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ABSTRACT

Personal thermal comfort is the feeling that individuals have
about how hot, cold or comfortable they are. Studies have
shown that thermal comfort is a key component of human
performance in the work place and that personalized thermal
comfort models can be learned from user labeled data that
is collected from wearable devices and room sensors. These
personalized thermal comfort models can then be used to opti-
mize the thermal comfort of room occupants to maximize their
performance. Unfortunately, personalized thermal comfort
models can only be learned after extensive dataset collection
and user labeling. This paper addresses this challenge by
proposing a transfer active learning framework for thermal
comfort prediction that reduces the burdensome task of collect-
ing large labeled datasets for each new user. The framework
leverages domain knowledge from prior users and an active
learning strategy for new users that reduces the necessary size
of the labeled dataset. When tested on a real dataset collected
from five users, this framework achieves a 70% reduction in
the required size of the labeled dataset as compared to the
fully supervised learning approach. Specifically, the frame-
work achieves a mean error of 0.82±0.05, while the supervised
learning approach achieves a mean error of 0.85±0.04.

1. INTRODUCTION AND BACKGROUND

Personal thermal comfort is feeling that individuals have about
how hot, cold or comfortable they are. Importantly, thermal
comfort is a good predictor of human performance. Studies
have shown that making office workers comfortable is critical
to improving worker productivity and improving the office en-
vironment. In one study, Hedge et. al. (Hedge, Wafa, & Anshu,
2005) showed that reducing temperatures such that the average
female office worker felt chilly increased her typing mistakes
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by 74%. The same chilly office worker had a reduced output
(productivity) of 46%. Another study by IJzerman and Semin
(IJzerman & Semin, 2009) showed that warmth in the office
environment encouraged closeness and friendliness. Thus,
improving and maintaining thermal comfort in the office envi-
ronment can yield significant benefits in terms of improving
worker performance. In fact, the improved work performance
was estimated to be as much a 12.5% increase in worker wages
(Hedge et al., 2005).
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Figure 1. Scatter plot of skin temperature and room tempera-
ture (a) at the instant in time when five users reported being
thermally comfortable (b) at the instant in time for one user
over multiple days who reported being thermally comfortable

There are two principal difficulties when modeling thermal
comfort. First, personal thermal comfort varies from one in-
dividual to the next. Often this variation can be explained
by gender, ethnicity, location, and season. Second, personal
thermal comfort varies within the individual because of their
physical state, including conditions such as tiredness and sick-
ness. Because of these difficulties, state of the art methods of
thermal comfort estimation provide only coarse estimation of
thermal comfort for large groups of individuals. Additionally,
these models rely on a-priori assumptions about the composi-
tion of the group of occupants which increases the model error
rates in today’s diverse workforce (Belluck, 2015).
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The variation in personal thermal comfort is illustrated in Fig-
ure 1. In subplot (a) five users’ skin temperature and room
temperature are shown, color coded, at instants of feedback.
Here, feedback refers to thermal comfort ratings as provided
by users. For these examples, the users reported being ther-
mally comfortable. In this figure, one can clearly see the dif-
ference in preference among the five users. In subplot (b) the
same plot is repeated for a single user’s data across multiple
days. Here one can clearly observe the variation in preference
of a single user. In both cases, we note that the preferences
overlap, underlining the fact that some part of the individual
preferences is shared and necessarily common through the un-
derlying human thermo-regulation, but preferences vary both
between users and between days for the same subject.

Given the importance of thermal comfort in human perfor-
mance, it is desirable to find an approach to overcome the
difficulty in modeling so that we can understand and maxi-
mize personal thermal comfort. This requires the development
of personalized thermal comfort models which rely on the
availability of large quantities of labeled data examples. Such
an approach was recently used by several authors (Laftchiev
& Nikovski, 2016; Ranjan & Scott, 2016; Huang, Yang, &
Newman, 2015) who all note the difficulty in securing the
cooperation of users during the experiments. Thus obtaining
labeled data examples is emerging as a key obstacle.

This paper addresses the problem of modeling thermal com-
fort with a minimal number of labeled examples. Our goal is
develop a machine learning framework that uses data collected
from an IoT system (Laftchiev & Nikovski, 2016) to create ac-
curate models that can be used to predict personalized thermal
comfort. To achieve this goal a novel transfer active learning
framework is presented. The first part of the framework lever-
ages knowledge from a few base users (a group of initial users
as part of a controlled experiment) using transfer learning to
learn a general model of thermal comfort. This model is then
personalized using data from a new user which is obtained
through queries issued by an active learning algorithm. The
results in this paper show that while still in the supervised
machine learning setting, this approach greatly reduces the
number of labeled examples that must be provided by a user.

The active learning research presented in this paper is set
in the pool-based setting. In pool-based active learning, the
assumption is that we have access to all unlabeled examples
but only few examples are chosen to be queried for labels.
This is the standard setting for the active learning problem.
However, within this setting and within this paper’s research
careful attention is paid to choose specific techniques (and to
tune those techniques) such that the transition to future work
in the stream-based setting can be facilitated. Specifically, the
methods chosen consider that in the stream-based setting user
data is arriving continuously (as possible data examples that
can be labeled by users), and the labeling window is inherently

short. However, a study in the steam-based setting remains to
be performed at a future time. In this work, we evaluate the
feasibility of using active learning techniques to minimize the
labeling effort in thermal comfort prediction using wearable
devices. To the best of our knowledge ours is the first work to
demonstrate this in a user cohort.

The work presented in this paper is tested on a dataset collected
from five users who were exposed to a variety of conditions
from high temperature and high humidity to low temperature
and low humidity. The results of this study show that is it
possible to reduce the number of required labeled examples
by 70%, on average over all five users. Specifically, our frame-
work achieves a mean root mean square error (RMSE) over
five users of 0.818 with standard error of ±0.05 with just 25
labeled examples in comparison to a mean RMSE of 0.845
with standard error of ±0.04 when using 82 labeled exam-
ples. This indicates that our framework can achieve the similar
performance albeit with less resources.

In summary, this paper makes three contributions:

• A transfer active learning framework for thermal comfort
prediction which leverages domain knowledge via transfer
learning and minimizes the number of labeled examples
via active learning.

• Two query-by-committee querying strategies for active
learning in regression settings with a novel disagreement
score.

• An empirical study using five participants which shows:
(a) The feasibility of accurately modeling thermal comfort
using machine learning for multiple individuals, (b) The
feasibility of reducing the labeling effort of new partici-
pants using the described framework.

2. BACKGROUND AND RELATED WORK

This section begins by first providing some background on
thermal comfort prediction. This is followed by a short back-
ground on transfer learning and active learning and concludes
with a comparison between the method developed in this paper
and previously published approaches. Because the volume
of work addressed here is large, and our space is limited, we
invite the reader to study transfer learning and active learn-
ing in more depth in (Pan & Yang, 2010) and (Settles, 2010)
respectively.

2.1. Thermal Comfort Estimation

In this paper our goal is to build on prior work in (Laftchiev
& Nikovski, 2016; Ranjan & Scott, 2016; Huang et al., 2015)
to model individual personal thermal comfort. The first study
to model thermal comfort was performed by Povl Ole Fanger
(Fanger, 1967; Ergonomics of the thermal environment – An-
alytical determination and interpretation of thermal comfort
using calculation of the PMV and PPD indices and local
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thermal comfort criteria, 2005). Fanger did not focus on the
nuance of modeling a single individual and instead modeled
the mean thermal comfort vote of a group of people. During
Fanger’s experiment, thermal comfort feedback was given on
an integer scale between 1 and 7. This scale is typically called
the Bedford Scale or when offset to be between -3 and 3, the
ASHRAE scale. Fanger’s model is calibrated such that at most
5% of respondents are dissatisfied when the predicted mean
vote is comfortable. This model, developed in the 1970s, was
later adopted as an international standard in ISO 7730.

Fanger’s model is based on heat balance equations that de-
scribe the transfer of heat from the body to the environment,
with model constants learned from a group study. This model
requires one input, room temperature, and makes assump-
tions about other input factors such as metabolic rate, effective
mechanical power produced by the body, clothing insulation,
surface area of the body, mean radiant temperature, relative
air velocity, humidity, convective heat transfer, and clothing
surface temperature. These assumptions are also at the core
of the critiques of the model since they were made based on a
very homogeneous group of individuals.

Another class of models called adaptive models that explain
thermal comfort as a function of outdoor and indoor tempera-
ture have been proposed. Examples of this literature include
the European Committee for Standartizations CEN method
(Indoor Environmental Input Parameters for Design and As-
sessment of Energy Performance of Buildings - Addressing
Indoor Air Quality, Thermal Environment, Lighting and Acous-
tics, 2006), and the American Society of Heating, Refriger-
ating, and Air-Conditioning Engineers (ASHRAE) method
(Thermal Environmental Conditions for Human Occupancy,
2013). Building on these approaches, Haldi proposed a prob-
abilistic model for thermal comfort (Haldi, 2010). These
models are typically calibrated by season (Summer, Winter,
etc.) and address the critique of the physiological models that
they are incapable of capturing seasonal variation in individual
preferences. Lastly, data driven approaches have been pro-
posed by Jiang and Yao (Jiang & Yao, 2016) and Farhan et al.
(Farhan, Pattipati, Wang, & Luh, 2015), which these focus on
a few machine learning models or the prediction of comfort
on a limited scale, respectively.

All modeling efforts suffer from the drawback of necessarily
requiring assumptions about the individual. However, with
the advent of wearable sensors and Internet of Things (IoT)
technology, it is now possible to measure many of the vari-
ables estimated in the prior models. Recent work by Laftchiev
and Nikovski (Laftchiev & Nikovski, 2016) seeks to capture
this possibility by designing a new IoT system to explicitly
sense as many features as possible from an individual user
and then use supervised machine learning to identify an in-
dividual’s model of thermal comfort. This work showed that
using biometric measurements from wearable devices and am-

bient measurements of temperature, humidity, and airspeed,
and feedback from the user, it is possible to accurately model
individual thermal comfort. The caveat is that the user must
provide a sufficiently large number of labeled examples in
order to develop accurate prediction models.

Another study that employed wearable sensors and room sen-
sors was performed by Huang et al. (Huang et al., 2015). In
this study the authors did not use the standard scale of comfort
measurement (the ASHRAE or Bedford Scale). Instead they
proposed a new five level scale that combined thermal and
comfort sensation indices. A classifier is then trained on fea-
tures extracted from the sensors data in duration intervals of 5
and 30 minutes. Notably, these authors also point out that the
main challenge in developing personalized thermal comfort
prediction models for a user is the lack of user labeling across
a diverse number of conditions.

A third study of interest was performed by Ranjan et al. (Ranjan
& Scott, 2016) using thermographic images for thermal com-
fort prediction. Here the authors leverage the intuition that
blood rushes in to parts of the body to keep warm and rushes
out to keep the body cool. Thus heatmaps of the body can be
constructed from the thermographic images to reveal whether
a person is hot or cold. During the course of this study, partici-
pants had thermographic images taken twice per day in their
office. At the same time, each participant provided labeled
examples about their comfort. Despite the small labeling effort
required, the authors noted the difficulty in obtaining labeled
examples from users - the minimum labeled examples per
user collected were 8, the median number of labeled examples
collected was 24, while the maximum number collected was
33. The expected number of labeled examples per user was
50.

2.2. Transfer Learning for Regression

Transfer learning is a type of machine learning where knowl-
edge from one domain is transferred to another with the goal
of facilitating learning. In our problem setup, given N users,
domains refer to different users. Specifically the source do-
main pertains to data from N−1 users and the target domain
refers to data from the Nth user. Predicting thermal comfort
falls under inductive transfer learning where labeled data are
available in both source and target domains but the crucial
difference is we do not assume we have access to all labeled
data in target domain.

One of approaches to inductive transfer learning is parameter
transfer - where the assumption is that parameters for indi-
vidual prediction models for similar tasks should be sampled
from the same prior distribution (Pan & Yang, 2010). Parame-
ter transfer has been shown to work for classification models
like support vector machines (Evgeniou & Pontil, 2004) and
conditional random field models (Natarajan et al., 2014).
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For regression problems, parameter transfer has been restricted
to Gaussian Processes (GP) (Bonilla, Chai, & Williams, 2008;
Schwaighofer, Tresp, & Yu, 2005). The general idea is to share
a GP prior that captures the dependencies between different
tasks and/or domains. This approach is ideal when representa-
tive data is simultaneously available to jointly learn a GP prior.
This is challenging in the present problem setup because it is
assumed data in the target domain is scarce.

Hence our approach to parameter sharing is sequential where
we first learn the parameters in the source domain and utilize
this information as data becomes available in the target do-
main. Specifically, our approach to parameter sharing is to first
learn the source domain parameters and second to penalize the
deviation of target domain model parameters from source do-
main model parameters. This has the added advantage that in
the absence of target domain data the prediction model would
fall back on the source domain model to make predictions.
This is clearly better than making predictions using a model
initialized with random parameters, or assuming a baseline
comfort score.

2.3. Active Learning for Regression

Active learning is a type of machine learning where a predic-
tion model achieves good performance when it is allowed to
choose the examples from which to learn (Lewis & Catlett,
1994). An active learner chooses a sample to be labeled via
querying and then requests an oracle to provide a label for the
chosen sample. The majority of published results in active
learning focus on classification problems, in contrast, few pa-
pers address the work of developing active learning approaches
for regression problems (Cai, Zhang, & Zhou, 2013).

Active learning for regression can be subdivided into model-
free and model-based approaches. The model-free strategies
are active learning approaches that do not rely on a prediction
model to determine which data samples to label. Instead these
approaches rely only on the statistics of the data distribution
(O‘Neill, Delany, & MacNamee, 2017). The most popular
model-free approach is a density-based querying approach
which seeks labeled examples for data points residing in high
density regions of the dataset. These regions are hypothesized
to be representative of the underlying data distribution and
thus of labeling interest (Settles, 2010). The difficulty faced
in model-free active learning approaches is that successive
queries do not account for prior knowledge gained and often
end up issuing redundant queries. Therefore the model-free
active learning approach is not suitable in this paper because
when the problem setting involves human user labeling there
is an extreme constraint with respect to the number of queries
that a user is willing to label.

On the other hand, most model-based active learning for the
case of building a regression model builds on the early work by
Geman et al.(Geman, Bienenstock, & Doursat, 2008), where

the generalization error (e.g., RMSE, MSE, etc) is decomposed
of three terms – error from model misspecification, error from
labeling noise and error from model variance. The first two
terms are fixed by the choice of prediction model and experi-
ment design. For this reason, most of the published research
has focused on minimizing the model variance such that the
total generalization error (made up of all three components)
is minimized. Typically model variance reduction techniques
have relied on computing a variant of Fisher information which
sets a lower bound on the variance of model parameter’s esti-
mates (Settles, 2010).

The challenge in using variance reduction techniques for re-
gression is that the statistics such as Fisher information must
be computed on the whole data distribution and is therefore
not feasible to be computed when samples arrive sequentially.
The last caveat is important to this work because the final goal
of the framework presented in this paper is to be transplanted
into the stream-based setting where knowledge of the complete
data distribution is unknown.

A second approach to model-based active learning is query-by-
committee (QBC). The goal of QBC is to minimize the space
of possible predictions (also known as hypothesis, version
space) given the current labeled dataset (Burbidge, Rowland,
& King, 2007). To achieve this goal QBC relies on a com-
mittee to vote on available pool of examples and the most
controversial example is chosen to be labeled. Once this sam-
ple is chosen, the committee members who disagreed the most
with the provided ground truth label update their prediction
models to minimize disagreement on similar data points in
the future. Classically proposed QBC is unlikely to perform
well in the case of thermal comfort model learning because the
committee of users have fixed thermal comfort models which
cannot simply be retrained when a new user provides a label.

2.4. Transfer and Active Learning Combined

The work most closely related to the active transfer learning
framework proposed in this paper is that of Wang et al., (Wang,
Huang, & Schneider, 2014). In this paper the authors develop
a unified framework to perform active transfer learning for
the case where a regression model is to be identified. The
proposed approach is a domain adaptation approach that is
based on the differences in both the marginal (P(X)) and con-
ditional distributions (P(Y |X)) in source and target domains.
To account for the difference in the marginal distribution, the
authors perform a covariate shift and to account for the dif-
ferences in the conditional distribution the authors propose
two approaches both subject to the smoothness assumption:
the first, is to match the conditional distributions between the
source and target domains; the second, is to use the Gaussian
Processes to model the source, target tasks and the offset in
between. The authors leverage active learning to choose which
examples in target domain should be labeled.
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A second paper of importance where domain adaptation is
performed and then is augmented by active learning is the
work of Sugiyama et al., (Sugiyama, 2006). In this paper the
authors assume that the marginal distributions differ but the
conditional distributions remain the same between the source
and target domains. The difference in the marginal distribu-
tions is viewed as a covariate shift problem and is addressed
by computing importance weights such that the distribution
is rebalanced in the source domain to match the distribution
in the target domain. The authors then perform active learn-
ing, choosing examples to be labeled in the target domain, to
learn the importance weights used in the distribution rebal-
ancing problem. Concretely, the active learning approach is
batch active learning where a subset of available examples is
sampled to be labeled in a single shot. In practice, multiple
subsets need to be chosen in order to identify the subset which
minimizes generalization error.

There are two crucial differences between our work and these
two prior work: first, both papers rely on computing impor-
tance weights to handle covariate shift. These importance
weights are typically computed by estimating the probability
densities of the marginal distribution in the source and target
domain. This is generally challenging in datasets which are
high dimensional but have a low sample counts. This is the
case for the dataset in this paper. Second, both approaches op-
erate in a pool-based settings where active learner can choose
examples in small batches (Sugiyama et al., (Sugiyama, 2006)).
Wang et al., (Wang et al., 2014) take advantage of the pool-
based setting to identify regions of high utility from low utility
and strategically place queries. Such approaches cannot be
deployed to the stream-based settings and must be necessarily
re-worked. In contrast, the work in this paper presents an
approach that can be adapted the stream-based stetting in a
future study.

3. TRANSFER ACTIVE LEARNING FRAMEWORK FOR
THERMAL COMFORT PREDICTION

Having reviewed the case for thermal comfort prediction as
well as the relevant background in transfer learning and active
learning, here we return to the problem of developing personal-
ized thermal comfort model with a minimal number of labeled
examples. This section develops the framework of transfer
active learning that was described in the introduction. The
overall goal is to leverage prior knowledge to rapidly learn
a prediction model of thermal comfort and tune this model
given only a few labeled examples of data.

3.1. Notation

To begin we present notation for the development of the frame-
work. In this work we assume that we are given a dataset
D which contains n labeled samples of the form D = (xi,yi)
∀i ∈ {1 . . .n}. Here each xi corresponds to a feature vector,

each real valued, xi ∈Rk, and each corresponding to data from
wearable and ambient room sensors. The index i denotes the
sample number while k denotes the length of the vector which
corresponds to the number of features used in the prediction
model. The target values yi are drawn from a pre-defined set,
yi ∈ {0,±1,±2,±3}. These correspond to thermal comfort
rating given as feedback from the users.

The goal of this paper and the framework is to learn a predic-
tion model, h, h : xi→ yi that for any input vector xi outputs
a prediction target value ŷi = h(xi). Because in this paper the
prediction model will be learned using a regression method
(more details under framework development), we stipulate that
the predicted target value must not deviate more than ε , in the
squared sense, from the actual target value ŷi as (yi− ŷi)2 < ε

∀i. For convenience the n labeled data samples are all ex-
pressed as matrix, which we call the design matrix, X , with
n rows and k columns. We also represent all the labels as a
vector y of length n.

3.2. Transfer Learning for Linear Regression

For the development in this work, the target values, y, are
treated as continuous values that are restricted to the range
{-3,+3}. The inherent assumption here is that while users are
forced to discretize their state into 7 levels, in practice their
thermal comfort is much more nuanced.

Furthermore, treating the problem of thermal comfort predic-
tion as a regression problem addresses the problem of class
imbalance. In particular because most users are in an HVAC
controlled space, we anticipate that most feedback received
will be in the range {-1,+1} leading to severe class imbal-
ances for the -3, -2, +2, and +3 classes. Thus using regression
methods is a natural approach when training thermal comfort
predictors.

To provide maximum transparency to the model, this paper
focuses on the problem of linear regression. Linear regression
provides an easier quantification of the effect of each feature
on the model output. Linear regression is parametrized by
weight vector, W , such that the product of design matrix and
weight vector results in ŷ as,

XTW = ŷ. (1)

The standard approach to finding the regressor weight vector
is called ordinary least squares (OLS), where the goal of OLS
is to minimize the squared sum of the differences between
the estimated target values and the real target values. These
differences are called the residuals and the sum of the residuals,
often written as an optimization objective is expressed as,

‖XTW − y‖2
2. (2)

The OLS estimate of W is prone to high variance in the model
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weights and poor allocation (selection) of the weights among
the features. Furthermore the classical, analytical solution to
this problem is not well posed, suffering from numerical issues
in the event that the design matrix is not easily invertible.

To remedy these issues, a penalty is introduced on the regressor
weight vector. In this paper we choose this penalty to take the
form of the `2-norm, which means that the derivation below
follows the Ridge Regression framework. Here the `2-norm is
chosen because of its more beneficial treatment of correlated
features (Hastie, Tibshirani, & Friedman, 2009). The added
penalty parameter reduces the model variance and results in
a solution where some feature weight may be close to zero.
This minimizes overfitting and reduces variance in estimates.
The new objective function to solve is thus,

‖XTW − y‖2
2+λ‖W‖2

2. (3)

In equation (3), λ , is the penalty parameter that determines
the weight of the penalty term in the solution. Increasing λ

leads to smaller weight coefficients in W , and decreasing λ

leads to larger weight coefficients in W . Because of this, λ is
said to control the shrinkage of the regressor coefficients.

Classically, when utilizing Ridge Regression, the shrinkage
parameter is optimized such that the coefficients are driven
towards zero without compromising the model error perfor-
mance. This approach to Ridge Regression has a Bayesian
interpretation where the weight vector coefficients are sam-
pled from a prior normal distribution with mean zero and

variance=

√
1
λ

.

An alternate approach to Ridge Regression is to shrink the
coefficients towards a non-zero prior distribution. When this
approach is taken, the non-zero prior distribution represents
some prior knowledge about the problem. In this case, it is
said that the shrinkage of the coefficients toward the prior
distribution induces a transfer of domain knowledge because
the weight vector we find should be as close to the prior distri-
bution as possible.The modified ridge regression problem has
the following form,

‖XTW − y‖2
2+λ‖W −Wp‖2

2. (4)

In equation (4), Wp is a vector containing a sample regressor
vector. This vector represents the mean of the prior distribution
described above. Note that setting Wp to zeros results in the
classical ridge OLS from equation (3).

Multiple approaches exists to estimate the prior regressor,
Wp. In this paper, we posit that when the goal is to derive
a personalized thermal comfort model, we can assume that
there are strong similarities between users, and that the model
must only be slightly modified to fit a new individual. This
assumption is rooted in the physiology of thermoregulation,

which does not differ from one person to the next. It is simply
the preferences of the individual that differ.

One convenient prior for transfer learning in the case of ther-
mal comfort modeling is a general thermal comfort over a
group of users. That is, suppose that we have N datasets
collected from N distinct users. Then we can find a general
linear regressor, using equation (3), that describes the data
from N−1 users. We call this regressor our population model,
Wp. We then use equation (4).

Solving equation (4), will then yield the personalized thermal
comfort model for the Nth user. This approach to introducing
a prior intuitively captures the idea that new user’s coefficients,
W , should be very similar to other users while allowing for
individual differences.

Setting this up as an optimization problem, the ridge regression
coefficients are learned by minimizing the following objective
function,

Ŵ ridge = argmin
W

(‖XTW − y‖2
2+λ‖W −Wp‖2

2). (5)

In this formulation, the first term is the loss function, which
has the usual format of equation (3), the second term penalizes
the deviation of ridge coefficients of the new model W from
the prior model Wp. Taking the derivative of this objective
with respect to the new regressor weight vector W and setting
it equal to zero results in analytical solution, which we term
modified ridge regression,

Ŵ ridge = (XT X +λ I)−1(XTY +λWp). (6)

3.3. Incorporating Active Learning

The goal of this framework is to create regression models that
predict personal thermal comfort but do not require large quan-
tities of labeled examples per user. So far we have introduced
the transfer learning component of the framework, however,
in order to personalize the model to the Nth user, this user
must provide some feedback. Combining active learning with
transfer learning is a logical approach to reducing the labeling
effort for thermal comfort modeling.

In pool-based active learning, solutions often begin with the
introduction of, A , the pool of all available examples that are
yet to be labeled and, L , the set of labeled examples which are
chosen through some active learning strategy. Importantly, in
the pool-based setting all labels exists, but there is some cost
associated to obtain a label that is to be minimized through
sample selection. The overall goal of active learning is to
choose an optimal subset of m (where m << n) labeled exam-
ples L such that it achieves good generalization performance
on the test set.

There are two important components of active learning; the
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Algorithm 1 Transfer Active Learning

1: procedure THERMAL_COMFORT(N,Budget) . Predict Thermal comfort for user N using labeling budget Budget
2: Train←{} . Labeled examples L of the Nth user
3: Available← Data(N) . Available examples A of the Nth user
4: Other← Data(N−1) . Data from N−1 users
5: Wp← Ridge(Other) . Wp is learned on N−1 users; Equation 3
6: RidgeWp ← random weights . Initial model; Wp is used from line #5 and used as in Equation 5
7: while Budget 6= 0 & Available 6=∅ do . Budget not empty and sample available to query
8: (x,y)← query_strategy(RidgeWp ,Available) . Pick and return labeled example using querying strategy
9: Train← Train∪ (x,y) . Add labeled example to L

10: RidgeWp ← RidgeWp(Train) . Update model; Wp is used from line #5 and used as in Equation 5
11: Available← Available− (x,y) . Remove labeled example from A
12: Budget← Budget−1 . Decrease budget
13: end while
14: return RidgeWp . Return final model
15: end procedure

labeling budget and the querying strategy. The labeling budget
is simply the total number of labeled examples that can be
obtained. In the context of personalized thermal comfort mod-
eling this is the number of labeled examples that each user is
allowed to be asked. Because in this problem the user should
not be disturbed frequently, the labeling budget should be as
small as possible.

The querying strategy is the approach used to determine which
examples in the set A should be labeled. In this paper we pro-
pose a modified QBC approach. In a typical QBC approach,
the labeled dataset L is used to update the committee mem-
bers. Here we choose not to update the committee members,
but instead we update only the Nth user’s current predictive
model. There are two reasons for choosing to update Nth

user’s predictive model: first, a labeled example from the Nth

user could benefit only those committee members that ex-
hibit a significant overlap in thermo-regulatory behavior. The
consequence of using labeled examples to update committee
members who are significantly different will result in noisy
predictions when issuing subsequent queries; second, the goal
of this work is to develop personalized prediction models with
as few labeled examples as possible and hence updating the
Nth user’s predictive model gets us towards that goal quickly.
The proposed QBC strategy is thus to choose examples which
cause the committee members and the Nth user’s predictive
model to maximally disagree. Intuitively this means that the
proposed QBC technique prefers examples for which the Nth

user’s model is uncertain about but the committee is fairly
certain about.

A key point to address here is the notion of disagreement. We
choose to define a disagreement score, di, for the ith example
in A is computed as,

di =

∣∣∣∣∣
(

1
C

C

∑
c=1

ŷi
c

)
− yi

L

∣∣∣∣∣ (7)

In equation (7), C is the number of committee members, ŷi
c is

the prediction associated to the cth committee member and ŷi
L

corresponds to the prediction made by the Nth user’s prediction
model which has been trained only using the labeled examples,
L , obtained thus far. We compute di for all examples in A
and pick the example with the maximum disagreement score
to be labeled. It is important to note that the disagreement
score defined in this manner prefers labeled examples that
predict thermal comfort with opposite signs, for example −2
predicted as +2, versus examples that predict thermal com-
fort with the same sign but differ significantly in magnitude,
for example −3 predicted as −2. This disagreement score
accommodates individual differences in thermo-regulatory be-
havior, for example the layering of clothes, while focusing on
difference that may arise in dataset collected from different
individuals; for example Nth user’s model predicts cold when
all other users feel hot under similar conditions.

Combining the transfer learning and the active learning, the
complete transfer active learning framework is presented in
Algorithm 1. In Algorithm 1, the function ‘Thermal_Comfort’
has two arguments: the user, N, for whom we personalize
thermal comfort predictive model and labeling budget that
determines the maximum number of active learning queries to
be issued. The algorithm then creates, A , a pool of available
data examples from the Nth user and combines data from N−1
users into ‘Other’ (lines #2− #4). Then in line #5, the data
from N − 1 users is used to train a ridge regression model
which is the population level model, Wp. Wp is used then to
learn the Nth user’s initial model via transfer learning in line
#6.

After the initial models are created, the algorithm iterates
Budget times, discovering a point to label in each iteration. To
do this, a label is queried from the pool of available examples
(line #8), the training dataset is updated (line #9) and the
ridge regression model penalized by the population model is
retrained (line #10).
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The loop ends when the training budget is exhausted or there
are no more samples available to label. While this loop is
running, the algorithm updates the available dataset and adjust
the budget of remaining labeled examples (lines #11−#12).
When the algorithm terminates, an updated ridge regression
model is returned.

4. EMPIRICAL PROTOCOLS

Having developed the active transfer learning framework this
section introduces the empirical protocols used to verify the
approach. In particular, this section first introduces the par-
ticipants which took part in the study. Then the experimental
setup is discussed, including the sensors that were used and
the feedback method which the users used. The data prepro-
cessing is described along with data partitioning to train and
test the framework. The section concludes by describing the
experimental methods used for validation.

4.1. Study Design and Participants

The study described in this paper included five participants,
three male, two female, mean age 30±3, who participated in
the study for an average of 14 days. This study was carried out
in a corporate research environment in which the participants
each had an individual office space which was isolated from
the common environment through a door. Study participants
were briefed on the experiment design and participated in the
experiments only after giving informed consent.

To create a uniformly sampled and labeled dataset, the user’s
environment was varied by changing the thermostat to a lower
or higher setting, by adding a space heater, and by adding hu-
midifier to the environment. For each parameter combination
(e.g., added heat and humidity) the settings remained fixed for
batches of four hours. However, subsequent four hour batches
were alternated between hot and cold temperatures. Each user
also experienced several days of environmental stability where
the office HVAC controlled the room parameters.

The participants were instructed to wear the Microsoft Band
1 during work hours (9 AM to 5 PM) and to take them off
only when they leave their offices for extended periods of
time (e.g., lunch, hour-long meetings; short bathroom breaks
were excluded). Participants were instructed not to manually
modulate their comfort level by wearing additional layers of
clothes when cold or removing layers of clothing when hot.

The features measured by the Microsoft band include heart
rate, skin temperature, calories consumed, metabolic rate, al-
timeter, barometer, steps taken, and elevation. Data provided
by the Microsoft band is labeled with user provided thermal-
comfort ratings. The users were instructed to provide such
ratings approximately every 20 minutes. The feedback was

1All users wore Microsoft band II except for one participant who wore Mi-
crosoft band I.

provided via voice recognition with seven possible comfort
levels: very cold (-3), cold (-2), chilly (-1), comfortable (0),
warm (1), hot (2), and very hot (3). All data were collected
via a custom Windows phone application which was written
in-house to provide streaming access to the band data. Each
sensor provided a sample approximately every 8 seconds.

In addition to the wearable features, room sensors were also
deployed. Room temperature was recorded from three separate
room thermometers (placed at different locations in the office).
A gradient of the room temperature was created by subtract-
ing instantaneous values of the temperature sensors from one
another. This gradient serves as a proxy for the variation in
temperature across the room and the potential motion of air
mass in the room. Two of the temperature sensors, DHT11 and
the NEST, also record humidity. In addition to temperature
and humidity sensors, a hot-wire anemometer was used detect
airflow in the room. Specifically, the hot-wire anemometer
was placed near the HVAC output vent to detect room air flow.
All room sensors were sampled using an Arduino connected to
a Raspberry Pi. Sensor samples were collected approximately
every 2-15 seconds. All feature data (room data and wearable
data) was aggregated in the Microsoft Azure cloud.

4.2. Sensor Features

In the preceding section it was noted that sensors in the data
collection system were sampled at different rates. The primary
concern during data collection was to collect a complete train-
ing dataset. For this reason each sensor was sampled as close
as possible to their maximal sampling rate as possible. The
variance in sampling rates originates in technical limitations
of the Microsoft Windows phone and the Raspberry Pi sensors.
To capture the dynamics surrounding user provided thermal
comfort ratings we extract features from time windows im-
mediately preceding user provided ratings. Specifically we
aggregate features in five minute windows preceding each ther-
mal comfort rating. The length of the window is a parameter,
but the choice of five minutes is motivated by prior work in
thermoregulatory behavior (Schlader, Stannard, & Mündel,
2010).

We only extract features associated with user provided ratings
that are spaced at least five minutes apart to avoid redundancy
in ratings as well as to minimize noise in user supplied ratings.
Table 1 provided details of the dataset including available
and usable number of user provided ratings. Here the usable
number of ratings represents the number of feedback reports
given to the user that are spaced at least five minutes apart.
In addition to the averaged features, within each five minute
window we also compute the mean, variance, median, min
and max for eight features: heart rate, skin temperature, core
body temperature, preferred temperature, wind speed, room
temperature 1, room temperature 2 and room humidity. We
estimate the user’s core body temperature from the user’s heart
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rate using a Kalman filter. This filter was shown in prior work
to accurately track the core body temperature (Buller et al.,
2013). We also derive a preferred temperature feature which
uses skin and core body temperatures as follows,

(8)pre f erredTemp = −0.3× skinTemp
× (coreBodyTemp− 36.3) + 44

These features are motivated by prior work in thermal comfort
estimation and prediction (Laftchiev & Nikovski, 2016). Note
here that it is always possible to add more features to this type
of model. The current set of features represent the features
with the most significant contribution in terms of minimizing
the model output error.

The statistics which are computed over five minute windows
are supplemented with simple moving averages to capture
trends in sensor data over short time scales. We compute sim-
ple moving averages between two to nine samples immediately
preceding the user provided ratings within each five minute
window. This brings the total number of features to 104.

4.3. Data Partitioning and Preprocessing

Having collected the data, an important question is how to best
split the complete dataset into training and testing datasets.
The optimal choice of this split is a study parameter that needs
to be empirically evaluated, however for this work the labeled
dataset was split into two halves for each day of the experiment
and for each user. The first half is used to train and the second
half is used to test the comfort prediction model.

Each collected feature is centered by subtracting the mean
and dividing by the standard deviation to bring all features
to the same scale. This ensures that no single feature will
dominate the regression model. Both train and test datasets
were transformed using the mean and standard deviation com-
puted only on the training partition of the dataset within each
user. Labeled examples were also centered using, again, nor-
malization coefficients derived from the training data. Here
only the mean was subtracted from each rating. Normalizing
the labeled examples obviates the need to fit an intercept in
regression settings (Hastie et al., 2009).

4.4. Active Learning - Querying Strategies

For this paper we experimented with two strategies. Each
strategy is set in the pool-based active learning setting, but has
been optimized for the streaming setting which is the natural
extension of this work.

The first active learning strategy leverages a K nearest neigh-
bors approach (QBC-K). The main idea of this labeling strat-
egy is to compute the disagreement score for all available
examples in the pool, A . Then from this set of disagreement
scores, the example chosen is that which had the maximum
disagreement score. The label for this example is queried.

We compute the disagreement score as in equation (7), the first
term, ŷi

C, we set C to equal K nearest neighbors. Then compute
the mean rating over the K nearest neighbors, where neighbors
correspond to labeled examples from N−1 users and the no-
tion of nearest is defined by Euclidean distance. The number
of neighbors used in the estimate of the mean labeled examples
was empirically tested for neighbor values K = 5,10,15,20.
Of these, it was observed that 10 neighbors yielded optimum
performance. The second term in equation (7), ŷi

L , is com-
puted using the Nth user’s current prediction model which is
trained only using labeled examples L . Specifically at budget,
B, L would hold at most B labeled examples, all from the Nth

user. This strategy is a model-based querying strategy which
utilizes the model of the Nth user. Therefore, the prediction
model is retrained after each labeling point is added to L .

In the second active learning strategy, each of the N−1 users
is treated as a committee member who is allowed to make a
prediction for all available examples in A . That is, for each
committee member a thermal comfort model is learned using
only data from that user. A 5-fold cross-validation over each
user’s data is performed to choose hyperparameters. Each
committee member then predicts a thermal comfort rating for
all available examples in the pool. Then a weighted mean of
the committee ratings is computed for each sample. Higher
weights are assigned to users that overlap with the Nth user
in feature space. These weights are computed as inverse of
AUROC between Nth user and N − 1 users in pairs. The
remaining details of the strategy are the same as above in the
first strategy. In the results section, the performance of both
strategies is compared to random sampling of the available
data samples.

4.5. Evaluating the Performance of the Approach

To evaluate the effectiveness of the proposed transfer active
learning framework the model that is used is fixed and several
decisions are made about the error reporting metrics and the
format of error. This section details those decisions. The
section begins with a discussion of the model choice and
implementation. This is followed by a description of the error
and how it is calculated. The section then concludes with four
error metrics calculated throughout the framework to show the
effectiveness of the proposed approach.

4.5.1. Model Selection: Ridge Regression

For this work, the model chosen was ridge regression. Note
here that this model can be readily kernelized to learn a non-
linear model of the data. This may be desirable in future work
that focuses exclusively on determining the lowest possible
error rate of the thermal comfort prediction model. In this
work the focus is on demonstrating that the transfer active
learning framework is capable of reducing the number of
required labeled examples to achieve an error rate comparable
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User Days No. user No. usable No. non-overlap. Mean duration Label distribution
ratings labels labels (5m) b/w labels (5m) -3 -2 -1 0 1 2 3

1 7 149 97 82 ~27.47m 0 2 16 40 9 11 4
2 12 320 263 185 ~21.72m 8 13 23 94 22 16 9
3 10 201 138 133 ~30.68m 16 14 23 54 18 7 1
4 13 143 119 113 ~44.69m 4 18 6 52 16 17 0
5 29 514 400 300 ~48.69m 1 10 75 117 67 28 2

Total 71 1337 1017 813 – 29 57 143 357 132 79 16

Table 1. Description of the dataset including number of days and the distribution of user supplied thermal comfort ratings that
are spaced at least five minutes (5m) apart

to the strictly supervised model learning approach. For clarity
of presentation, the model used is linear.

In order to implement the framework a custom implementation
of ridge regression was used. This in-house implementation
was used to modify the OLS objective function in accordance
with equation (5) to perform transfer learning. The implemen-
tation is written in Python using the scipy function minimize
(Foundation, 2010) and the gradients with respect to W are
manually derived and supplied within the code. Because both
the design matrix X and the target values y are centered, the
fitting of ridge regression is performed without fitting an in-
tercept. The method chosen for the optimization solver is the
Newton conjugate gradient method with default settings.

4.5.2. Reporting Performance

In this paper, error is reported as the mean root mean square
error (RMSE) over five users. That is, an RMSE is determined
for each user and the mean of the five RMSEs is reported.
Each error is accompanied by a set of standard error bars. To
minimize the effects of randomly seeding the analysis (e.g.,
cross-validation folds used to pick hyperparameters, randomly
initializing weights) each experiment is run for ten times per
user. This means that each user RMSE is averaged over the
ten runs before being reported.

4.5.3. Within-users (W):

A key metric to evaluate the active transfer learning frame-
work is within-user performance. This error represents the
generalization error when a model is learned (and tested) using
only data from each specific user. To find the within-user error,
the ridge regression model is trained and tested on training
and testing data partitions which are determined as described
above. For each user, a 5-fold cross-validation is performed
on the training dataset to choose the optimal ridge penalty
parameter, λ . The parameter range is set from 1e−4 to 1e4.
Our observation is that the optimal parameter at no time falls
on the boundary of this range.

4.5.4. Between-users (B):

To determine the starting point before active learning is em-
ployed, the between-users error shows the generalization error

of the ridge regression model when it has been trained on data
from N − 1 users. When training this model the complete
dataset for the N−1 users is employed. This means that both
the training and testing partitions of those users’ data is used
during training. Testing the model occurs on the Nth user’s
test data only. The data is preprocessed as discussed above,
and a N−1-fold cross-validation is performed on the training
dataset to choose the ridge penalty parameter. Here the hyper-
parameters follow the same range as within-user evaluation
protocol.

4.5.5. Active Learning (AL) Error Trajectory:

To evaluate the performance of active learning strategies, this
paper presents the trajectory of the generalization error of the
ridge regression model as a function of number of training
examples. To isolate the active learning trajectory from prior
knowledge, the model is first initialized with a random weight
vector with small magnitudes (±1e− 4). The ridge penalty
parameter is also set to a default value of 1e−4.

Then using equation (5) with the population level model, Wp,
set to a vector of zeros to eliminate any effect of transfer
learning. The reported error for each set of labeled examples,
is the generalization error learned from this objective function.
Active learning is performed for each user by iterating this
objective after each label is received up to a given query budget
B. For each user the training dataset is used as a pool of
available examples and the model is tested on a held out test
partitions.

As previously noted, the two query strategies employed are K
nearest neighbors and the committee of N−1 users. In both
strategies, we pick examples with the maximum disagreement
score. We compare this against a query strategy of randomly
issuing queries. For these experiments, the total permissible
label budget is B = 40 because this is the maximum number
of available examples (for the user with the smallest pool of
labeled examples) in the training partition given a 50%/50%
train/test split. A 5-fold cross-validation is performed for each
of the following label budgets, 10,15,20,25,30,35, and 40.
This cross-validation determines the optimal ridge penalty
parameter using only the labeled examples for each user.
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Figure 2. The performance of the Active Transfer Learning Framework in personalized thermal comfort prediction. Comparing
within-user, between-user, active learning and transfer active learning evaluation protocols.

4.5.6. Transfer Active Learning (TAL) Error Trajectory:

Lastly, to evaluate the effectiveness of the transfer active learn-
ing framework, we show the trajectory of the generalization
error when the between-users model is further tuned using
labeled data that is actively queried from the Nth user. Here
we use between-user model to learn the weights which is set
to Wp in the objective function found in equation (5). The first
query is then issued using this model. Our querying strategy
is same as the one outlined for active learning above. Then
for each subsequently acquired labeled example, the model is
re-trained using equation (5). All other details are same as the
active learning error trajectory.

5. RESULTS AND DISCUSSION

The results of the active transfer learning framework using
ridge regression and the modified QBC query strategies are
shown in Figure 2. This figure serves to summarize the results
and to display the effectiveness of this approach. Note that all
error metrics described in the previous section are included in
the figure.

Figure 2 is constructed by placing the between-users (B) error
rate at the extreme left of the x-axis. Here, no labeled examples
have been queried from the Nth user. On the right extreme of
the x-axis, we place the within-users (W) error rate. This error
rate represents the generalization error of the model if it were
to only be trained with data from the Nth user. In between
these two evaluation protocols are plotted the results from
active learning and transfer active learning. On the y-axis we
show the RMSE for each of the corresponding methods. At
the top of the graph, with a dotted line, we show a baseline

method which predicts that the user is always comfortable.

The figure gives the reader two important conclusions. First,
transfer active learning is always better than active learning.
Recall here that in active learning the model is initialized
with a random weight vector. Second, the QBC-K strategy
proposed in this paper outperforms other querying strategies.
Notably, QBC-K outperforms the random query strategy. This
means that QBC-K meaningfully adds selectivity with respect
to data points which are important.

These results verify the underlying assumption of this work
that there is an overlap in the thermo-regulatory behavior
of users and leveraging this information leads to better per-
formance. Furthermore, the out-performance of the QBC-K
strategy as compared to random sampling, confirms the sec-
ond hypothesis of this work which is that neighboring labeled
examples from other users carry relevant information that can
guide the personalized thermal comfort prediction model to
pick and choose examples with high utility. The better perfor-
mance of QBC-K can be attributed to its choice of committee
members which are chosen from one or more users spanning
multiple days whereas for QBC-U each of the N− 1 users
are committee members and not all of them may be useful in
computing disagreement scores.

With regard to model performance, we observe two favorable
outcomes. First, the within and between subject model er-
ror evaluation shows the expected trend of a mean RMSE at
0.845±0.04 and 1.288±0.44 respectively. This confirms that
the between subject model is more coarse than the within sub-
ject model with room for improvement. Second, all prediction
models perform significantly better than the baseline model
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which assumes the users are always at thermal comfort with a
zero rating.

The trajectory observed for transfer active learning algorithms
is mostly as expected, lower than between-subjects RMSE,
with some exceptions which we will explain below. This fol-
lows intuitively from the framework development because the
framework penalizes the deviation of weights from the be-
tween subject’s weights. The intermittent peak in the transfer
active learning trajectory is a result of hyperparameter learn-
ing that is performed in cross-validation when 15 and then 20
labeled examples are acquired respectively. The reason for this
intermittent hyperparameter tuning is that the tuning proved
to be very computationally expensive while RMSE suffered if
tuning was not performed.

Acceptable RMSE values for untuned hyperparameters did not
occur until the label budgets exceeded 50 labeled examples.
For extremely low label budgets, for example < 10, we refer
to these as burn-in periods where transfer active learning used
a hyperparameter tuned on N− 1 users and active learning
used a default penalty parameter of 1e−4. A significant result
of the transfer active learning with the QBC-K query strategy
is that the resulting model is able to achieve a performance
(RMSE) that is very close (0.35% difference) to the RMSE
observed in the classically trained within-subject model with
a small budget of 10 to 25 labeled examples. On average,
these results point to a 70% reduction in labeling effort over
five users. In comparison, the within-user performance was
achieved with an average of 82.6 labeled examples. To further
illustrate the results, the mean error across users with models
trained on their respective data using the fully supervised
approach (within-user) is 0.845± 0.04. The transfer active
learning approach proposed in this work achieves a mean error
of 0.818±0.05. All errors are noted on the ASHRAE comfort
scale. Here it should be noted that the model error is due to
several factors including uncertainty in sensor measurements
and incomplete sampling of our data space. An important topic
to study in a future study is the contribution of uncertainty
in sensor measurements. This is because understanding this
contribution can lead us to practical suggestions about the
type and grade of sensor that should be used in real systems
performing online thermal comfort estimation.

We hypothesize that the improvement in performance, with
respect to the number of labeled examples needed to achieve a
certain RMSE value, comes from the observation that a single
model trained over all data from a single user (within-user)
would necessarily have a larger modeling error, especially
when including any outlier labeled examples provided by the
user, than a model trained on a small but relevant set of exam-
ples. However, until the development of this transfer active
learning framework it was not possible to determine which
examples are most important to a user on any given day. This
is because one user does not provide a sufficient quantity of

user labeled examples under all possible conditions within a
single day to facilitate exhaustive supervised model learning.
The advent of this framework and specifically utilizing the
warm start approach described in this paper, it is now possible
to choose the most important data points to label within a day
thereby improving the performance of the within-user model.

6. CONCLUSION

This paper demonstrated a new approach to learning personal-
ized thermal comfort models for new user in a personalized
thermal comfort prediction system. This new approach was
presented as a framework that combined the machine learning
fields of active and transfer learning to reduce the labeling
effort needed to obtain an accurate model of thermal comfort.
Importantly the approach shown here was able to reduce the
labeled examples needed from new users by 70% as compared
to a fully supervised approach. Specifically, the framework
achieves a mean error of 0.82±0.05 while the fully supervised
learning approach achieves a mean error of 0.85±0.04. These
results indicate a significant improvement in thermal comfort
prediction at reduced quantities of user supplied labels.
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