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ABSTRACT 

Growth in the manufacturing sector demands extensive 

production with precision, accuracy, tolerance, and quality.  

These essential factors need to be ensured for any kind of 

job. The listed factors stated above depend upon the 

condition of the tool used for manufacturing. A lot of 

methods have been proposed for the tool condition 

monitoring, based on the data acquired through acquisition 

techniques. Despite the continuous intensive scientific 

research for more than a decade, the development of tool 

condition monitoring is an on-going attempt. The proposed 

method deals with monitoring the health condition of the 

carbide inserts using vibration analysis. The statistical 

information extracted from the vibration signals was 

analyzed using machine learning approach in order to 

predict the tool condition. 

Keywords: Carbide inserts; machine learning; vibration 

analysis; statistical features; Confusion matrix. 

1.  INTRODUCTION 

In manufacturing industries, single point cutting tool inserts 

and drill bits are widely used as a tool for machining the 

components. The machining operation will be carried out 

continuously if there is an excessive demand. Every time an 

operator has to monitor the finish of the material for 

ensuring the quality as per standards. Any deviation can 

lead to a huge loss to the manufacturing firm. In such 

scenario, the machine idle time is increased. Moreover, the 

production process also gets affected. Hence an approach 

which can help the operator to identify the condition of the 

tool for saving the time and reducing the losses caused due 

to machine downtime is imposed. Tool condition 

monitoring is one such approach which can help for 

minimizing these losses in order to achieve better 

production rates. Kurada & Bradley (1997) indicated that 

the tool breakage is equally responsible for losses not only 

in terms of time but the invested capital are also destroyed 

due to unscheduled stoppages which are about 7-20%. 

Sometimes it is not necessary that the tool may break but 

wear of tool can also add to losses since the use of dull or 

wear tool can add strain to machine system and can cause a 

loss in terms of quality of finished work piece. Karandikar, 

Ali Abbas and Schmitz (2013) proposed a basian model for 

finding the remaining life time of a turning tool by 

measuring the tool wear.  

Use of the same tool for a prolonged period will lead to 

wear. The wear of the tool is directly proportional to the 

vibrations. The use of worn out tool often leads to increase 

in vibrations. These vibrations have been considered as an 

important aspect of the tool condition monitoring methods. 

By analyzing these vibration signals, the condition of the 

tool can be identified. In many tool condition monitoring 

studies, the vibration signals were used for predicting the 

tool condition (Das, Chattopadhyay & Murthy, 1996); 

(Dimla, 2000). The vibrations that are caused can be 

extracted or captured using sensors like accelerometer of 

which the signals can be processed using signal processing 

techniques (Chen & Chen, 1999). Bernhard sick (2002) 

reported vibration based online tool wear monitoring 

techniques for tool condition monitoring. In various 

industrial applications, the vibration signals have been used 

for condition monitoring (Anil Kumar, Gurmeet Singh & 

Naikan, 2015); (Chao Jin, Ompusunggu, Zongchang Liu, 

Ardakani, Fredrik Petre & Jay Lee, 2015). Hence in this 

study vibration signals have been considered for the 

condition monitoring process.  

The acquired vibration signals under all good and faulty 

conditions need to be analyzed for obtaining the tool 

condition. There were many approaches for monitoring the 

condition through vibration analysis. In recent years, 

machine learning has been adopted for monitoring measures 

in many applications (Witten, Eibe & Ian, 2002). Machine 

learning is an area of artificial intelligence developing a 

model which can learn from the data. More specifically, 

machine learning is a method for creating an algorithmic 

model through data analysis. Machine learning approach 

develops a model to train, test and classify the data based on 
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its information (Elangovan, Sakthivel, Saravanamurugan, 

Nair & Sugumaran, 2015). The machine learning approach 

consists three steps: feature extraction, feature selection, and 

feature classification. 

The vibration signal consists the information as features like 

statistical (Lu & Jain, 2006) (Jegadeeshwaran & Sugumaran 

2015), histogram (Yang Bai, Lihua Guo, Lianwen Jin, & 

Qinghua Huang, 2009), wavelet (Yen, Gary & Lin, 2000), 

(Abdulhamit, 2007). The statistical features are the basis for 

the histogram and wavelets. In a study statistical learning 

was suggested for identifying faults in a multi-stage 

manufacturing process (Xiaorui Tong, Ardakani, David 

Siegel, Ellen Gamel & Jay Lee, 2017). In this study, 

statistical features extracted from the vibration signals were 

used for monitoring the tool condition.  

Feature selection was the next step after feature extraction. 

Feature selection is a process of removing insignificant 

features from the data set. Many techniques like decision 

tree, principal component analysis, have been reported for 

feature selection. Song, Guo, and Mei (2010) proposed a 

principal component analysis for feature selection. 

However, PCA always relies on linear assumptions. PCA 

models have trouble with large numbers of data points. 

Dash and Liu (1997) proposed decision tree for selecting 

good features. A novel hybrid classification system based on 

J48 algorithm was proposed for both feature selection and 

feature classification of the multi-class problems. 

Sugumaran, Muralidharan, and Ramachandran (2007) used 

decision tree for selecting good features from the extracted 

features of the roller bearing. Elangovan, 

Babudevasenapathy, Sakthivel, and Ramachandran (2011) 

used decision tree for feature selection in the tool condition 

monitoring study. Decision tree can be represented more 

compactly as an influence diagram. Hence, in the present 

study, the decision tree was used for feature selection.  

The final step in the machine learning approach is feature 

classification. An expert system was developed using ANN 

to predict the tool wear in turning and milling tool (Silva, 

Reuben, Wilcox, 1998), (Ghosh, Ravi, Patra, 

Mukhopadhyay, Paul, Mohanty & Chattopadhyay, 2005). 

Chen and Jen (2000) suggested a data fusion neural network 

model for monitoring the condition of a milling cutter. 

Elangovan, Babudevasenapati, Sakthivel, Ramachandran, 

2011) developed an expert system for condition monitoring 

of a single point cutting tool using decision tree algorithm. 

In another study, K-Star algorithm has been proposed for 

tool condition monitoring using statistical features 

(Sanidhya, Elangovan & Sugumaran, 2014). In a research, 

support vector machine algorithm using statistical features 

was studied for monitoring the condition of a single point 

cutting tool (Elangovan, Babudevasenapati, & 

Ramachandran, 2009). Several machine learning algorithms 

like a best first tree (Jegadeeshwaran, & Sugumaran, 2013, 

proximal support vector machines (Saimurugan, 

Ramachandran, Sugumaran, and Sakthivel, 2011), were 

reported for achieving better results in various condition 

monitoring study. However, there is a limited study over the 

condition monitoring of insert fitted tool. Das, Roy, and 

Chttopadhyay (1996) used ANN model for predicting wear 

on carbide inserts. An experimental study was conducted to 

measure tool wear and the cutting force variations in the end 

milling of Inconel 718 with coated carbide insert (Li, Zeng 

& Chen, 2006). However, the literature for carbide insert 

fitted tool health monitoring using machine learning is 

almost nil. Hence, in this study, the carbide insert condition 

monitoring has been performed using the machine learning 

algorithms like decision tree and random tree. The 

randomization can be improved by a random tree in which 

the base learner randomly chooses both the feature on which 

to split and the split itself. Since it does not optimize over 

either the feature or the location of the split, it is very easy 

to code and very fast to fit. Buntine and Niblett (1992) 

studied the possibilities of using the random tree for the 

fault diagnosis study. The time taken to build classifier 

model is more compared to decision tree algorithm. Hence, 

there is limited study using a random tree. However, the 

random tree produced better classification results than the 

decision tree algorithm. 

Contributions in the present work are the following: 

1. The procedure for acquiring the vibration signal under 

various fault condition has been explained.  

2. From the vibration signals, a set of statistical features 

were extracted. 

3. The contributing features were selected using a decision 

tree.  

4. J48 and Random tree were used as a classifier. All the 

algorithms were trained and the results were compared. 

The results show the effectiveness of the features that 

were extracted features from the acquired vibration 

signals. 

2.  EXPERIMENTAL STUDY 

In this paper, an attempt was made to apply machine 

learning technique to predict the tool health using the 

vibration signals. Figure 1 shows the experimental setup 

used for acquiring the vibration signals.  

 

Figure 1. Experimental Setup 
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The following most frequently occurring fault conditions 

were considered in this study. 

1. Thermal cracks: A combination of rapid temperature 

fluctuations and mechanical shock can cause thermal 

mechanical failure. Stress cracks form along the insert 

edge, eventually causing sections of the insert’s carbide 

to pull out and appear to be chipping. Thermal 

mechanical failure is most often experienced in milling 

and sometimes during interrupted-cut turning, facing 

operations on a large number of parts, and operations 

with intermittent coolant flow. Signs of thermal 

mechanical failure include multiple cracks 

perpendicular to the cutting edge. It is important to 

identify this failure mode before chipping begins. These 

thermal cracks were simulated by machining the 

cylindrical job for a very high depth of cut (Refer 

Figure 2(a)). 

2. Flank Wear: An insert will fail due to normal wear in 

any type of material. Normal flank wear is the most 

desired wear mechanism because it is the most 

predictable form of tool failure. Flank wear occurs 

uniformly and happens over time as the work material 

wears the cutting edge, similar to the dulling of a knife 

blade. Flank wear which is caused due to high cutting 

speed and less use of coolant was simulated by grinding 

against the grinding wheel (Refer Figure 2(b)). 

3. Broken edge: The mechanical fracture of an insert 

occurs when the imposed force overcomes the inherent 

strength of the cutting edge. This fault was 

automatically generated while carrying out the 

machining operation with high depth of cut (Refer 

Figure 2(c)). 

   

(a) Flank wear (b) Thermal wear (c) Broken  

Figure 2. Flank wear, Thermal wear & Broken Condition 

The following machining parameters were selected for 

acquiring the vibration signals: 

Spindle speed  :  225 rpm – 900 rpm 

Tool feed :  0.06 mm, 0.095 mm, 0.177mm,  

   0.135 mm, 0.214 mm 

Depth of cut :  0.4 mm, 0.8 mm, 1.2 mm. 

These vibration signals were captured using 3055B1 LIVM 

Accelerometer and NI DAQ (USB 4432). The following 

parameters were selected for acquiring the vibration signals.  

Sample length :  1024 (Arbitrarily chosen) 

Sampling frequency: 24 kHz (As per Nyquist sampling 

theorem) 

No. of samples : 67 (Arbitrarily chosen) 

 

The experiment was conducted in two phases. In the first 

phase, the insert was in a good condition. The vibration 

signals for each parameter were acquired while other two 

parameters were constant. The corresponding vibration 

signals were recorded. Figure 3 shows the experimental 

procedure for acquiring the vibration signals. 

 

Figure 3. Experimental Procedure 

Figure 4 and Figure 5 shows the sample vibration 

signals acquired from the setup. 

 

Figure 4. Vibration signal acquired from the setup (S: 770 

rpm; F0.135 mm; DOC: 0.8 mm). 

 

Figure 5. Vibration signal acquired from the setup (S: 770 

rpm; F: 0.214 mm; DOC: 1.2 mm). 
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Under each set of parameters, the predictability of the 

classifier model was tested. The parameters under which the 

maximum accuracy was obtained were selected for the fault 

diagnosis study. In the fault diagnosis study, under each 

fault conditions, the relevant vibrations signals were 

acquired with the selected parameters in phase 1. The 

extracted vibration signal was processed using the machine 

learning approach. 

3. MACHINE LEARNING APPROACH 

As discussed earlier, machine learning approach consists 

three basic steps: (i) Feature extraction; (ii) Feature 

Selection; (iii) Feature classification. 

3.1. Feature Extraction 

Feature extraction is a process of extracting informative and 

non-redundant data from a set of largely measured values. 

These features represent the data measured in a more 

informative way and are helpful in further analyzing of the 

required information. The information contained in the 

signals may be in the form of statistical and/or in the form 

of histogram features. The statistical information like 

sample variance, standard error, kurtosis, skewness, 

minimum, standard deviation, maximum, count, mean, 

median, mode, and sum are extracted from the raw vibration 

signals under each conditions using a suitable feature 

extraction technique. These features were extracted using a 

visual basic code from excel.  

3.2 Feature Selection 

Feature selection was done in two ways: (i) Decision tree; 

(ii) Effect of a number of features study. In this study, 

decision tree generated from both the algorithms were used 

for feature selection. All the extracted features were fed as 

input to the algorithm. The output was a decision tree as 

shown in Figure 6 and Figure 7. The contributing features 

were identified from the decision tree using a top-down 

approach. Referring the Figure 6, only six features were 

contributing to classification using J48. The following six 

features were selected for classification. Minimum, mean, 

range, kurtosis, sample variance, standard error. Based on 

its contribution, the order of features was selected for 

classification.  Referring the Figure 7, the top eight features 

were contributing to classification using a random tree. The 

following eight features were selected for classification. 

Kurtosis, minimum, median, standard deviation, skewness, 

sample variance, maximum, and range were selected for the 

classification. Based on its contribution, the order of 

features was selected for classification.  

3.3 Feature Classification 

Classification is assigning the category to the new set of 

observations by comparing with the already established data 

set whose category membership is known. An algorithm 

that implements the classification is called classifier. The 

classifiers used for the above are J48 decision tree and 

random tree classifiers. 

 

Figure 6. Decision tree J48 Classifier 

 

Figure 7. Decision tree for Random Tree classifier 
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3.3.1. Feature classification using J48 algorithm 

A decision tree is a tree based knowledge representation 

methodology used to represent classification rules. Decision 

tree learning is one of the most popular learning approaches 

in classification because it is fast and produces models with 

good performance. Generally, decision tree algorithms are 

especially good for classification learning if the training 

instances have errors (i.e. noisy data) and attributes have 

missing values. A decision tree is an arrangement of tests on 

attributes in internal nodes and each test leads to the split of 

a node. Each terminal node is then assigned a classification. 

A standard tree consists of a number of branches, one root, 

nodes, and leaves. One branch is a chain of nodes from root 

to a leaf, and each node involves one attribute. The 

occurrence of an attribute in a tree provides the information 

about the importance of the associated. A decision tree is a 

tree based knowledge representation methodology used to 

represent classification rules. The J48 decision tree 

algorithm is a widely used one to construct decision trees 

(Figure 6). The procedure of forming the Decision Tree and 

exploiting the same for feature selection is characterized by 

the following: 

1. The selected set of statistical features was given as 

input to the algorithm; the output from the algorithm is 

the decision tree.  

2. The decision tree has leaf nodes which represent class 

labels and other nodes associated with the classes being 

classified. 

3. The branches of the tree represent each possible value 

of the feature node from which they originate. 

4. The decision tree can be used to classify feature vectors 

by starting at the root of the tree and moving through it 

until a leaf node which provides a classification of the 

instance is identified. 

3.3.2. Random tree algorithm 

The random tree algorithm can deal with both classification 

and regression problems. The random tree is a collection 

(ensemble) of tree predictors called a forest. The 

classification works as follows: the random trees classifier 

takes the input feature vector, classifies it with every tree in 

the forest, and outputs the class label that received the 

majority of ―votes‖. In the case of a regression, the classifier 

response is the average of the responses of all the trees in 

the forest. All the trees were trained with the same 

parameters but on different training sets. These sets were 

generated from the original training set using the following 

bootstrap procedure:  

1. The same number of vectors was chosen randomly with 

a replacement for each training set.  Some vectors will 

occur more than once and some will be absent.  

2. At each node of each trained tree, a random subset of 

the variables was used to find the best split instead of 

using all the features. With each node, a new subset was 

generated with fixed size. 

In random trees, there is no need for any accuracy 

estimation procedures, such as cross-validation or bootstrap, 

or a separate test set to get an estimate of the training error. 

The error is estimated internally during the training. When 

the training set for the current tree is drawn by sampling 

with replacement, some vectors are left out (out of bag 

(OOB) data). The classification error is estimated by using 

this oob-data. 

4. RESULTS AND DISCUSSION 

Condition monitoring of Carbide insert was studied using 

machine learning technique. The selected classifier models 

were tested for finding the prediction accuracy. 

4.1. Parameter prediction 

The experiment was conducted under five different speed 

conditions, five feeds and three depths of cut. The insert was 

kept in good condition, and the vibration signals under each 

parameter combinations were recorded. From the acquired 

vibration signals, the statistical features were extracted. The 

extracted features were classified using J48 decision tree 

algorithm and the random tree classifier. The input to the 

algorithms is statistical features. The output will be the 

classification accuracy as shown in Table 1. 

Speed Feed 
Classification accuracy (%) 

J48 Algorithm Random tree 

255 0.06 64.68 64.68 

 0.095 59.20 51.74 
 0.135 65.67 60.70 

 0.177 62.69 59.70 

 0.214 59.70 60.70 

385 0.06 77.61 68.16 
 0.095 61.19 57.71 

  0.135 80.10 76.62 

 0.177 76.12 64.68 

 0.214 84.08 83.58 
585 0.06 66.67 73.63 

 0.095 86.07 85.07 

 0.135 79.60 75.62 

 0.177 72.64 70.15 
 0.214 59.70 61.69 

770 0.06 98.01 96.02 

 0.095 70.15 70.15 

 0.135 95.52 98.01 
 0.177 76.62 69.15 

 0.214 85.07 86.07 

900 0.06 73.11 69.71 

 0.095 78.11 71.14 
 0.135 75.62 67.16 

 0.177 94.03 95.02 

 0.214 86.57 86..07 

Table 1. The effect of number of features 
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From the Table 1, it is seen that J48 classifier has shown the 

most corrected classified instance for Speed 770 and feed 

0.06. Hence, these parameters (Speed 770 rpm; Feed 0.06 

mm/rev) were selected for the condition monitoring study. 

4.2. Effect of number of features study 

The results were obtained using all the features (Table 2). 

All the extracted features may not be required for the 

classification. Hence the feature selection process was 

carried out using the decision tree and the effect of a number 

of features study. Initially, the decision tree was generated 

under the predicted parameter combinations. Based on the 

order obtained from the decision tree, the classification 

accuracy was found. Initially, the top feature alone was 

selected and was classified using the both decision tree and 

random tree. The corresponding classification accuracy was 

noted down as shown in Table 2.  

S. 

No. 

Classification Accuracy 

J 48 
Random 

Tree 

1 91.04 60.07 

2 91.04 92.91 

3 88.81 92.16 

4 88.81 89.18 

5 88.06 90.67 

6 94.78 93.66 

7 94.03 94.40 

8 91.79 98.13 

9 92.16 94.78 

10 94.78 94.40 

11 94.78 98.13 

12 94.78 96.27 

Table 2. Effect of number of features 

The second feature from the decision tree was clubbed with 

the first feature and the combination was classified using the 

decision tree algorithm. The third feature was clubbed with 

the previous combination and was classified using the 

decision tree algorithm. The same procedure was repeated 

until all the feature combinations were classified. Table 2 

shows the effect of a number of features study.  Referring 

Table 3, J48 produces maximum classification accuracy 

with both 6 and 11 features, whereas, the random tree 

produces the maximum classification accuracy with 11 

features. 

4.3. Feature classification using J48 decision tree 

algorithm 

From the decision tree (Figure 6) the top six features were 

selected for the classification. The same was verified with 

the effect of a number of features study (Table 2). The 

selected features are minimum, mean range, kurtosis, 

sample variance, standard error. The selected features alone 

were classified using the J48 decision tree algorithm. The 

classification accuracy was presented in the form confusion 

matrix as shown in Table 3.  

Good Flank Wear Thermal Wear Broken Tool Condition 

66 0 1 0 Good 

0 64 3 0 Flank Wear 

0 2 62 3 Thermal Wear 

0 0 5 62 Broken Tool 

Table 3. Confusion matrix – J48 Decision Tree algorithm 

The confusion matrix is a square matrix in which the 

summary of the classification accuracy can be found. The 

diagonal elements in the confusion matrix are the correctly 

classified data points and the non-diagonal elements are 

misclassified data points. In the confusion matrix, the first 

row represents the data points belong to good condition. The 

first element in the first column belongs to its classified 

state. Out of 67 data points, 66 were correctly classified as 

Good. One data has been misclassified as Thermal wear. 

The second row represents flank wear. The second element 

in the second column is a number of data points that are 

correctly classified. Out of 67 data points, 64 data points 

were correctly classified. The three data points were 

misclassified as thermal wear. As discussed above the 

classification and the misclassification details can be studied 

using the confusion matrix. The accuracy of the individual 

class can be studied using the detailed accuracy by class. 

Table 4 shows the detailed accuracy by class. 

TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

0.985 0 1 0.985 0.992 0.993 1 

0.97 0.005 0.985 0.97 0.977 0.983 2 

0.985 0.02 0.943 0.985 0.964 0.983 3 

0.985 0 1 0.985 0.992 0.993 4 

0.981 0.006 0.982 0.981 0.981 0.988 Wt. Avg 

1: Good; 2: Flank Wear; 3. Thermal Wear; 4. Broken Tool 

Table 4. Detailed accuracy by class - J48 Decision Tree  

Among the 258 data points belong to all fault conditions, 14 

data points were misclassified. The overall accuracy of the 

J48 decision tree classifier is found to be 94.78 %. This 

classification result was obtained through a 10-fold cross 

validation process.  

In machine learning, the classification accuracy of a model 

is mostly affected by the over-fitting criteria. Over-fitting 

normally will occur when the data set is too small and the 

number of parameters in the model is large. The over-fitting 

criteria was reduced partially by enabling the methods like 

Leave-one-out-cross validation (LOOCV), early stopping 

(Qi et al., 2004), regularisation (Cawley and Talbot, 2007), 
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hyper-parameter averaging (Hall and Robinson, 2009). 

Recent study reported k-fold cross validation have been 

suggested for reducing the over-fitting problems (2010). In 

this study also a 10-fold cross validation has been used to 

overcome the over-fitting problems.    

In 10-fold cross-validation, the original sample is randomly 

partitioned into 10 equal size sub-samples. Out of the 10 

subsamples, a single subsample is retained as the validation 

data for testing the model, and the remaining 9 subsamples 

are used as training data. The cross-validation process is 

then repeated 10 times (the folds), with each of the 10 

subsamples used exactly once as the validation data. The 10 

results from the folds can then be averaged to produce a 

single estimation. The advantage of this method is that all 

observations are used for both training and validation, and 

each observation is used for validation exactly once. The 

summary of the classification study has been in Table 5. 

Referring the confusion matrix, none of the fault conditions 

were misclassified as good condition. Hence J48 can be 

used for the fault diagnosis study. 

Total Number of Instances 268  

Correctly Classified Instances 254 94.78% 

Incorrectly Classified Instances 14 5.22% 

Table 5. Classification Summary – J48 Decision Tree 

Algorithm 

The built decision tree model can also be tested using the 

unseen data. In this process, in each condition, out of 67 

data 50 data was used for training and 17 data was used as 

unseen data (test data for validation). Including all 

conditions, 200 data was used for training and 68 data was 

used for testing. Table 6 shows the confusion matrix 

obtained for the test data. Among the 68 unseen data, 64 

data were correctly classified. Hence, the overall 

classification accuracy was found to be 94.11 %. Even 

though the process is same, the 10-fold cross-validation 

gives a better result.  

Good Flank Wear Thermal Wear Broken Tool Condition 

17 0 0 0 Good 

0 16 1 0 Flank Wear 

0 1 15 1 Thermal Wear 

0 0 1 16 Broken Tool 

Table 6. Confusion matrix – Decision tree algorithm 

4.4. Feature classification using Random tree algorithm 

The features extracted from the vibration signals were used 

to generate a decision tree from the random tree algorithm. 

From the decision tree, the following features that contribute 

for classification were only selected for classification: 

kurtosis, minimum, median, standard deviation, skewness, 

sample variance, maximum, and range. The same has been 

verified using the effect of a number of features study 

(Table 2). The selected features were classified using the 

random tree algorithm. The classification accuracy was 

presented as a confusion matrix as shown in Table 7.  

Good Flank Wear Thermal Wear Broken Tool Condition 

66 0 1 0 Good 

0 65 2 0 Flank Wear 

0 1 66 0 Thermal Wear 

0 0 1 66 Broken Tool 

Table 7. Confusion matrix – Random tree algorithm 

The diagonal elements show the correctly classified 

instances. The non-diagonal elements show the 

misclassified instances. Out of 258 data points, only 5 data 

points were misclassified. Moreover, there is no fault 

conditions were misclassified as good condition. Hence, the 

random tree produces maximum classification accuracy as 

98.13 %. The detailed accuracy by class has been given in 

Table 8. 

TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

0.985 0 1 0.985 0.992 0.993 1 

0.955 0.01 0.97 0.955 0.962 0.976 2 

0.925 0.045 0.873 0.925 0.899 0.978 3 

0.925 0.015 0.954 0.925 0.939 0.975 4 

0.948 0.017 0.949 0.948 0.948 0.98 Wt. Avg 

1: Good; 2: Flank Wear; 3. Thermal Wear; 4. Broken Tool 

Table 8. Detailed accuracy by class – Random Tree 

The classification accuracy was found using the 10-fold 

cross-validation process. The summary of the classification 

accuracy has been given in Table 9.  

Total Number of Instances 268  

Correctly Classified Instances 263 98.13% 

Incorrectly Classified Instances 5 1.87% 

Table 9. Summary of the classification accuracy – Random 

tree algorithm 

The random tree model was also tested with unseen data. 

The model was trained using the training data. 68 new data 

points were considered for the model testing. 

Good Flank Wear Thermal Wear Broken Tool Condition 

17 0 0 0 Good 

0 17 0 0 Flank Wear 

0 1 16 0 Thermal Wear 

0 0 1 16 Broken Tool 

Table 10. Confusion matrix – Random tree algorithm 
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The trained model was tested using the test data set. Out of 

68 data points, 66 data points were correctly classified and 

the overall classification accuracy was found to be 97.06 %. 

Table 10 shows the confusion matrix obtained for the test 

data. Comparatively, the 10-fold cross-validation produced 

a better result. 

4.5. Comparative study 

 For predicting the insert condition monitoring, two 

algorithm models were selected for diagnosing the faults 

(Table 11). The decision tree algorithm produces 94.78 % 

accuracy whereas the random tree produced 98.13 %. the 

tool inserts must be monitored continuously for obtaining 

better and reliable products. In this scenario, the random tree 

can be used for obtaining the better Classification accuracy 

than decision tree. 

Name of the classifier Classification Accuracy (%) 

J48 Decision Tree Algorithm 94.78 

Random Tree Algorithm 98.13 

Table 11. Comparative Results 

5. CONCLUSION 

In this study, J48 decision tree algorithm and random tree 

classifier were used to study the condition monitoring of 

carbide insert tool with the help of acquired vibration 

signals. From the vibration signals, twelve set of statistical 

features were extracted. Using the decision tree, the 

contributing features were selected. The selected features 

were classified using the J48 decision tree algorithm and 

random tree classifier. The accuracy of the J48 algorithm 

was found to be 94.78 % while random tree classifier 

estimated an accuracy of 98.13%. The features, unless the 

data is in abundance, will not cause a problem. Hence 

considering the above study Random tree classifier can be 

used to study the carbide insert tool condition monitoring. 

The above study can be extended on uncoated inserts to 

make a comparison which will help us understand the 

behavior of the algorithm. 
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