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ABSTRACT

Prognostic and Health Management (PHM) benefits are strongly
tied to the decision-making that follows the assimilation and
interpretation of prognostics information. Hence, we deal in
this study with the post prognostic decision making in order
to improve system safety and avoid downtime and inoppor-
tune maintenance spending. We investigate the problem of
scheduling production jobs in a single multifunctional ma-
chine subjected to predictive maintenance based on PHM re-
sults. For this reason, we propose a new interpretation of
PHM outputs to define the machine degradation correspond-
ing to each job. We develop a Mixed Integer Linear Pro-
gramming (MILP) model to find the best integrated schedul-
ing that optimizes the total maintenance cost. Unfortunately,
the MILP is not able to compute the optimal solution for
large instances. Therefore, we design a Prognostic based Ge-
netic Algorithm (Pro-GA). Computational results of different
benchmarks setup show the efficiency and robustness of our
scheme with an average deviation of about 0.2% over a newly
proposed lower bound.

1. INTRODUCTION

In highly competitive environment, industrials are seeking to
gain advantage with respect to cost, quality, and time. How-
ever, no matter how sophisticated manufacturing systems are,
physical assets deteriorate over time due to functioning stress
and load. For this reason, attention to the maintenance ac-
tivity has rapidly increased as an inevitable reality in indus-
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try. Maintenance becomes a major contributor to the im-
provement of the manufacturing system reliability and per-
formance. In fact, maintenance strategies have extremely
evolved over time and can be classified into two main poli-
cies: corrective and preventive maintenance (Duffuaa, Ben-
Daya, Al-Sultan, & Andijani, 2001; CEN/EN, 2010). Tradi-
tionally, systems were repaired after failures, this is known
as corrective maintenance. Each unexpected failure induces
tremendous financial losses which consist of downtime cost
(production loss, unavailability cost etc...) and repair cost
(Berdinyazov, Camci, Sevkli, & Baskan, 2009). To overcome
this problem and reduce failure risk for critical systems, con-
cept of maintenance before failure has emerged to propose a
new maintenance type called preventive maintenance. First,
systematic preventive maintenance (also known as time-based
preventive maintenance) was applied according to a periodic
schedule where intervals were known and fixed in advance
regardless of the system health state. The determination of
maintenance interval is critical. However, two drifts can be
observed with this latter type. The first occurs when the
maintenance frequency is very high (small intervals), which
induces an excessive cost due to useless interventions. The
second occurs when the time between two successive main-
tenance interventions is very long, consequently failures can-
not be avoided resulting in system shutdown. The solution
is to observe the system health state in real time and recom-
mend maintenance decisions based on the information col-
lected through condition monitoring, this is called Condition
Based Maintenance (CBM) (Lebold & Thurston, 2001).

To reduce maintenance costs noticeably while increasing
equipments reliability and availability, a more efficient main-
tenance strategy must combine sophisticated methods, tools
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and techniques. Industrials show a growing interest in
Prognostics and Health Management (PHM) which becomes
a major research framework for the scientific community
(Venkatasubramanian, 2005). It is nowadays recognized as
a key feature applied to enhance a cost effective maintenance
strategy and higher quality design (Brotherton, Jahns, Jacobs,
& Wroblewski, 2000). Thereby, a new maintenance type is
emerged, called predictive maintenance where representative
features are obtained by condition monitoring and then fore-
casted in order to predict the evolution of degradation phe-
nomena. Indeed, rather than understanding a failure which
has just appeared to call for very expensive corrective in-
terventions (diagnosis process), it seems more convenient to
”anticipate” its occurrence (prognostic process) in order to re-
sort to protective actions at the most appropriate time. Several
definitions have been given in the literature about industrial
prognostic (Lebold & Thurston, 2001; Byington, Roemer, &
Galie, 2002; Muller, Suhner, & Iung, 2008). These defini-
tions are then normalized by the International Organization
for Standardization in which prognostic is defined as ”the es-
timation of time to failure and risk for one or more existing
and future failure modes” (ISO, 2004). The time to failure
is commonly called Remaining Useful Life (RUL). Develop-
ing sophisticated PHM tools represents a promising research
area. On the other hand, PHM benefits are also strongly tied
to the decision-making that follows the assimilation and in-
terpretation of prognostics information, which refers to Post
Prognostic Decision (Iyer, Goebel, & Bonissone, 2006). In
fact, post prognostic decision seeks to improve safety, allow
avoiding downtime and inopportune maintenance spending,
plan successful missions, schedule maintenance, etc.

Besides maintenance optimization, mission scheduling, sys-
tem control, post prognostic decision may appear as the in-
tegration of predictive maintenance planning in production
schedule. This is a well known problem in the literature called
”production scheduling with availability constraints” or ”in-
tegrated maintenance and production scheduling” (Hadidi,
Al-Turki, & Rahim, 2011). Works were previously proposed
to investigate these problems. Two cases of consideration
about the unavailability constraints can be found in the lit-
erature: (i) the deterministic case where intervals are known
and fixed in advance and often correspond to systematic pre-
ventive maintenance operations (Ma, Chu, & Zuo, 2010), (ii)
the dynamic case where unavailabilities periods are flexible
and stand as decision variables. This is the case for instance
when information about predictive maintenance are provided
from prognostic.

In the latter case, we focus on making decisions integrating
both production jobs and predictive maintenance operations.
Relatively few works were proposed in this context. (Pan,
Liao, & Xi, 2012) proposed a prognostics-based scheduling
model incorporating production jobs and predictive mainte-
nance operations for a single machine with the objective of

minimizing the maximum tardiness using mathematical pro-
gramming formulation. Authors assumed that machine con-
dition could be monitored and the machine RUL could be es-
timated. As the machine breakdown will result in process
interruption and huge losses, a safety threshold is set be-
fore reaching the RUL. Hence, predictive maintenance op-
erations are performed based on a new metric called the Re-
maining Maintenance Life (RML). For a numerical example
of nine jobs, the proposed scheduling model proves its effi-
ciency on reducing tardiness as well as keeping machine in
good operation condition when compared to three previous
models: production scheduling model without maintenance
planning, production scheduling model with periodic main-
tenance planning, and individual production scheduling and
predictive maintenance planning. (Varnier & Zerhouni, 2012)
proposed an original approach for solving flowshop schedul-
ing problem with predictive maintenance where machines are
able to switch between two production modes: nominal and
sub-nominal. In the second mode, machine is slowed down
to avoid early failures. As a consequence, the production
tasks will be longer than expected but in counter part remain-
ing useful life is increasing. They developed a mixed inte-
ger linear model that allows finding the best production and
predictive maintenance scheduling optimizing the aggregated
sum of makespan and maintenance delays. Obtained results
show that for several cases the best solution is reached when
some machines are switched in degraded mode. (Herr, Nicod,
& Varnier, 2014) studied an interesting case of parallel ma-
chines. The platform can be running using different operat-
ing conditions corresponding to different production through-
puts. Moreover, authors assumed that each machine is mon-
itored and associated with a prognostics module that gives
a RUL value depending on both its past and future usage.
Three heuristics based on well known dispatching rules, were
proposed to select the appropriate profile for each machine
during the whole production horizon. A prognostic-based
scheduling with the objective of maximizing the production
horizon which is the period between two maintenance inter-
ventions is provided. A second objective is to minimize main-
tenance costs. Considering a multi-stack fuel cell system,
the same problem was studied by (Chrétien, Herr, Nicod, &
Varnier, 2015), where prognostics results in the form of RULs
were used to maximize the global useful life of the system un-
der service constraint. Convex optimization was used to cope
with the scale of the whole production horizon. The schedul-
ing provided defines the contribution of each stack to a global
needed power output so as to reach the power demand as long
as possible.

In previous studies, a unique RUL value (expressed in unit of
time) was estimated and used as a threshold to perform pre-
dictive maintenance operations regardless of tasks being pro-
cessed and without taking into account the variable operating
conditions of machines. However, due to technical progress,
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various kinds of powerful single machine have been designed
in the field of factory production (e.g., intelligent machine
tool) that regroups several operations in a single cell (e.g.,
turning, cutting, milling, drilling, sawing, lathing and grind-
ing). Each operation requires some means of constraining
the workpiece and provide a guided movement between the
workpiece and the toolpath. The speeds and feeds used vary
with respect to the desired mission. Thus, the wear and tear
of the machine depends on the kind of operation being exe-
cuted because different stresses and movements induce var-
ious degradation levels. Hence, we propose in this study a
new interpretation of PHM results. We assume that a sin-
gle multifunctional machine is subjected to many predictive
maintenance interventions during the planning horizon. This
equipment is supposed to be monitored continuously and a
PHM module provides, due to various deterioration levels,
the corresponding RUL for each kind of job. Moreover, in
this paper, we introduced a novelty in our experiments and
introduce a new metric to express the degradation of the ma-
chine when processing each kind of job. First, we develop a
Mixed Integer Linear Programming (MILP) model to find the
best integrated schedule of production and predictive main-
tenance that optimizes the total maintenance cost. However,
due to the number of variables and constraints in the MILP,
only small instances of the problem can be solved. Therefore,
we develop in the other hand a Prognostic based Genetic Al-
gorithm called Pro-GA to solve larger instances of the studied
problem. Moreover, we propose a new lower bound to evalu-
ate our algorithm performance for different setup cases.

The remaining content of the paper is organized as follows.
In section 2, the tackled integrated scheduling problem is
detailed. Optimal resolution approach which consists of a
Mixed Integer Linear Programming (MILP) model is pro-
vided in section 3. After that, our algorithm Pro-GA is de-
veloped in section 4 as well as the integrated classical and
newly proposed genetic operators. Finally, experiments re-
sults are discussed. A general conclusion of the work and the
perspectives considered are given in the last section.

2. PROBLEM STATEMENT

We consider here, a single multifunctional machine schedul-
ing problem subject to unavailability constraints due to pre-
dictive maintenance interventions. We assume that the ma-
chine is monitored and a prognostic module is able to provide
significant information used to make post prognostic deci-
sion. Thus, the resulting prognostic based integrated schedul-
ing incorporates both production jobs and predictive main-
tenance activities with the objective of minimizing the total
maintenance cost. In this section, we describe first the inte-
grated scheduling problem we are dealing with. We define
next both PHM and predictive maintenance problems. The
objective function of our model is also presented. An exam-
ple of application case is finally given.

2.1. The integrated scheduling problem

The problem we face is knows as the single machine schedul-
ing problem under availability constraints. Considering a
multifunctional machine that should process a job set J =
{J1, J2, . . . , Jn} and subjected to predictive maintenance op-
erations, the problem tackled here consists in determining
what is the best sequencing of production jobs and the best
emplacement of maintenance interventions that minimizes
the total maintenance cost. There are several assumptions
that are commonly made regarding this problem (Merten &
Muller, 1972):

• All jobs Ji ∀i ∈ {1, . . . , n} are available at time zero ;
• Each job Ji requires a given known, deterministic

and non negative processing time, denoted pi ∀i ∈
{1, . . . , n};

• The machine is not continuously available due to pre-
dictive maintenance operations. When available, it can
process only one job at a time.

Hence, the planning horizon can be divided into multiple pro-
duction cycles separated by predictive maintenance interven-
tions. First, machine RULs are predicted by the PHM module
and a degradation value is associated to each kind of produc-
tion job. Next, under the total maintenance cost minimization
objective, the first block of jobs to be performed is generated
respecting the predetermined constraint of machine maximal
degradation. At the end of the first block, a predictive mainte-
nance intervention is scheduled to recover the machine to its
initial health state. The cost of this intervention is calculated
based on the accumulated degradation of jobs assigned to the
first block. After that, given the rest of jobs, a new block will
be built and launched and the new maintenance operation cost
is added to the total one. The same procedure will be iterated
till all jobs are scheduled. The problem consists then in de-
termining the jobs assignment for each production block to
minimize the total cost required to process all maintenance
interventions.

The resulting integrated scheduling can be seen as a
succession of several production blocks separated by
predictive maintenance operation, denoted by π =
{B1,M1, . . . ,Ml−1,Bl}, where :

• Bi is the ith production block of jobs;
• Mi is the ith predictive maintenance activity;
• l is the number of blocks required to process all jobs :⋃l

i=1 Bi = J ;
• Each job Ji is included strictly in one production block.

Figure 1 shows an example of an integrated scheduling π =
{B1,M1,B2,M2,B3} for a set of n = 10 jobs with 3 pro-
duction blocks and 2 predictive maintenance operations. This
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Figure 1. Integrated scheduling example

figure shows also the cumulative degradation level of ma-
chine during the horizon of the schedule.

To detail the integrated scheduling problem of production
and predictive maintenance we are dealing with, we define in
subsections below PHM context and predictive maintenance
model.

2.1.1. The Prognostic Health Management problem

Reliability estimations is mandatory to substitute traditional
maintenance concepts with new ones and prevent inopportune
spending. In our work, we assume that prognostic tools and
models are available from other studies (Liu, Zhang, Li, Lu,
& Hu, 2014; Tobon-Mejia, Medjaher, & Zerhouni, 2012). In
this context, the machine is supposed to be monitored contin-
uously. Given the current machine health state, the operating
environment and the observed condition monitoring, the as-
sociated PHM module is able to predict the deterioration evo-
lution and estimate the Remaining Useful Life (RUL). More-
over, as diverse tasks are being processed on the multifunc-
tional machine, the latter is subjected to a deterioration pro-
cess that depends on the job being processed. Indeed, every
kind of job requires specific functionalities that cause various
levels of damage on the equipment. Hence, under these con-
ditions, each job Ji has an associated remaining useful life
value RULi as well as a degradation value δi. We consider
the following assumptions:

• A deteriorating prognosis system provides RULi of
the machine corresponding to a given Job Ji ∀i ∈
{1, . . . , n};

• RULi represents the period during which the “as good
as new” machine could achieve job Ji before failure;

• The PHM module is also able to provide an associated
degradation value δi for each job Ji;

• δi ∈ ]0;1[ represents the wear and tear of the machine

𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

𝑡

𝑝𝑖 𝑅𝑈𝐿𝑖

𝛿𝑖

∆ = 1

𝑓(𝑡)

Historical data

𝑡0
Prediction time

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Figure 2. Relationship between pi, RULi, and δi

when only job Ji is processed during the processing time
pi (0 means no degradation committed, 1 a full degrada-
tion);

• δi = f(pi) where f characterizes the evolution of the
machine degradation (Figure 2).

2.1.2. The predictive maintenance scheduling problem

Corrective maintenance is a curative reaction of repairing the
equipment after the failure. On the other hand, systematic
preventive maintenance aims to avoid failure by planning pe-
riodic interventions. To reduce the risk of machine failures
while avoiding inopportune spending, predictive maintenance
is proposed to focuse on early detection and forecasting of
failures. This strategy uses PHM outputs, in our case degra-
dation value corresponding to each job, to schedule predic-
tive maintenance interventions. After predictive maintenance
strategy implementation, a predictive maintenance operation
means intervention performed on the machine to recover it to
its initial health state. For our model, we consider the follow-
ing assumptions:

- Let ∆ be the maximal authorized degradation of the ma-
chine. Beyond this threshold, a predictive maintenance task
should be planned. In this study, we fix ∆ = 1. Hence, each
degradation value δi < ∆ ∀i ∈ {1, . . . , n} .
- The accumulated degradation of the machine between two
consecutive maintenance operations should never exceed this
threshold ∆.
- At the beginning of the planning horizon, the machine has
a degradation equals to θ. After a predictive maintenance op-
eration, the machine is recovered to its initial health state, i.e.
its new accumulated degradation is reset to θ.
- During the planning horizon, at least one predictive mainte-
nance operation is performed. Considering that, the machine
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𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛
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Figure 3. Predictive maintenance cost model

could not process all the jobs before maintenance operation.
- No predictive maintenance operation is performed after the
processing of last jobs.
- If an accidental failure occurs during the production hori-
zon, then the rest of jobs are rescheduled based on new data.

In this paper, we propose a new model to evaluate the cost
of a maintenance operation. It is assumed that the cost of
PHM is included This cost is divided into two (2) parts: a
repair cost and a downtime cost due to maintenance interven-
tion as shown in Figure 3. When a maintenance action is
performed due to a small degradation level, low repair cost
and high downtime cost will be faced. As the machine degra-
dation actions increase, the downtime cost is reduced and the
repair cost is increased. It is natural that the repair cost is pro-
portional to machine deterioration: the higher the machine
damage is, the higher the cost is. The donwtime cost can
be explained by opportunity cost. Early repairing a workable
machine when a small degradation level is observed, will lead
to inopportune spending due to unnecessary intervention. In-
deed, this intervention interrupts the whole production pro-
cess while it is not necessary. There is an optimum point that
minimizes the total maintenance cost. The minimum cost is
spent when the machine reaches the maximum threshold of
degradation ∆ which means that the machine has been used
at its full potential and all maintenance intervention have been
scheduled at the right time. For simplicity reasons, it is as-
sumed that additional costs (e.g., instrumentation cost, soft-
ware cost, condition monitoring spending, ...) are constant
and included in the repair cost.

2.2. An example of application framework

The study carried out here is generalized enough to deal with
several application cases where the running machine is able
to perform several tasks. To explain the application of our

model in industrial firms, we take the example of machine
tool which plays a very important role in modern manufac-
turing systems. It is a used for shaping or machining metal or
other rigid materials. It is a multifonctional machine able to
process various kind of operations: cutting, boring, grinding,
shearing, or other forms of deformation. Hence, the wear and
tear of the machine tool depends on its variable operating con-
ditions (material type, hole shape and dept, machine feed and
speed, ...).(Sardinas, Santana, & Brindis, 2006). Each desired
shape requires some means of constraining the workpiece and
provide a guided movement between the workpiece and the
toolpath. There is a close relationship between machine tool
parameters and its deterioration. Since no machining theory
is available to predict the machine remaining useful life, va-
riety of parameters can be detected and used to predict its
RUL: temperature, current, acoustic emission and vibration.
These conditions data are collected in order to predict the fu-
ture trend of deterioration: this is known as the data-driven
prognostic approach (Liu et al., 2014).

An effective post prognostic decision making is then required
to avoid production loss and make full use of the machine.
Early replacement of a workable machine or late replace-
ment of a worn one may cause time and/or production loss
(Aliustaoglu, Ertunc, & Ocak, 2009). Thus, it is important
to determine the best time of when predictive maintenance
interventions should be performed. An integrated schedule
must be established to jointly plan production jobs processed
by the machine tool and predictive maintenance intervention
to improve its availability.

3. THE PROPOSED MILP FOR EXACT RESOLUTION

In this section, we propose an exact resolution to cope with
small instances of the tackled problem. We model the inte-
grated scheduling of production and predictive maintenance
problem that optimize the total maintenance cost using a
Mixed Integer Linear Program.

3.1. Notations

In the following, we will use the notation defined here:

• Ji : job number i;

• n : number of jobs to be scheduled;

• pi : processing time of job Ji;

• RULi : RUL of machine when processing job Ji,

• δi : machine degradation corresponding to job Ji;

• ∆ : maximum threshold of machine degradation;

• C0 : minimum predictive maintenance cost spent when
the machine reaches a full degradation ∆ (Figure 4);

• Cf : maximum predictive maintenance cost (Figure 4);

• Bj : production block number j.
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𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑠𝑡

∆ = 1

𝐶𝑓

𝐶0

Figure 4. Predictive maintenance cost

To seek simplicity, we consider here for that each job Ji,
the corresponding degradation δi is calculated as expressed
in Eq. (1):

δi =
pi

RULi
(1)

Moreover, the predictive maintenance cost discussed in Sec-
tion 2.1.2 is supposed to be a linear function as shown in Fig-
ure 4.

3.2. Mixed Integer Linear Programming model

We propose to model the problem with mixed integer linear
programming.

Variables:
- xij : binary variable. xij = 1 if job Ji is assigned to produc-
tion batch Bj , 0 otherwise;
- yi : binary variable. yj = 1 if batch Bj 6= ∅ , 0 otherwise;
- Degj : machine degradation accumulated after processing
batch Bj . It is calculated as follow:

Degj = θ +

n∑
i=1

δi.xij (2)

From Eq. (1) :

Degj = θ +

n∑
i=1

pi
RULi

.xij (3)

- Costj : cost of the predictive maintenance operation per-
formed after production batch Bj . From Figure (4) this vari-
able is given by the following equation:

Costj = C0 + (Cf − C0)Degj (4)

From Eq. (2) we can write the final equation :

Costj = C0 + (Cf − C0)(θ +

n∑
i=1

δi.xij) (5)

Constraints:

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , n} (6)

To process all jobs, we need to program at maximum n pro-
duction blocks to process all jobs. Thus, a upper bound of the
production blocks number is n.

yj ∈ {0, 1} ∀j ∈ {1, . . . , n} (7)

n∑
j=1

xij = 1 ∀i ∈ {1, . . . , n} (8)

n∑
i=1

δi.xij 6 (∆− θ).yj ∀j ∈ {1, . . . , n} (9)

Eq. (8) means that all jobs have to be produced by the ma-
chine exactly once. In other words, a job must be included in
exactly one production block. While Eq.(9) ensures the max-
imum degradation constraints, i.e. the accumulated degrada-
tion of the machine after processing each production block
does not exceed the maximum threshold ∆.

Objective function:

The resulted integrated scheduling must optimize the total
cost required to process all predictive maintenance opera-
tions:

Cost =

n∑
j=1

Costj .yj (10)

Our objective is then to minimize the total cost :

min(
n∑
j=1

Costj .yj).

From Eq. (5) we can write :

min(
n∑
j=1

(C0 + (Cf − C0)(θ +
n∑
i=1

δi.xij)).yj)

One can note that this is not a linear function. We can trans-
form this equation into a linear one as follow:

min
n∑
j=1

Costj .yj = min
n∑
j=1

Costj

Eq. (4) and Eq. (9) and Cf � C0 ⇒ (minCostj ⇔
maxDegj)
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maxDegj ⇔ max
n∑
i=1

δi.xij

⇒ (min
n∑
j=1

Costj = max
n∑
j=1

n∑
i=1

δi.xij)

⇒ (min
n∑
j=1

Costj ⇔ min(−
n∑
i=1

n∑
j=1

δi.xij))

⇒ (min
n∑
j=1

Costj ⇔ min(
n∑
i=1

∆.yj −
n∑
i=1

n∑
j=1

δi.xij))

Our new linear objective function is then :

min(

n∑
i=1

∆.yj −
n∑
i=1

n∑
j=1

δi.xij) (11)

In other word, if our goal is to minimize the total mainte-
nance cost, we have to build as full as possible production
blocks, so we have to minimize the gap between the accumu-
lated degradation after processing each production block and
the maximum authorized threshold ∆.

4. THE PROPOSED PROGNOSTIC BASED GENETIC AL-
GORITHM FOR APPROXIMATE RESOLUTION

As introduced above, the problem studied here is to create
a prognostic based integrated scheduling of several jobs be-
ing processed by a single multifunctional machine with the
objective of minimizing the total maintenance cost. Unfortu-
nately, the MILP defined in the previous section is not able to
compute the optimal solution for instances with an important
number of jobs. To deal with larger instances, we propose a
sub-optimal approach based on population based metaheuris-
tic. It consists on a Prognostic based Genetic Algorithm,
called Pro-GA. This choice is mainly adopted because Ge-
netic Algorithms (GAs) (Goldberg, 1989) were widely used
to solve production scheduling problems (Ruiz, Maroto, &
Alcaraz, 2006). They were next successfully applied to pro-
duction scheduling with systematic preventive maintenance
(Ruiz, Garcı́a-Dı́az, & Maroto, 2007; Benbouzid-Sitayeb,
Guebli, Bessadi, Varnier, & Zerhouni, 2011). Instead of im-
plementing periodic preventive maintenance, the main fea-
ture of our Pro-GA is the predictive maintenance considera-
tion. It is worth pointing out that to the best authors knowl-
edge, our Pro-GA is the first metaheuristic proposed in the
literature to solve the integrated scheduling problem of pro-
duction and predictive maintenance. All previous works con-
sist of either total enumeration methods (MILP) or heuris-
tics. Pro-GA uses information about machine health state
provided from PHM module in order to make the most appro-
priate post prognostic decision. Indeed, the estimated RULs
and degradation levels give information about the machine
health state during the production process. Thus, Pro-GA is
able to incorporate these prognostic outputs in order to estab-
lish the most suitable production and predictive maintenance

integrated scheduling under the total maintenance cost min-
imization criterion. This can help both avoiding production
loss and improving system availability.

GAs have gained considerable attention regarding their po-
tential as an optimization technique for complex problems.
Their main specific feature is their implicit parallelism, which
is a result of the evolution and the hereditary-like process
(Goldberg, 1989). In a classical GA, every individual is en-
coded into a structure. The set of individuals forms the pop-
ulation. The population undergoes a series of operations and
evolves until some stopping criterion is met. At each gen-
eration, first a selection mechanism picks individuals of the
current population. Then, the selected individuals mate and
generate new offsprings: crossover process. Some offsprings
might suffer a mutation(Goldberg, 1989). In our case, prog-
nostic outputs are jointly taken into account with production
data in all Pro-GA steps. This is guaranteed by considering
a unique structure to represent individuals. Indeed, the ”Pro”
part is involved in initial population generation, individuals
evaluation (objective function), and population improvement.
For this reason, genetic operators (crossover, mutation) are
adapted to deal with the integrated problem tackled here. The
flowchart of our proposed Pro-GA is presented in Figure (5).
The part framed in red represents the restart scheme we have
designed and incorporated into classical GA implementation
to stabilize the population convergence throughout the search.
The most remarkable characteristics of our Pro-GA are:

• Use of an integrated representation of production, prog-
nostic and maintenance data;

• Use of adapted heuristics rules to generate integrated in-
dividuals of the initial population;

• Use of a new proposed crossover to guarantee inheritance
of good features from parents to offspring;

• Use of a restart scheme to provide a tactical balance be-
tween intensification and diversification of the research.

In the following subsections, we present first the integrated
encoding scheme we propose. Next, we detailed the speci-
fication of genetic operators we designed. Finally, the pro-
posed restart scheme is explained.

4.1. The encoding scheme and the fitness function

The representation step specifies the mapping from the in-
dividuals (candidate solutions) into a set of genotypes. In
our GA, a genotype is expressed by sequencing the job sets
for all the production blocks. A set of jobs numbers in one
block corresponds to a gene. For example, for an instance
of problem J = {J1, J2, . . . , J10}, a candidate solution is
π = {(5, 10)(2, 9, 1, 3)(6, 7, 8)(4)}. We decode this repre-
sentation by scheduling the jobs of the first block (J5 and
J10), then performing the first predictive maintenance opera-
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Figure 5. flowchart of the proposed Pro-GA

tion with a cost depending on assigned jobs. Next, we iterate
the same process for the rest of blocks one by one.

GA needs a fitness function to evaluate the quality of an
individual in the population. Giving a candidate solution
π = {B1,M1, . . . ,Ml−1,Bl}, the total predictive mainte-
nance cost is equal to Eq. (12) (see Figure 4):

Cost(π) =

l−1∑
k=1

(C0 + (Cf − C0)
∑
Ji∈Bk

δi) (12)

The objective function is to minimize the total maintenance
Cost(π). Therefore, the definition of fitness function is just
the reciprocal of this cost. The fitness of each chromosome π
is calculated according to Eq. (13) as follows:

Affinity(π) =
1

Cost(π)
(13)

It can be noticed that the lower the predictive maintenance
cost is, the higher the affinity value is and so the better the
solution is.

4.2. Population initialization

Instead of starting with an initial population randomly gener-
ated, it seems more efficient to use special techniques to pro-
duce a higher quality initial population (Reeves, 1995). We
propose a two-step initialization procedure where an initial
population of PopSize individuals is generated as follows:

1. The first part of the initial population and the largest
one(α%×PopSize) is randomly generated. Its purpose
is to ensure diversity of the research. First, a random per-
mutation of all jobs is generated. Then First Fit heuristic
(Coffman, Garey, & Johnson, 1984) is applied on this
permutation in order to form a candidate solution by as-
signing jobs to production blocks (starting from empty
production blocks, jobs are assigned one by one to the
first available block).

2. The remaining part ((100 − α)% × PopSize) is gen-
erated using the two common heuristics First Fit De-
creasing (FFD) and Best Fit Decreasing (BFD) heuristics
(Coffman et al., 1984). It exploits the characteristics of
these good solution to form other solutions by applying
a series of permutations between jobs. Thus, we ensure
that this part of the population is formed by fit members.

Since this initialization scheme uses a First Fit and Best
Fit ordering, it naturally avoids generating invalid solutions.
In other words, the maximal degradation constraints are re-
spected and no feasibility check is needed.

4.3. The population improvement

Selection operator: for the sake of simplicity, we choose
the 2-tournament classical selection scheme (Michalewicz &
Hartley, 1996). It consists on randomly choosing two mem-
bers from the current population and selecting the fittest one.

Crossover operator: since the considered objective is the
total maintenance cost minimization, by analyzing the cost
evolution model (Figure 6) we deduct that ideally, a preven-
tive maintenance operation is planned when the accumulated
degradation reaches the maximal threshold ∆. Thus, it is
clear that we should make full use of the machine and then
build as full as possible production blocks. To seek this goal,
we propose a new crossover operator based on the one pro-
posed by (Rohlfshagen & Bullinaria, 2010). This crossover
produced a single offspring by copying the fullest bins from
parents.

With a probability equals to CrossProb, our newly proposed
crossover operator produces two offspring from two selected
parents as follows:

1. In the first phase, blocks from both parents are sorted in
the order of non-increasing degradation;

8
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2. Next, starting from two empty offspring, we copy the
fullest non-overlapping blocks from parents. In other
words, a block is copied in both offspring only if it con-
tains no duplicated job.

3. Finally, we need to represent the parents as job sequence
(permutation of jobs). We scan the sequence of the first
parent, respectively the second, from left to right, skip-
ping jobs that are already contained and assign the rest
of the jobs to the first offspring, respectively the second,
using the First Fit rule.

Our crossover naturally avoids generating unfeasible solu-
tions, where the accumulated degradation in a block exceeds
the maximum capacity ∆. This can be explained by the use of
the First Fit heuristic. This eliminates the time that would be
spent cutting down unfeasibilities. Moreover, our crossover
operator preserves good characteristics of parents (the fullest
production blocks) and transfers them to offspring. Figure (6)
shows an example of the crossover operator.

Mutation operator: we chose a simple mutation method
inspired from the classical SWAP mutation (Michalewicz &
Hartley, 1996). It consists on swapping, if possible, two ran-
domly selected jobs from two different blocks. We only allow
mutations that guarantee the feasibility of the obtained solu-
tions. Thus, the maximal threshold ∆ must be respected for
each block. The mutation probability is set to MutProb. For
each mutation operation, the number of permutations is ran-
domly chosen between (5%n+ 1) and (15%n+ 1) where n
is the number jobs.

4.4. Replacement

Individuals of the next generation are selected from the whole
population formed by parents and newly created children.
β% of the worst individuals are directly inserted in the new
population. Then, we complete the rest of the population by
the fittest members from parents and children.

4.5. Restart scheme

Intensification (exploitation) and diversification (exploration)
are two major issues introduced to build effective search al-
gorithms (Goldberg, 1989). Diversification generally refers
to the ability to visit many and different regions of the search
space, whereas intensification refers to the ability to obtain
high quality solutions within those regions. In this study, we
propose a new restart mecanism to provide a tactical balance
between the exploitation and the exploration of the research,
which are sometimes conflicting goals. We introduce a sta-
tistical metric called coefficient of variation (CV ) (Everitt &
Skrondal, 2010). It is a standardized measure that refers to
the population dispersion degree. It is defined as the ratio of

the standard deviation σ to the mean µ of the population :

CV =
σ

µ
× 100% (14)

Where:

µ =
1

PopSize

∑
πi∈Pop

Cost(πi) (15)

σ =

√
1

PopSize− 1

∑
πi∈Pop

(Cost(πi)− µ)2 (16)

The CV attempts to tune the search process by controlling,
periodically in CycleGen iterations, the population disper-
sion degree to enhance, according to its value, either diversi-
fication or intensification to stabilize the population conver-
gence throughout the search, as used by (Ladj, Benbouzid-
Si Tayeb, & Varnier, 2016).

Populations with CV < εmin , are considered to be of a low
dispersion, i.e. individuals are of a great similarity and con-
centrated in small research space region. In this case, we ap-
ply an immune operator called Receptor Editing (De Castro
& J., 2002). Its goal is lessening the risk of premature conver-
gence by providing more widespread searching. It consists in
eliminating a number (Rst%× PopSize) of worst individu-
als in the renewal population and replacing them by randomly
created ones at the same number to cover other search re-
gions. This mechanism allows us to find new schedules that
correspond to new search regions in the entire search space.

On the other hand, populations with CV > εmax are con-
sidered to be high diversified, i.e. individuals cover distinct
research space regions. In this case, we must promote promis-
ing regions exploitation. Rst% × PopSize new individuals
are generated by mutations of best solutions and are injected
in the population to enhance its quality.

4.6. Stopping criteria

In traditional GA, either computation time or the number of
generations is selected as termination criterion. Our algo-
rithm terminates after MaxGen generations.

5. COMPUTATIONAL RESULTS

In this section, we present the results of series of compu-
tational experiments, conducted to test both designed ap-
proaches (optimal and sub-optimal). They were tested on a
PC with Intel R© CoreTM i3-2330M CPU @ 2.20 GHz and
2.00 GB RAM. The proposed MILP was coded in C++ and
implemented using GUROBI optimization solver (GUROBI,
2014).

In the following, we will first describe how test data are gen-
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Figure 6. Crossover operator example

erated. Secondly, we analyze performance of our newly pro-
posed Pro-GA. In this analysis phase experiments results are
described : the calibration process, a comparison between
Pro-GA and a standard GA (without restart scheme) as well as
results of large size problems compared to a proposed lower
bound. Next, a comparison between the MILP and Pro-GA
is depicted for small problem instances. Finally, robustness
analysis of Pro-GA is studied for a different benchmark.

5.1. Data generation

We generate a variety of random testing instances where:

• Size of problem instances n ∈ [20, 300];

• Processing time of jobs is selected from a uniform distri-
bution pi ∈ U [1, 50];

• RUL of each job is selected from a uniform distribu-
tion RULi ∈ U [100, 150] for n ∈ [20, 100], RULi ∈
U [100, 200] for n ∈]100, 200], RULi ∈ U [100, 250] for
n ∈]200, 300];

• Initial machine degradation θ = 0;

• Maintenance costs are set Cf = 100, C0 = 1000.

10 instances are generated and tested for each problem size.
We run 10 independent replicates of each instance in order to
have a better view of the results. We average the results for
all the given instances.

5.2. Pro-GA calibration

For the first set of experiments, we have undertaken a sen-
sitive analysis of performance for our newly proposed algo-
rithm Pro-GA by varying different parameters. These param-
eters are experimentally found to be good and robust for the

problems tested. We have chosen a full factorial design in
which all possible combinations of the following factors are
tested:

• Population size PopSize : 2 levels (100, and 200);
• Initialization pourcentage α : 2 levels (70, and 80);
• Crossover probability CrossProb : 3 levels (0.7, 0.8,

and 0.9);
• Mutation probability MutProb : 3 levels (0.01, 0.015,

and 0.02);
• Replacement pourcentage β : 2 levels (20, and 30);
• Restart mechanism cycle CycleGen : 3 levels (10, 20,

and 30);
• Low dispersion CV εmin : 3 levels (10, 20, and 30);
• High dispersion CV εmax : 3 levels (60, 70, and 80);
• Restart mechanism pourcentage Rst : 2 levels (15 and

25);
• Stopping criteria MaxGen : 3 levels (200, 300, and

400).

All the cited factors result in a total of 2 × 2 × 3 × 3 ×
2 × 3 × 3 × 3 × 2 × 3 = 11 664 different combina-
tions. Every combinaison is tested with a new set of prob-
lem instances randomly generated using the same data gen-
eration procedure described in the previous section where
n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. 10 replicates of
each problem size is executed which means 1 166 400 execu-
tions. The response variable of the experiment is the Relative
Percentage Deviation (RPD) calculated using the following
expression:

RPD =
Costsol − Costlow

Costlow
× 100 (17)
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Where Costlow is a lower bound of the studied problem de-
tailed in section 5.3.2.

The resulting experiment was analyzed by means of
a multifactor analysis of variance (ANOV A) technique
(Montgomery, 2008) with the least significant difference
(LSD) intervals (at the 95% confidence level). We focus
on the F-ratio, the greater this ratio is, the more effective
the parameter will be. Figure (7) shows means plots for the
three first greatest F-ratio parameters which are : PopSize,
MaxGen, and CrossProb. The complete details are not re-
ported for the sake of concise presentation.

By analyzing different levels in a means plot for each factor,
one by one respecting their F-ratio order, we fix each fac-
tor at its best level as follow :PopSize = 200; MaxGen =
300; CrossProb = 0.7; MutProb = 0.015; α =80; β = 20;
CycleGen = 20; Rst = 25; εmin = 20; εmax = 70.

5.3. Performance analysis of Pro-GA

5.3.1. Comparaison between Pro-GA and standard GA

Our newly proposed algorithm Pro-GA incorporates a restart
scheme that seeks escaping from local optimum and stabi-
lizes the population convergence throughout the search pro-
cess. Thus, the second set of experiments are carried out to
evaluate the effect of this mechanism on Pro-GA performance
when compared to a standard genetic algorithm S-GA (with-
out restart mechanism). Table 1 shows a comparison between
the maintenance cost Cost and the execution time CPU (in
s) generated by Pro-GA and S-GA. Resultas show that, in all
cases Pro-GA generates best solutions. S-GA yields a devi-
ation of about 5% over Cost obtained by Pro-GA. On the
other hand, when observing the execution time CPU, we can
find that Pro-GA is a little bit slower than S-GA due to the
restart process, but it seems to be an acceptable compromise
between solutions quality and execution time. Consequently,
we can deduce that the embedded restart mechanism is well
designed to guide the search process by enhancing its diver-
sification and intensification throughout generations.

5.3.2. Comparaison between Pro-GA and the proposed
lower bound

Since no optimal solutions are known for the studied prob-
lem, we compare our GA results against a lower bound, de-
noted Costlow. We note llow the smallest number of blocks
of capacity ∆ required to process all jobs. In other words, if
we suppose that all job blocks are completely full, i.e. their

degradation is equal to ∆, then llow = d 1
∆

n∑
i=1

δie, and thus

the total maintenance cost for all production batch, except the
last one, will be fixed to cost Cf . Then, the low bound can be
estimated by Costlow = (llow − 1)Cf .

Table 2 shows the comparison between the maintenance cost

Table 1. Comparison of Cost and CPU obtained by Pro-GA
and S-GA

n Pro-GA S-GA
Cost CPU (s) Cost CPU (s)

20 303.54 2.51 315.75 1.88
40 650.23 3.89 677.18 3.55
60 1021.11 5.75 1085.21 5.56
80 1402.53 6.64 1465.55 6.29
100 1692.47 7.22 2530.01 6.78
120 2072.06 8.34 2194.19 6.93
140 2443.98 7.43 2580.85 7.13
160 2662.57 6.77 2810.17 7.08
180 3083.03 7.51 3018.21 7.11
200 3493.14 7.70 3681.44 7.24
250 4354.08 7.82 4620.85 7.32
300 5615.45 7.92 5920.63 7.37

Table 2. Comparison of Cost obtained by Pro−GA and the
lower bound

n Cost Costlow %↗
40 650.23 650 0.035
60 1021.11 1020 0.108
80 1402.53 1400 0.181
100 1692.47 1690 0.146
120 2072.06 2070 0.099
140 2443.97 2440 0.163
160 2662.57 2660 0.097
180 3083.02 3080 0.098
200 3493.14 3490 0.090
250 4354.08 4350 0.094
300 5615.44 5610 0.097

Cost generated by Pro-GA and the lower bound Costlow.
One can easily observe that Pro-GA yields a very small devi-
ation from the lower bound. In worst cases, predictive main-
tenance costs increase by less than 0.2%. Moreover, in sev-
eral cases, this deviation is less than 0.1%. That confirms
the efficiency of our GA to generate best solutions for all
problem instances. This is argued by the correct parame-
ters setting and the choice of appropriate genetic operators,
especially the crossover that guarantees inheritance of good
features through generations.

5.4. Comparative analysis of Pro-GA and MILP for small
size problems

The third set of experiments reported in Table 3 were con-
ducted to evaluate Pro-GA performance compared to the op-
timal results obtained by the MILP for small problem sizes
n ∈ {5, 10, 12, 15, 18, 20}. We can see a comparison of the
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Figure 7. Means plots for PopSize, MaxGen, and CrossProb

execution time CPU (in s) and the total maintenance cost
Cost. These results are the average of 10 instances for each
problem size. For n 6 12, it is clear that Pro-GA is slow-
est since it manipulates a large set of individuals on which it
applies greedy genetic operators during the whole process.
Indeed, our GA must run MaxGen = 300 generations in
all cases. This number of generation is very big for small
problems. We can overcome this problem by using a dif-
ferent stopping creteria which is for example a CPU time
limit fixed according the problem size. For n > 12, Pro-GA
seems to be faster and its execution time becomes more effi-
cient compared to MILP. For maintenance cost optimization,
Pro-GA sub-optimal solutions yield a very small deviation
over the optimal solutions given by MILP. In several cases,
Pro-GA could find the optimal solutions. Moreover, in worst
cases, this deviation is less than 0.1%.

5.5. Robustness analysis of Pro-GA for different setup

In order to know the claimed performance of our newly pro-
posed Pro-GA is sensitive to how the data are generated, we
run a second set of benchmarks generated differently. While
PHM outputs (RULs) are generated with uniform distribution
for the first experiments set, we use for this set of problem
instances the 3-parameter Weibull distributions to obtain fail-
ure probabilities of the machine when processing each kind of

Table 3. Comparison ofCPU andCost betweenMILP and
Pro−GA

n MILP Pro−GA Cost

CPU(s) Cost CPU(s) Cost %↗
5 0.002 27.77 0,97 27.80 0.090
10 0.021 111.65 1.05 111.74 0.081
12 0.088 153.91 1.57 154.07 0.099
15 1.4 242.72 1.31 242.94 0.092
18 5.98 284.11 2.13 284.39 0.096
20 120.41 303.24 2.51 303.54 0.099

job. Weibull distribution is often used in the literature to es-
timate systems lifetime (Sidibe, Khatab, Claver, & Ait-Kadi,
2015; Khatab, Ait-Kadi, & Rezg, 2014; Berdinyazov et al.,
2009). Probability density function of Weibull distribution is
given in the Eq.(18).

f(t, k, λ, θ) =
k

λ
∗ (
t− θ
λ

)k−1 ∗ e−( t−θλ )k (18)

For each job, machine degradation is estimated by the fail-
ure probability corresponding to its processing time (see Fig-
ure 8). The shape, scale and position parameters of Weibull
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Figure 8. Example of failure probability estimation (Weibull
distribution k = 4, λ = 50, θ = −8)

distributions are selected as follow:

• Shape parameter : k ∈ [2, 10];

• Scale parameter λ ∈ [20, 50];

• Position parameter θ ∈ [−10, 0].

Results shown in Figure 9 and detailed in Table 4 compare
deviations of maintenance cost obtained by Pro-GA over the
proposed lower bound for both benchmarks sets. For each
problem size n, PHM outputs are generated either by Uni-
form distribution (setup 1) or Weibull distribution (setup 2)
for the same production data (processing times). When com-
paring the effect of data generation method on our Pro-GA
effectiveness, we remark that deviations are almost equiva-
lent. For both setups, Pro-GA yields a very small deviation
over the lower bound. In worst case, this deviation is less than
0.19%. Consequently, we can deduce that the performance of
Pro-GA remains stable for different setups thanks to the good
operators choice and appropriate calibration. This prove the
robustness of Pro-GA.

6. CONCLUSION

In this paper we have proposed a Mixed Integer Linear Pro-
gramming (MILP) model and new prognostic based genetic
algorithm Pro-GA to solve the integrated production and pre-
dictive maintenance scheduling problem on a single machine
under the total cost minimization criterion. Since each kind of
production requires specific machine functionalities, we have
assumed that a PHM system provides the RUL correspond-
ing to each kind of production and then a relative degrada-
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Figure 9. Comparison of deviations obtained by Pro − GA
for Uniform and Weibull distributions

Table 4. Comparison of deviations obtained by Pro − GA
for Uniform and Weibull distributions

n setup 1 (Uniform) setup 2 (Weibull)

%↗ %↗
40 0.035 0.054
60 0.108 0.110
80 0.181 0.165
100 0.146 0.123
120 0.099 0.101
140 0.163 0.186
160 0.097 0.082
180 0.098 0.130
200 0.090 0.077
250 0.094 0.087
300 0.097 0.107

tion value is calculated. A predictive intervention is sched-
uled whenever the maximal authorized threshold is reached.
The designed MILP is able to compute optimal solutions for
problem sizes n 6 20. To deal with larger instances,Pro-GA
include carefully designed operators in order to enhance the
quality of the obtained solutions. We have conducted various
experiments that showed the efficiency Pro-GA compared to
a lower bound. Robustness of our algorithm has also been
proved throughout different benchmark.

Further topics would be continued with regards to this results.
The proposed integrated scheduling model can be extended
to manage other typologies of production systems. Another
work can deal with the uncertain character of the PHM out-
puts because it is important to rigorously deal with these un-
certainties in order to create a robust scheduling using fuzzy
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logic.
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