific component being monitored through a
model calibration procedure. Generally speaking, this is done
by taking an initial measurement of the component, dcal, for
a known, often undamaged state, ccal. Then, system-specific
model parameters, f̂ , can be found through an optimization
problem of the following form

f̂ = arg min
f

g
(
M(ccal; f)− dcal) , (2)

where g(·) is a scalar-valued norm function. After model cal-
ibration, it is assumed that y ≈ dmeas for a damage estimate
c that accurately characterizes the true damage. For the re-
mainder of the formulation, the explicit dependence on f will
be suppressed to denote a calibrated model (e.g., M(c) ≡
M(c; f̂)).

In the context of model-based diagnosis, M is referred to
as the forward model while the diagnosis problem of using
dmeas to infer c is the associated inverse problem. A typical
deterministic approach to solving this inverse problem is to
first pose an error metric between the measured response data
and corresponding model response

Q(c,dmeas) =

m∑
i=1

‖dmeas
i −Mi(c)‖2, (3)

where Mi(c) ≡ yi, the ith component of the model output.
Then, gradient-based or global optimization algorithms are
employed to find the damage parameters that minimize Equa-
tion 3 to produce the so-called least squares estimator

cLS = arg min
c

Q(c,dmeas). (4)

The primary drawback of such deterministic approaches for
model-based diagnosis is that only a point estimate of the
damage is produced with no regard to uncertainty inherent in
the measurement data (noise, sparsity, etc.). A suitable regu-
larization strategy must also be chosen and tuned in an effort
to rectify the well known ill-posedness of the inverse problem
(Isakov, 1998) (e.g., infinitely many solutions may exist).
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2.2. Bayesian Inference

The Bayesian inference approach to model-based diagnosis
reformulates the inverse problem (Equation 4) as one of de-
ducing a probability distribution of the unknown damage pa-
rameters, c, conditional on the observed measurement data
dmeas. This distribution, p(c|dmeas), known as the posterior
distribution, is given according to Bayes’ Theorem (Kaipio
& Somersalo, 2004):

p(c|dmeas) =
p(dmeas|c)p(c)

p(dmeas)
∝ p(dmeas|c)p(c), (5)

integrating any knowledge about the damage prior to the mea-
surement in the prior distribution, p(c), with the informa-
tion from the data, dmeas, through the likelihood function,
p(dmeas|c). Note that the normalizing constant, p(dmeas), need
not be computed in order to explore the posterior probability
distribution with MCMC, as explained later.

The prior density function, p(c), provides an effective way of
incorporating an analyst’s insight about likely damage char-
acteristics into the Bayesian inference approach. From a math-
ematical point of view, prescribing such an informative prior
density function is an approach to regularize the inverse prob-
lem (J. Wang & Zabaras, 2014). While prior distributions
have been shown to increase the effectiveness of Bayesian
damage diagnosis (Leser & Warner, 2017; Warner, Hochhal-
ter, et al., 2016), a non-informative prior density function
(e.g., p(c) ∝ 1) is chosen in this work to represent a common
practical case where no reliable a priori knowledge about the
damage is available.

The likelihood function, p(dmeas|c), models the discrepancy
between the measurement data and the predicted values of re-
sponse from the model. To this end, the following common
assumption is made about this relationship (Kaipio & Somer-
salo, 2004)

dmeas
i =Mi(c) + δi, δi ∼ Normal(0, σ). (6)

That is, the measurement data are polluted with errors, δi,
that are treated as a sequence of independent, identically dis-
tributed (i.i.d.) samples drawn from a zero-mean Gaussian
(Normal) distribution with variance σ (interpreted as the noise
level). The i.i.d. assumption yields the following expression
for likelihood function

p(dmeas|c) =
1

(2πσ2)m/2
exp

(
− 1

2σ2

m∑
i=1

‖dmeas
i −Mi(c)‖2

)

∝ exp

(
− 1

2σ2
Q(c,dmeas)

)
. (7)

Here, it is clear that as the error between computed and mea-
sured strains (Equation 3) increases, the value of the likeli-
hood function (and hence posterior probability in Equation 5)
decreases and vice versa. Note that in cases where signifi-

cant inadequacy or bias of the model remain after calibration,
an additional input-dependent model discrepancy term can be
added to the righthand side of Equation 6 in an attempt to cor-
rect this (Kennedy & O’Hagan, 2001).

The noise level parameter, σ, can be inferred on the fly dur-
ing damage diagnosis (Warner, Hochhalter, et al., 2016) or
estimated beforehand through a comparison of the calibrated
model in the reference damage state,M(ccal), with the mea-
surement data used for calibration, dcal. To this end, the em-
pirical error is first calculated for each measurement point

δ̂l = dcal
l −Ml(c

cal). (8)

Then, the noise level, σ, can be estimated using the sample
standard deviation

σ ≈ σ̂ =

(
1

1− n

n∑
l=1

(
δ̂l − µ̂

)2)1/2

, (9)

where n is the number of data points used for calibration and
µ̂ is the sample mean of δ̂. This approach will be demon-
strated in the application section of this paper.

2.3. Markov Chain Monte Carlo

The solution of the model-based diagnosis problem as the
posterior probability distribution in Equation 5 is not prac-
tically helpful since it can rarely be evaluated analytically.
MCMC (Gamerman & Lopes, 2006) is a powerful tool for
numerically forming probabilistic damage estimates based on
p(c|dmeas). The goal of MCMC is to generate a collection of
N damage parameter samples from the posterior probability
distribution

{c(j)}Nj=1 where c(j) ∼ p(c|dmeas), (10)

which can then be used to construct empirical probability dis-
tributions, credibility intervals, and moment estimates for c.
Algorithm 1 summarizes a very basic instantiation of MCMC,
the Metropolis algorithm, used in this work:

Algorithm 1 Metropolis MCMC

Initialize c(0)

for j = 1 : N do
Sample u ∼ Uniform(0, 1)
Sample c∗ ∼ q(c∗|c(j−1))
if u < A(c∗, c(j−1)) = min{1, p(c∗|dmeas)

p(c(j−1)|dmeas)
} then

c(j) = c∗

else
c(j) = c(j−1)

end if
end for

Here, the method simply draws a trial sample, c∗, at each it-
eration from a proposal distribution, q(c∗|c(j−1)), and then
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decides whether to accept or reject this sample based on the
acceptance probability, A(c∗, c(j−1)). The Metropolis al-
gorithm assumes that the proposal distribution is symmetric,
where a common choice is a Gaussian distribution centered
at the previous sample

q(c∗|c(j−1)) = Normal(c(j−1),Σq), (11)

and Σq is the user-specified covariance matrix. Algorithm 1
with Equation 11 constructs a Markov chain that, by design,
is guaranteed to have a stationary distribution that reflects the
true posterior distribution in Equation 5 (Gamerman & Lopes,
2006). Note that since the posterior probability distribution
only appears as a ratio through A, the normalizing constant
p(dmeas) in Equation 5 is not required.

Although the Metropolis MCMC algorithm above is concep-
tually simple and straightforward to implement, the number
of samples (N ) required for convergence can be very large,
making its application challenging and often infeasible. The
convergence rate is directly related to the selection of Σq , an
appropriate value for which is often unknown a priori and can
be difficult to tune on the fly. Convergence of MCMC sam-
pling is also greatly affected by the choice of initial guess,
c(0), where a lengthy burn-in period (samples discarded from
the beginning of the chain) can be necessary for a value of
c(0) far from the true damage.

While advanced algorithms that rely on adaptively selecting
Σq (Warner, Hochhalter, et al., 2016) or parallel computing
(Warner et al., 2017) can be used to accelerate MCMC-based
diagnosis, this work employs a simple scheme to generate a
highly probable initial guess that yields efficient performance
from the Metropolis algorithm in its most basic form. This
approach is elaborated on at the end of the following section.

2.4. Surrogate Modeling

Combining Bayesian inference (Equation 5) and MCMC sam-
pling (Algorithm 1), as described in the previous sections,
yields a powerful method for generating probabilistic dam-
age estimates. However, the primary challenge associated
with the approach is that the model,M, must be evaluated for
each sample drawn with MCMC. Since large values of N are
typically required for convergence of the sampling process,
Bayesian diagnosis can be infeasible even for modestly ex-
pensive models, especially in its application to online SHM.

Surrogate modeling is a technique that can alleviate the com-
putational burden associated with probabilistic model-based
diagnosis when intensive, high fidelity simulations are re-
quired for the components being monitored (Meeds & Welling,
2014; Warner & Hochhalter, 2016; Warner et al., 2017). The
approach relies on the (offline) pre-computation and storage
of input-output pair datasets from an original computational
model in an effort to replace it during (online) analysis by a

more efficient data-driven model. Furthermore, with a suffi-
cient amount of pre-computed data and an effective regres-
sion/interpolation algorithm, a high degree of accuracy with
respect to the original model can be maintained.

To utilize surrogate modeling for model-based damage di-
agnosis, a set of T damage parameter arrays, {c(k)}Tk=1, is
first selected. Then, the model responses corresponding to all
m measurements are computed and stored for each damage
state,

M(k)
i ≡Mi(c

(k)), k = 1, ..., T, (12)

for i = 1, ...,m. The result is the following T × (d + m)
input-output dataset

S = {c(k);M(k)
1 , ...,M(k)

m }Tk=1. (13)

From a machine learning perspective, S is the training data
and a variety of off-the-shelf regression and interpolation al-
gorithms can be utilized to directly infer the input-output map-
pings. Specifically, a surrogate model that maps a new dam-
age state, c(∗), to the predicted sensor response is generated
offline for each individual measurement

M̃i : c(∗) →M(∗)
i for i = 1, ...,m. (14)

Now, the original model,M, is replaced by the set of surro-
gate models, {M̃i}mi=1, in the posterior probability distribu-
tion (Equation 5) so that sampling can be conducted rapidly
for damage diagnosis.

A couple of remarks about the surrogate modeling process
are worth noting. First, the size, T , of the training dataset has
a lower limit based on accuracy requirements and a practical
upper limit based on the computational expense of the orig-
inal model, M, the computational resources available, and
the training complexity and memory requirements of the re-
gression/interpolation algorithm used. In this work, a testing
dataset, Ŝ, of P randomly generated damage states and cor-
responding responses

Ŝ = {Ĉ(n);M̂(n)
1 , ...,M̂(n)

m }Pn=1, (15)

is used to evaluate surrogate model accuracy. The assessment
is based on the relative error between the surrogate and orig-
inal models when predicting the test data

∆j =
1

P

P∑
n=1

|M̃j(Ĉ(n))− M̂(n)
j |

|M̂(n)
j |

. (16)

Equations 15 and 16 can be used to compare different learn-
ing algorithms and select the most accurate one (i.e., with
lowest error, ∆j) to use as a surrogate model for damage diag-
nosis. The equations can also be used to guide the selection of
an appropriate training dataset size, T . That is, starting from
an initial number of data points, new training data can be in-
crementally added to S until a prescribed accuracy threshold

5
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based on ∆j is met.

It is also worth pointing out that the T model evaluations and
the training of the m surrogate models is an offline cost as-
sociated with the diagnosis framework. That is, the compu-
tational burden of generating the surrogate models is a single
upfront cost that then permits an arbitrary number of efficient
damage diagnoses to be conducted by rapidly evaluating M̃j

during the online analyses. Furthermore, the T executions of
the FE simulation are completely independent of each other,
and can therefore be run in parallel on as many computer pro-
cessors as are available.

As shown in the preceding study (Warner, Hochhalter, et al.,
2016), an additional benefit of surrogate modeling is that the
training dataset, S, can be used to generate a favorable initial
guess for MCMC sampling, c(0), that can reduce the required
burn-in period. This is done by computing the least squares
estimator (Equation 3) over the input-output dataset (Equa-
tion 13)

c(0) = arg min
c∈S

Q(c,dmeas). (17)

By only considering the precomputed training grid values,
this computation can be done rapidly as it does not require
any additional model evaluations. While multimodal distri-
butions may still pose a challenge, Equation 17 provides a
simple and systematic way to generate an initial guess that
will reside in a high probability region of the posterior dis-
tribution as a good starting point (Smith, 2013). It will be
shown in this work that even the basic Metropolis MCMC
method (Algorithm 1) can be effective and robust when start-
ing the algorithm in this fashion.

2.5. Summary

The formulation presented thus far has prescribed a general
framework for using noisy sensor data to produce probabilis-
tic damage estimates using a model-based diagnosis approach.
The formulation is broadly applicable irrespective of the dam-
age description, c, type of measurement data, dmeas, and com-
putational model,M, under two primary assumptions. First,
the measurement data must be sufficiently sensitive to changes
in the damage parameters chosen. This is dependent on the
sensor density, the quality of the measurements (signal-to-
noise ratio), and the complexity of the damage description
adopted. Second, the model, after proper calibration, must
have adequate predictive capability of the quantity being mea-
sured for the range of possible damage states. The validity
of these two assumptions can be further investigated prior
to conducting diagnosis through sensitivity analysis (Saltelli,
Chan, & Scott, 2000; Global sensitivity analysis: the primer,
n.d.) and model validation (Roy & Oberkampf, 2011) studies,
respectively.

In some simple scenarios, the model, M, may be efficient
enough to use directly in the framework. Otherwise, the sur-

rogate modeling strategy in Section 2.4 is a viable approach
to alleviate the computational burden associated with execut-
ing M repeatedly during MCMC sampling. Successful ap-
plication of surrogate modeling is contingent upon thorough
tuning and testing of the regression algorithm used and the
ability to generate a sufficient amount of training data. To
this end, it is important in practice to choose the simplest, low
dimensional description of damage possible for the applica-
tion, as regression becomes more difficult in high dimensions
and the amount of training data required grows exponentially
with the number of input parameters. Furthermore, higher or-
der descriptions of damage are limited in the first place by the
sensitivity of the measurement data to them for diagnosis.

To summarize, the necessary steps that must be taken both
offline (prior to putting the component in service) and online
(while operating) to implement the diagnosis framework are
provided below.

Offline:

1. Create model,M(c, f), of component and calibrate it

• Perform initial measurement
• Determine optimal parameters, f̂ , to produce cali-

brated model,M(c), (Equation 2)
• Estimate noise level, σ2, (Eqs. 8, 9)

2. Train surrogate models

• Generate input-output training dataset, S, (Eqs. 12,
13)

• Train surrogate models for each measurement (Equa-
tion 14)

• Validate surrogate models, add training data and re-
train if necessary

Online:

1. Acquire measurement data, dmeas, from sensors
2. Compute initial guess, c(0), (Equation 17)
3. Perform MCMC sampling (Algorithm 1) utilizing trained

surrogate models

The next section will demonstrate how this general frame-
work can be applied to solve a specific, practical damage di-
agnosis problem.

3. EXPERIMENTAL VALIDATION

3.1. Application: Strain-Based Crack Characterization

The general model-based diagnosis framework presented in
the previous section is now applied to the specific problem
of crack characterization in thin plates using strain data. A
schematic illustrating the application can be seen in Figure 1.
Here, the damage is represented by a four-dimensional array

c = [x, y, a, θ], (18)

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

X

Y

Z

h

x
y

θ
a

Uy
12

Uy
2

Uz
2

Ux
1

Uz
1

Uy
34

Ux
4

Uz
4Ux

3Uz
3

w

21

3 4

Figure 1. Boundary conditions and damage parameterization
for the crack characterization application.

describing the center location, (x, y), length (a), and orienta-
tion (θ) of the crack.

The panel is subject to general prescribed displacement bound-
ary conditions along the top and bottom surfaces, comprising
the additional model parameters (f ) for this application

f =
[
U1
x , U

1
z , U

2
x , U

2
y , U

12
y , U3

x , U
3
z , U

4
x , U

4
z , U

34
y

]
. (19)

The measurement data used to estimate the crack parameters
are an array of m strains recorded throughout the domain

dmeas = {Ŝi}mi=1, (20)

where Ŝi is the ith strain measurement. Note that Ŝi can
generally represent any one of the surface strain components
[ε̂xx, ε̂yy, γ̂xy]. However, in this study it will be limited to
a single component to mimic the capabilities of fiber optic
strain sensing (Meltz & Snitzer, 1981), as described in the
next section. For this application,M(c; f) (Equation 1) is a
FE model capable of computing and extracting strains at the
measurement locations for a given set of damage parameters
and prescribed displacements.

The implementation of the method, including surrogate model
development and MCMC sampling, was carried out in Python
(Python Software Foundation, 2016). All FE modeling was
performed using the Scalable Implementation of Finite El-
ements by NASA (ScIFEN) (Warner, Bomarito, Heber, &
Hochhalter, 2016) software. Both the FE and Python soft-
ware for this study was executed on a machine with quad-
core 2.4GHz AMD Opteron processors. The remainder of
the section will detail each aspect of the experimental vali-
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Figure 2. Diagram of the effective sensor arrays tested and
the cracks from the flat and angled crack specimens.

dation effort. First, a description of the strain measurement
data used for diagnosis is provided followed by an overview
of the FE model calibration that was performed. Next, the de-
velopment and verification of the surrogate models used for
accelerated diagnosis is then presented. Finally, the perfor-
mance of the framework is demonstrated on two examples:
1) damage localization and 2) general crack characterization
(location, size, and orientation) in thin metal plates.

3.2. DIC Strain Data

Two cracked thin sheet specimens of Aluminum Alloy 2024
(AA2024) were considered for experimental validation of the
diagnosis framework, one with a flat crack (i.e., oriented 0◦

from the x axis) used to test damage localization and the other
with an angled crack to test full crack characterization. The
width and height of the specimens were 3.93in and 8.73in, re-
spectively. The crack parameters were [xflat, yflat, aflat, θflat] =
[1.81in, 4.53in, 0.67in, 0rad] for the flat crack specimen and
[xangled, yangled, aangled, θangled] = [1.83in, 4.29in, 0.78in,−0.82rad]
for the angled crack specimen.

Full-field strain data was acquired with DIC using the VIC3D
(Correlated Solutions Inc., 2012) software. DIC is an optical
measurement technique that takes a sequence of digital pho-
tographs of a component and uses computer vision algorithms
to track blocks of pixels and build up full 2D and 3D defor-
mation and strain fields (Sutton, Orteu, & Schreier, 2009). A
speckle pattern was first applied to the test specimens using
spray paint to facilitate pixel tracking with DIC. Each speci-
men was then loaded individually in tension and strain fields
were obtained using VIC3D.

The motivation behind gathering full-field strain data using
DIC was that measurement (“sensor”) locations could be freely
chosen in order to test the diagnosis accuracy and uncertainty
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as the distance between the measured data and damage was
varied. Three different sensor arrangements were tested in
the diagnosis examples to follow, shown in Figure 2, along
with the two crack configurations considered. Each arrange-
ment was composed of two separate horizontal arrays of sen-
sors with increasing distance between them (1.47in, 3.25in,
and 5.02in). Thirteen measurement locations were recorded
along each array. Only the εXX component of strain was used
at each location, so that there werem = 26 measurements for
each arrangement. This setup was chosen to mimic a practi-
cal scenario where fiber optic strain sensors (Meltz & Snitzer,
1981; Li et al., 2004) were utilized to collect monitoring data.

The resulting strain fields captured with DIC can be seen in
Figures 3(a) and 3(b), showing the εXX strain component for
the flat and angled crack specimens, respectively. Dashed
lines are overlaid across the strain fields to denote where data
will be extracted for the three sensor arrays in Figure 2. The
localized nature of the strain field in the presence of dam-
age is apparent, indicating the importance of sensor proxim-
ity for practical monitoring applications. It is worth pointing
out that while four sensor arrays were tested in the previous
work (Warner, Hochhalter, et al., 2016), the fourth and fur-
thest array from the damage was removed from consideration
in this work because it resulted in diagnoses with little useful
information about the cracks. Hence, only diagnosis results
using the three sensor arrays in Figure 2 will be presented in
the examples to follow.

3.3. Model Calibration

A FE model representing M(c; f) for each test specimen
based on the measured dimensions given above was first cre-
ated in ScIFEN to facilitate model calibration. A Young’s
Modulus, E = 10.6Msi, and a Poisson’s ratio, ν = 0.33, for
AA2024 were considered known and deterministic. Thus, the
model calibration problem in Equation 2 was solved only for
an appropriate set of boundary condition parameters in Equa-
tion 19 for each test specimen. A more detailed, rigorous
calibration is performed here with respect to the crude single
parameter approach in (Warner, Hochhalter, et al., 2016) in
an attempt to decrease the model discrepancy observed due
to misalignment in the test stand used for uniaxial loading.

While in the ideal case initial measurements would be taken
prior to the introduction of damage to use for calibration, no
DIC measurements were available from the undamaged state
in this study. Instead, dcal was chosen as displacement data
in the damaged states (sampled at 500 random locations in
the domain) to ensure that the model was still calibrated with
a different set of data than was used for diagnosis later. The
2-norm was used for the objective function in Equation 2 to

quantify the error between the model and calibration data, i.e.,

g(a− b) =

√√√√ n∑
l=1

(al − bl)2 (21)

for two arbitrary n-dimensional vectors, a and b. This op-
timization was performed using the Nelder-Mead algorithm
(Wilde & Beightler, 1967) as implemented by the open source
Python package SciPy (Jones, Oliphant, Peterson, et al.,
2001). The model calibration problem was solved individ-
ually for the flat and angled crack specimens, resulting in two
sets of optimal boundary condition parameters, f̂flat and f̂angled,
respectively.

To assess the effectiveness of the calibration and estimate the
noise levels, σ2, needed for Bayesian inference, the strains
from DIC and the calibrated model were then compared on
the randomly sampled grid of points. The resulting distri-
bution of errors (Equation 8) is shown in Figure 4 for the
flat (a) and angled (b) crack specimens along with a fitted
Gaussian distribution to the errors. The estimated noise lev-
els (Equation 9) for Bayesian inference are depicted in the
plots and will be used for the damage diagnosis results to fol-
low. The mean values of error here, µ̂flat and µ̂angle, can be
interpreted as model bias and would be 0 in the ideal case.
While non-zero, these values are substantially smaller using
the more rigorous calibration approach here than in the pre-
liminary work (Warner, Hochhalter, et al., 2016): µ̂flat was
reduced from 1.87× 10−5 to 1.09× 10−5 and µ̂angle was re-
duced from 1.01× 10−4 to 8.40× 10−6.

3.4. Surrogate Model Development

Two separate sets of surrogate models were developed for the
flat crack and angled crack specimen since the former was
used to demonstrate damage localization (cflat = [x, y] ∈ R2,
with a = 0.67in and θ = 0rad), while the latter was used
for full crack characterization (cangled = [x, y, a, θ] ∈ R4).
The bounds for the parameters for training and testing were
specified as

x ∈ [0.64, 3.18]in, (22)
y ∈ [0.64, 7.94]in, (23)
a ∈ [0.20, 1.19]in, and (24)
θ ∈ [−π/2, π/2]rad, (25)

where the bounds for x, y, and a were chosen such that the
entire crack would always be contained within the geometry
(i.e., edge cracks were not considered). For both specimens,
surrogate models were constructed and stored for each mea-
surement in the sensor arrays considered (Figure 2) that were
capable of mapping new values of cflat and cangled directly to
the resulting strain (Equation 14). Several different machine
learning algorithms from the scikit-learn (Buitinck et

8
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Figure 3. A comparison of the εXX strain field obtained by DIC ((a) flat crack specimen, (b) angled crack specimen) versus the
calibrated FE model ((c) flat crack specimen, (d) angled crack specimen). The dashed lines in (a) and (b) indicate the locations
of the sensor arrays.
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Figure 4. Histogram of errors between DIC and FE strains
(Equation 8) with fitted Gaussian distributions, for the a) flat
and b) angled crack specimen.

al., 2013) and SciPy (Jones et al., 2001) Python modules
were compared to obtain a surrogate model with an optimal
balance of prediction accuracy and efficiency.

First, training datasets, S, (Equation 13) were generated using
the ScIFEN FE code according to Equation 12. For the case
of damage localization in the flat crack specimen, five uni-
form training grids, {c(k)flat }Tk=1, were considered from T =
200 to T = 5000 to study the accuracy and efficiency of the
machine learning algorithms for increasing training data size.
The grids were created by choosing Tx and Ty equally-spaced
points across the range of x and y in Equations 22 and 23,
respectively, where [Tx, Ty] = [10g, 20g] for g = 1, ..., 5.
Only one training grid with T = 32076 was generated for the
angled crack specimen due to the added computational ex-
pense of the increased dimension of the input space, d = 2 to
d = 4. Here, the number of grid points for each variable was
[Tx, Ty, Ta, Tθ] = [12, 33, 9, 9], again selected to be equally-
spaced across the ranges in Equations 22-25. Additionally,
two test datasets, Ŝ, (Equation 15) were generated from 1000
randomly selected values of cflat and cangled to verify the ac-
curacy of the trained surrogate models for each case.

Note that the number of training grid points for each variable
were selected based on the size of its range and on the ex-
pected sensitivity of computed strains to changes in its value.
For example, more grid points were used for x and y versus a
and θ for damage characterization due to the larger bounds in
Equations 22 and 23 and because strain values at the sensors
are more affected by damage proximity than changes in dam-
age size and orientation. While no attempt was made to opti-
mize the selection of the training grid in this study, more so-
phisticated adaptive and selective refinement schemes could
be used to increase accuracy with fewer training data points.
It is shown later in this section, however, that the simple uni-
form grids selected resulted in surrogate models with a satis-

9
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Figure 5. Performance comparison of four different regression algorithms for surrogate modeling in the damage localization
problem in terms of a) relative error and b) prediction time.

factory level of accuracy.

Generating all the necessary surrogate training and test data
took approximately 2000 CPU-hours for this study. How-
ever, exploiting the independent nature of the computations
(as mentioned in Section 2.4) and utilizing parallel processing
resulted in about 5 days of total run time. Specifically, four
separate FE simulations were executed simultaneously with
each simulation running on four processors with ScIFEN. The
CPU times for each FE model execution varied between 25
and 45 seconds depending on the crack geometry and com-
putational mesh.

Surrogate models for the flat crack specimen were generated
using linear regression, nearest neighbors, and Gaussian pro-
cess algorithms from scikit-learn and a multi-linear in-
terpolation algorithm from SciPy. Free parameters for the
nearest neighbors and Gaussian process models were tuned
using cross-validation. A comparison of algorithm perfor-
mance for increasing training dataset sizes is shown in Figure
5. Figure 5(a) shows the average relative error over the testing
dataset (Equation 16), while Figure 5(b) compares prediction
times for the different models tested.

It is clear that the nearest neighbors and linear interpolation
models provide the most accurate predictions, nearing 1% er-
ror for the larger training datasets. In terms of prediction
speeds, the linear interpolation model is significantly faster in
this case, and was chosen for surrogate modeling for the dam-
age localization study for this reason. It is important to point
out, however, that the nearest neighbors model demonstrates
a near-constant scaling in prediction time versus the size of
the dataset, which will be highlighted in the crack characteri-
zation surrogate performance to follow.

The disparity in performance seen with the Gaussian pro-
cess and linear regression models may be due in part to the
global nature of the approximations provided by these meth-

ods (Bishop, 2006) in contrast with the localized behavior
of the strains being predicted. Nearest neighbors and linear
interpolation benefit in this situation by basing their approx-
imations locally from the data points in closest proximity to
the one being predicted. It is also important to point out that
these results are not indicative of the performance of these
regression algorithms in general, but are specific to this par-
ticular application.

For the angled crack specimen, only the nearest neighbor and
linear interpolation approaches were considered. Here, train-
ing Gaussian process models on a dataset of this size was
infeasible due to the memory consumption imposed by the
method, while linear regression was omitted due to poor ac-
curacy. The performance of the algorithms in terms of ac-
curacy and efficiency is displayed in Table 1. In this case,
choosing the more superior method for surrogate modeling is
not as straightforward. The linear interpolation models have
nearly three times less error but are two orders of magnitude
slower in terms of prediction time with respect to the nearest
neighbors regressor. Based on the larger disparity in predic-
tion speeds, the nearest neighbor models are selected over lin-
ear interpolation for the general crack characterization study
in the angled crack specimen. However, the tradeoff in accu-
racy and speed for the two methods is investigated further in
their application to diagnosis in Section 4.

3.5. Damage Localization

The Bayesian damage diagnosis framework was first applied
to the problem of damage localization in the flat crack spec-
imen. The MCMC algorithm described in Section 2.3 was
used to sample the posterior probability distribution p(c|dmeas)
and estimate cflat. A uniform distribution was used for the
prior probability p(c), simply enforcing the bounds in Equa-
tions 22 - 23 (i.e., 0 probability if either parameter falls out-
side the bounds in a given sample). The linear interpolation
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Method Mean Relative Error Prediction Time
Nearest Neighbor 8.22× 10−2 8.43× 10−4 sec

Linear Interpolation 2.86× 10−2 1.39× 10−1 sec

Table 1. Performance comparison for the crack characterization surrogate models. The models were generated using 32076
training data points.

surrogate models described in the previous section were used
to accelerate the evaluation of p(c|dmeas) during sampling.
DIC strain data (Figure 3(a)) extracted at each of the three
sensor arrays in Figure 2 were tested individually to compare
the impact of measurement location on the resulting damage
location estimates. The noise level, σ2, was prescribed ac-
cording to Figure 4(a).

For all of the damage diagnosis results presented in this study,
11000 total samples were drawn using the MCMC algorithm.
The first 1000 samples were discarded for the burn-in period
after which a thinning interval of 10 was applied to reduce au-
tocorrelation, yielding 1000 samples to produce estimates of
damage location probability. The initial guess for sampling
in each case was generated automatically using the approach
in Equation 17. The covariance matrix Σq for the proposal
distribution (Equation 11) was chosen such that the variance
for each parameter was 10% of the size of its corresponding
bounds in Equations 22 - 25, which resulted in sample ac-
ceptance rates of 9%, 56%, and 80% for sensor arrays 1, 2,
and 3, respectively. For sensor array 1, Σq was scaled by 0.5
from here to increase the acceptance rate to 20% and reduce
autocorrelation for the results to follow. The average solution
time for the three cases was just 23.4 seconds.

Figure 6 shows the resulting crack location probability con-
tours for each of the sensor arrays. It can be seen that sensor
array 1, which is closest to the crack, provides an estimate
that is nearly coincident with the true value with a high de-
gree of certainty. Sensor array 2 is also highly accurate, in
the sense that the highest predicted probability agrees with
the true crack location, while the diagnosis using sensor ar-
ray 3 is slightly less accurate. Of equal importance, it can
be seen that Bayesian diagnosis framework effectively cap-
tures the increasing uncertainty in estimates with increasing
distance between the damage and sensors, as indicated by the
growing spread in the probability distributions. While it is
clear that sensor proximity has a significant impact on the di-
agnoses provided, even sensor array 3, which is farthest from
the crack, provides useful information about the nature of the
damage present.

3.6. General Crack Characterization

The performance of the proposed diagnosis framework is now
illustrated for general crack characterization in the angled
crack specimen. That is, the probability distribution, p(cangled|dmeas) =
p(x, y, a, θ|dmeas), for unknown crack location, size, and ori-

entation was estimated using DIC strains (Figure 3(b)) at each
of the sensor arrays in Figure 2. Nearest neighbor surrogate
models were used to accelerate the sampling process for crack
characterization following the developments in Section 3.4.
The MCMC parameters remained unchanged from those pro-
vided for the damage localization results in the previous sec-
tion and a uniform distribution was used again for the prior
probability, p(c). The noise level, σ2, was prescribed accord-
ing to Figure 4(b). The sample acceptance rates were 24%,
39%, and 52% for sensor arrays 1, 2, and 3, respectively,
while the average solution time was 356 seconds. Note the
slower execution time versus damage localization is a result
of an increase in prediction time of the nearest neighbor sur-
rogate models trained with a larger training dataset and higher
input dimension.

The results for general crack characterization for each of the
three sensor arrays considered are shown in Figure 7. Here,
the estimated marginal probability distributions for x, y, a,
and θ are displayed along with the true values of these pa-
rameters from the angled crack specimen. Again, the trend of
decreasing accuracy and increasing uncertainty is observed
with increasing distance between sensor arrays used for di-
agnosis. The one outlier in this trend is the distributions of
crack length in Figure 7(c), where the predictions for arrays
1 and 3 appear to be more similar than those for arrays 1
and 2 (which are closer in proximity). The exact cause of this
anomaly is likely only explained by a more detailed investiga-
tion of the individual measurement errors at each sensor loca-
tion and the correlations between the crack parameters under
the joint posterior probability distribution, which is omitted
here for brevity.

Generally speaking, it can seen that each sensor array pro-
vides reasonably accurate predictions of the true values in
that the points of maximum probability are near the true dam-
age parameters in all cases. Predictions with sensor array 1,
in particular, have a high degree of accuracy and relatively
high precision while even sensor array 3 provides useful crack
characterization information, more so in terms of the location
of damage. Furthermore, it appears to be harder to predict
the extent and nature of the damage with a high degree of
certainty as compared with the location, as evidenced by the
relative spread in the predicted distributions of p(a) and p(θ)
versus p(x) and p(y).

11



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

0 1 2 3
x (in)

0

1

2

3

4

5

6

7

8
y
 (

in
)

Low

High

(a)

0 1 2 3
x (in)

0

1

2

3

4

5

6

7

8

y
 (

in
)

Low

High

(b)

0 1 2 3
x (in)

0

1

2

3

4

5

6

7

8

y
 (

in
)

Low

High

(c)

Figure 6. Crack location probability contours using the different sensor arrays from Figure 2 (denoted by white circles).
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Figure 7. Crack characterization results for each sensor array. The marginal distributions of the (a) x-coordinate, (b) y-
coordinate, (c) length, and (d) orientation of the crack compared to the true measured values.
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4. COMPUTATIONAL EFFICIENCY

The computational efficiency of the surrogate-accelerated dam-
age diagnosis framework is now illustrated in detail. First, the
tradeoff in terms of computational speed and accuracy associ-
ated with surrogate modeling is presented. Then, the impact
of generating an informed initial guess for MCMC accord-
ing to Equation (17) on sampling convergence as opposed to
doing so randomly is illustrated.

4.1. Surrogate Modeling vs FEM

In order to study the computational speedup and accuracy
provided by surrogate modeling, the damage localization and
crack characterization problems were also solved using the
original FE model, M, to evaluate p(c|dmeas) during sam-
pling instead of M̃. All MCMC parameters for these analyses
matched those used in the previous examples. Each evalua-
tion of the FE models during sampling was executed in par-
allel on four CPUs. The run times and estimated probability
distributions were stored for each sensor array for compar-
ison. Furthermore, the crack characterization example was
solved using linear interpolation models to assess the impact
of choosing the less accurate, but faster nearest neighbor mod-
els in this case (Table 1).

A comparison of the run times and computational speedup
using each model is displayed in Table 2 for damage local-
ization and characterization. Note that the run times reported
are average values of the analyses for each of the sensor ar-
rays. Diagnosis using the FE model took over four days for
each case. The execution time here (in contrast with using
surrogate models) is independent of number of unknowns;
the slight disparity observed between localization and char-
acterization times is due to random variation in the crack pa-
rameters and computational meshes generated during sam-
pling. It can be seen that tremendous computational speedup
was provided by linear interpolation (14299X) and nearest
neighbors (955X) for crack localization and characterization,
respectively. If linear interpolation was used for crack char-
acterization instead, only a 10X speedup would have been
provided.

To assess any loss in accuracy associated with replacing the
FE model with a surrogate, a comparison of the resulting
probability distributions using each model is displayed in Fig-
ures 8 and 9 for damage localization and crack characteriza-
tion, respectively. The crack location probabilities using lin-
ear interpolation show excellent agreement with the FE model
in Figure 8, a trend that was seen previously in Figure 5(a).

More variation is seen among the surrogate model and FE
model distributions in Figure 9 for crack characterization, il-
lustrating the increased challenge of performing accurate re-
gression in higher dimensions. Note that although there was
a clear advantage in terms of accuracy for linear interpolation

over nearest neighbors in Table 1, the resulting diagnoses pro-
vided here by each is comparable. For practical situations, it
is likely that the substantial benefit in computational speedup
from surrogate modeling (Table 2) outweighs any relatively
small inaccuracies in the diagnoses that were observed (Fig-
ures 8 and 9). Additionally, some of the disagreement ob-
served can likely be attributed to minor statistical variations
between the randomly-drawn, finite sample sets with MCMC
used to generate solutions.

4.2. Initial Guess Effects

In this section, the benefit of generating an informed initial
guess for MCMC using the surrogate training data (Equation
17) is briefly illustrated. Initializing sampling in a high proba-
bility region this way can decrease the required burn-in period
and reduce the need for more advanced adaptive algorithms
(Smith, 2013). In fact, the basic MCMC implementation pre-
sented in Section 2.3 was specifically utilized in this study to
emphasize the latter.

In an attempt to further substantiate this claim, the difficulty
of converging to the true damage probability distribution from
a purely random guess is highlighted. To this end, a conver-
gence study was performed where the damage localization
problem was solved for each sensor array using 100 different
random initial guesses. MCMC was performed for 2500 it-
erations with the same parameters that were used in Section
3.5. For each initial guess, it was recorded whether or not
any samples had been drawn within a 0.5in radius of the true
crack location during sampling. This criteria was selected to
roughly reflect a point where the effect of the initial guess
had been overcome and the burn-in period could be termi-
nated. Note that random initial guesses that fell within the
target area around the true location were not considered.

The results from this study are displayed in Figure 10 for
(a) sensor array 1, (b) sensor array 2, and (c) sensor array
3. Here, the true crack location and target area are denoted
by the black triangle and surrounding dashed circle, respec-
tively. The green dots represent initial samples that ultimately
reached this target area within 2500 iterations and the red×’s
are initial samples that did not reach the target area.

In Figure 10, only 9% of the random starting points led to
samples within 0.5in of the true location for sensor array 1,
46% for sensor array 2, and 68% for sensor array 3. The
low success rate is likely due, at least in part, to the exis-
tence of local maxima in the probability distribution where
the Markov chain can become temporarily trapped during sam-
pling. Furthermore, Figure 10 shows a clear trend between
distance of the initial guess from the true solution and the
likelihood that it will reach the area of interest. Here, the
proximity of the initial guess is most critical in the case of
sensor array 1, where the target distribution is most localized
(Figure 6). In all cases, it is clear that a substantial burn-in pe-
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Model Damage Localization Crack Characterization
Time (sec) Speedup Time (sec) Speedup

Finite Element 3.64× 105 1 3.40× 105 1
Linear Interpolation 2.34× 101 14299 3.56× 104 10
Nearest Neighbor - - 3.56× 102 955

Table 2. Computational Speedup comparison for surrogate modeling versus the original FE model.
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Figure 8. Comparison of the damage localization results using the linear interpolation surrogate model versus the original FE
model for sensor array 2.
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Figure 9. Crack characterization results using linear interpolation and nearest neighbor surrogate models compared with the
original FE model for sensor array 2.
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Figure 10. Convergence of sampling for 100 random initial guesses with (a) sensor array 1, (b) sensor array 2, and (c) sensor
array 3. The green dots represent initial guesses that reached the target area (dashed circle) around the true solution (black
triangle) within 2500 iterations and the red ×’s are those that did not reach the target area.

riod will often be required when randomly selecting a starting
point for MCMC. By contrast, the initial guess generated via
Equation 17 was 0.09in from the true location with sensor ar-
ray 1, 0.04in away with sensor array 2, and 0.86in with sensor
array 3, virtually eliminating the need for a burn-in period in
these cases.

It is important to note that the observed effects of a poor initial
guess could be reduced with extensive tuning of the MCMC
algorithm used here or the introduction of a more advanced
sampling approach. However, this study advocates the use
of Equation 17 to initialize sampling as a simpler alternative
when surrogate modeling is utilized. Note that while the con-
vergence study was performed for localization and not char-
acterization to aid in visualization, issues with convergence
and poor initial guesses are exacerbated in higher dimensional
cases making the scheme even more valuable in these cases.

5. CONCLUSION

In this study, a computationally-efficient, probabilistic dam-
age diagnosis framework was presented and experimentally
validated. Given measurement data, probability distributions
of unknown damage parameters were estimated using Bayesian
inference and MCMC sampling. Substantial computational
speedup was obtained by replacing a three-dimensional FE
model with an efficient surrogate model. While the proposed
formulation is general for arbitrary component geometry, dam-
age type, and sensor data, it was demonstrated on the problem
of panel crack characterization using strain data determined

from DIC. Subsets of data were extracted in a fashion that
mimicked monitoring with fiber optic strain gauges (a single
component of strain along a linear array) for a more practi-
cally relevant application. The effectiveness of strain-based
diagnosis was tested as the distance between the damage and
these measurement locations increased.

The ability of the framework to efficiently perform proba-
bilistic damage localization and characterization while cap-
turing the uncertainty in the predictions as the measurement
locations were varied was demonstrated. Furthermore, the
use of a surrogate model to replace a 3D FE model was shown
to yield average analysis times of 23.4 and 356.0 seconds
for damage localization and full crack characterization, re-
spectively, representing a 14299X and 955X computational
speedup. Furthermore, a simple scheme to generate a highly
probable initial guess for MCMC sampling using the surro-
gate model training data was shown to improve convergence
and reduce the burn-in period needed. While the accuracy
and certainty of the diagnosis results naturally degraded as
measurement locations were moved further from the dam-
age, this study reinforced the potential for strain sensors to
allow for effective local SHM of hot spots in components.
Additionally, the framework, capable of providing full crack
characterization with UQ and computational efficiency, en-
compasses the necessary characteristics to enable subsequent
damage prognosis.

Since the proposed diagnosis framework was presented here
in a relatively basic form to emphasize the practicality of the
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approach, several enhancements could be made to accommo-
date more complex applications. First, a sensitivity analysis
could be performed to assess the relative identifiability of the
damage parameters chosen for the available sensor measure-
ments. This would be done both to discover and remove any
higher order damage variables that could not be recovered
during diagnosis and to help guide the selection of a train-
ing data grid for surrogate modeling. In regards to the latter,
adaptive and selectively-refined training data grids could also
be adopted in the framework to yield more efficient and accu-
rate surrogate models with fewer evaluations of the original
computational model. Furthermore, an explicit model dis-
crepancy term could be included in the formulation to account
for any bias or inability of the computational model to predict
the measurement data after calibration. Finally, a variety of
advanced MCMC algorithms can be deployed when the ba-
sic Metropolis algorithm presented here is too inefficient for
sampling the resulting posterior probability distribution. This
may be necessary for extensions of the diagnosis framework
that seek more unknown variables (e.g., considering higher
dimensional damage parameterizations or cases of unknown
sensor noise levels and variable boundary conditions).
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