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Besançon, 25000, France
omar.bougacha@femto-st.fr

christophe.varnier@femto-st.fr
noureddine.zerhouni@femto-st.fr

ABSTRACT

Prognostics and health management have become increas-
ingly important in recent years. Many research studies fo-
cus on a crucial phase consisting of predicting the remain-
ing useful life of equipment or a component. However, this
step is often carried out without taking into account the de-
cisions that will be taken later. This article aims to propose
a modification of the existing PHM framework to combine
the prognostics and decision-making phases in a closed loop.
In this paper, the presented framework is described and some
elements for its implementation are proposed. A simplified
example is developed to illustrate the presented methodology
of post-prognostic decision enhancement.

1. INTRODUCTION

The growing need of the industry for the high reliability,
availability and operation safety of its systems was the root
of the maintenance evolution. During the last decades, main-
tenance policies evolved from corrective maintenance, in
which interventions are only made after the failure occur-
rence, to preventive maintenance with predefined mainte-
nance dates based on the component’s reliability information
like the mean time between failures. Later, the condition-
based maintenance (CBM) strategy appears thanks to the
evolution of condition monitoring and health assessment
technologies. With CBM, the degradation or the health of
a component is monitored and intervention is planned when
the level of the degradation exceeds a certain threshold. Re-
cently, and with the emergence of the prediction techniques
(Vachtsevanos & Wang, 2001), the era of predictive mainte-
nance began via prognostics and health management (PHM)
(Byington, Roemer, & Galie, 2002). In the predictive main-
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tenance context, the maintenance decisions are about setting
intervention dates based on the remaining time during which
the system can still fulfill its purpose. Such a metric is
called remaining useful life (RUL) and it is one important
metric of the PHM framework. The PHM was based on
the functionalities of CBM. Therefore, its framework was
defined similarly to CBM. Lebold and Thurston, defined in
(Lebold & Thurston, 2001), the open system architecture for
condition-based maintenance and prognostic systems. The
defined framework is considered as fundamental for all PHM
applications. And it is widely used in the literature.

One can find a lot of definitions for the PHM concept in lit-
erature, but no consensual definition has yet been proposed.
Some authors like Uckun et al. in (Uckun, Goebel, & Lu-
cas, 2008), defined it as an engineering discipline that studies
the failure mechanism and manages the systems life cycle.
Skima in (Skima, 2016) added that its main objective is to
minimize the operational and maintenance costs. Sun et al.
in (Sun, Zeng, Kang, & Pecht, 2010), considered PHM as
a methodology to predict when and which component will
fail and manage the system’s reliability. Goebel et al. in
(Goebel et al., 2017), presented PHM as the procedure of
studying the conditions of an engineering system, whether its
behavior is within predefined nominal boundaries and in case
of a deviation, predicts where and when the system would
fail. Based on this information, adequate decisions are taken
to mitigate the effects of an undesirable event. Considering
these definitions PHM can be defined as an engineering dis-
cipline that investigates the reliability of a system and man-
ages its conditions through a set of tools, methods, and pro-
cesses that performs health assessment, diagnostics, prognos-
tics, and decision-making.

For many years, the studies of the PHM process were lim-
ited to some methods or tools that enhanced the health as-
sessment, diagnostics, and prognostics functions. One can
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refer to some of the reviews of the works done in diagnos-
tics (Gertler, 2013), (Wu, Vachtsevanos, Lewis, Roemer, &
Hess, 2006), (Tamilselvan & Wang, 2013), health assessment
(Kandukuri, Klausen, Karimi, & Robbersmyr, 2016) and par-
ticularly prognostics (Schwabacher, 2005), (Si, Wang, Hu, &
Zhou, 2011) and (An, Kim, & Choi, 2015). Later on, the
health management term of the PHM was introduced by in-
tegrating the estimated remaining useful life (RUL) in the
decision-making process. As described by Goebel et al. in
(Goebel et al., 2017), prognostics is the science of making
predictions but the estimation of the RUL is not performed
as an end of PHM in itself, but for improving the decision-
making process. Therefore, the notion of post-prognostic
decision-making is an important phase in the PHM frame-
work.

One can find several definitions of post-prognostics decisions,
(Goebel, Iyer, & Bonissone, 2006), (Balaban & Alonso,
2012), (Herr, 2015), all these references stated that post-
prognostic decisions are the result of integrating the health
indicators and/or the RUL in the decision-making process.
The decision-making process is subject to an optimization
function that best serves the intended application and may
include the health state of the system. For a long period, post-
prognostic decision-making was only dealing with mainte-
nance decision-making. Gouriveau et al. in (Gouriveau,
Medjaher, & Noureddine, 2016), stated that the application
of PHM should not be limited to industrial maintenance and
that PHM is considered to be more general and could be
applied to different activities by diversifying the nature of
the decisions to be taken. Nowadays, decisions in the PHM
context are more involving operational aspects of the studied
systems like the production scheduling (Ladj, Varnier, Tayeb,
& Zerhouni, 2017), the mission assignment (De Medeiros,
Rodrigues, Santos, Shiguemori, & Júnior, 2014), control de-
cisions (Pereira, Kawakami, Galvao, & Yoneyama, 2010),
etc. Moreover, some works in literature combined the two
aspects of decisions (maintenance and operational) leading
to a new category of decision that we noted mixed decisions
(Cheng, Zhou, & Li, 2018), in which simultaneously the
maintenance interventions and the operational controls are
optimized.

By focusing on post-prognostic decision-making in the pre-
vious works, we came cross some major omissions:

• How do the RUL uncertainties influence the decision
process?

• How do the works on post prognostic decisions integrate
the RUL in the process?

• What is the decision horizon duration? How does this
value influence the results? Based on what criteria the
duration is determined?

• How frequently is the PHM process launched? Is it peri-
odically launched or event-driven?

• Do the prognostics algorithms take future decisions into
considerations?

• How the new evolution of the system’s health state is in-
tegrated into the prognostics algorithm?

These oversights are more detailed in the next section. The
main aim of this paper is to question these points. More-
over, the paper presents a methodology to enhance decision-
making in the PHM framework. Some minor adjustments of
the OSA-CBM framework are proposed in this aim.

This paper is organized as follows. In the first section, we
propose an overview of the PHM processes while focusing
on the main lacks of the post-prognostics decision process.
In section 3, the definition of some terms, that are needed
to guarantee the consistency of the proposed framework, is
given. Section 4 contains the adaptation of the PHM frame-
work to enhance decision-making. In section 5, an explana-
tory example is given to defining the different elements of the
resolution. This example is just an illustration to validate the
proposed methodology. Finally, a conclusion and some future
works are presented in section 6.

2. CLASSICAL PHM AND MOTIVATION

As presented in the OSA-CBM (Lebold & Thurston, 2001),
PHM for a specific system embeds seven levels presented in
Figure 1. This seven layers framework explains the PHM
process from sensors data acquisition to decision-making and
human-machine interface. Lately, these layers have been
grouped into three phases by Gouriveau et al. in (Gouriveau
et al., 2016). The observation phase starts with the sensors’
data acquisition, the stored data is then processed through
filtering, modifying and feature extraction. In the analysis
phase, the system’s conditions are monitored through the
preprocessed features, its heath state is assessed, some fault
diagnosis is performed if needed and the systems remaining
useful life is estimated in the prognosis process. Finally,
the action phase involves decision-making and different in-
formation visualization in the Human-Machine Interface.
Therefore, we can model a global PHM process with a block
diagram as shown in Figure 2. Moreover, the proposed
presentation is used all along this work to guarantee the con-
sistency of the paper. Figure 2 describes the process of PHM.
The system can produce data coming from sensors or ob-
servations. The obtained data allows the monitoring of the
health and the degradation of certain components that are
in most cases the cause of the system’s failure. Through the
phase of observation, the sensors data will be acquired, stored
and processed to obtain the features that describe the system
health state through health indicator (HI) and the evolution
of degradation of its components. The obtained features are
feed to the analysis phase, in which the health conditions
are monitored to detect the beginning of a degraded pattern.
The health state of the system is assessed and the remaining
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Figure 1. The PHM process as presented in the OSA-CBM

Figure 2. Block Diagram of classic PHM

useful life is predicted. Based on the RUL values, decisions
are selected. Moreover, the made decisions are applied to the
system.

The term management in PHM refers to the post-prognostic
decision-making process (Goebel et al., 2017). The process
consists of solving an optimization problem for production
scheduling, maintenance planning, control parameters adjust-
ing, mission assignment, etc. while integrating prognostics
information. In the classic PHM context, authors generally
try to optimize the maintenance schedule to minimize the
cost and avoid failures. Yet several works in literature dealt
with post-prognostics decisions and other decisions types
than maintenance scheduling are taken. By considering the
type of the proposed decisions, one can classify them into
three categories:

• Maintenance Decisions: In which, the remaining useful
life of components or system is used to define the suit-
able maintenance date for each component. These de-
cision are wildly studied in several industrial domains:
transport (Rodrigues et al., 2015), manufacturing (Yang,
Djurdjanovic, & Ni, 2008), (Van Horenbeek & Pintelon,
2013), (Do, Voisin, Levrat, & Iung, 2015), (Liu, Dong,
Lv, & Ye, 2017), aerospace (Balaban & Alonso, 2012)
(Goebel et al., 2006), Wind-Turbines (Lei & Sandborn,
2016).

• Operational Decisions: One can also modify the op-
erational parameters of the system to better manage its

health state. The operational decisions can be divided
into three subcategories:
– Production and Tasks assignment: It consists of

scheduling production activities or defining a good
match between the tasks to be done and the sys-
tem degradation. Such decisions are mostly studied
in manufacturing (Skima, Varnier, Dedu, Medjaher,
& Bourgeois, 2017), path planning for UAVs fleets
(De Medeiros et al., 2014) or train rolling stocks.

– Control Decisions: Some control loops use health
monitoring of the actuator in the adjustment of the
controller parameters. Moreover, some works adapt
the controller setpoints according to the actuator
health state ((Pereira et al., 2010), (Langeron, Grall,
& Barros, 2015)).

– Logistics: The needs of the system in terms of
raw materials and spare parts are determined by
its health state. Thus, the provisions, the orders,
and the logistic movements are made based on the
monitored condition and the RUL of the system
to reduce the costs of storage and the penalties on
waiting in case of shortage in raw materials or spare
parts. Logistic decisions take into consideration
the health condition of the system, the lead time of
ordering and the storage levels to optimize the cost
(Cui, Shi, & Wang, 2015), (Lin, Basten, Kranen-
burg, & van Houtum, 2017).

• Mixed Decisions: In this category, one considers both
sides of the system functional requirement i.e. the op-
erational and the maintenance requirements. Therefore,
some works focused on jointly optimizing production
and maintenance like Fitouri et al. in (Fitouri, Fnaiech,
Varnier, Fnaiech, & Zerhouni, 2016). Other authors,
like De Medeiros et al. (De Medeiros, Rodrigues, Kern,
dos Santos, & Shiguemori, 2015) tried to find a compro-
mise between carrying out a mission and maintaining the
system. More authors considered the ordering of spare
parts while defining the maintenance dates to optimize
the spare part storage cost (Wang, Hu, Wang, Kong,
& Zhang, 2015), or even integrate quality control and
maintenance interventions (Cheng et al., 2018).

In the PHM context, decisions are made and applied to the
system. Thus, these decisions change the evolution of the sys-
tems’ heath state. For example, Frost et al. (Frost, Goebel,
Frost, Trinh, & Balas, 2013) used the health state of wind tur-
bine blades in an adaptive controller to extend the operating
time of the system. This can be observed through the modi-
fication in the available sensors data (noted S Signals’ in fig-
ure 3) and the new trends that appear in the preprocessed data
and the associated features. The new trends in the features
describe a new evolution of the system health states. This
evolution may be different from the evolution of the features
used to estimate the first remaining useful life (noted RUL).
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Thus, a new remaining useful life is estimated (noted RUL’).
Therefore, to best fulfill the objective of the framework, the
decision process must be adapted to include the current prog-
nostic information. This feedback of the decision made on
the system is represented by the red dashed line in figure 3.
Although this process is natural, it is not explicitly mentioned
in most of the literature works. The previous works in liter-
ature, are limited to making decisions on a finite fixed deci-
sion horizon. In most of the cases, the considered decision
horizon is long enough to incorporate more than one mainte-
nance action, this is the case in the work of Camci, (Camci,
2009). After the first maintenance intervention, the authors,
usually, use reliability rules on the remaining decision hori-
zon to model the system behavior. These works implicitly
assume that the used prognostics methods are accurate and
precise. They also assume that a maintenance action will be
performed at the exact scheduled moment with the suitable
quality. Several works included future decisions in the prog-
nostics algorithms, for example in (Sierra, Orchard, Goebel,
& Kulkarni, 2019) authors used future power consumption
profiles in the prognostics algorithm to predict the end of dis-
charge of a Lithium-polymer battery in a rotatory-wing UAV.
Although prognostics algorithms take into consideration vari-
able future conditions, most works on post-prognostic deci-
sions (for example (Camci, 2009), (Lei & Sandborn, 2016),
and (Huynh, Grall, & Bérenguer, 2017)) generally assume
that these future conditions are constant during the decision
horizon. This implies a highly controlled environment of the
system which can only be achieved in a laboratory. More gen-
erally, only a single RUL value is estimated and used for the
decision-making process.

Indeed, the prognostic module is highly dependent on the
future usage conditions of the system and future decisions.
Actually, in (Goebel et al., 2017), Goebel et al. presented
various kinds of uncertainties that can influence the RUL
value. Two particular uncertainties are related to the future
loads of the system and its environmental conditions. In the
rest of the paper, we define the operating conditions as the
fusion of future loads and environmental conditions. One
can also find some works in the literature about integrat-
ing future loads in the prognostic algorithm. For instance,
Daigle and Goebel (Daigle & Goebel, 2010) and Zhang et
al. (Zhang, Tang, Decastro, Roemer, & Goebel, 2014) used
a model-based prognostic method and they considered the
future load data in the procedure of estimating the RUL.
Other works combined different modeling tools with the
prognostics algorithm to integrate the future decision, like
Welz et al. in (Welz, Coble, Upadhyaya, & Hines, 2017) in
which the authors integrated maintenance information into
the prognostics module by combining the Weibull reliability
model and the general path methods, Vileiniskis and Re-
menyte Prescott (Vileiniskis & Remenyte-Prescott, 2017),
on the other hand, used Petri-net to model the system, its

Figure 3. Dynamics of the PHM process

degradation and its future load, and maintenance actions.
They ran a Monte Carlo simulation to obtain the statistics of
components performance over a selected horizon. However,
several works on prognostics algorithms do not consider the
effects of future loads evolution on the remaining useful life.
One can cite as an example the works of Dong et al. (Dong,
Jin, Lou, & Wang, 2014), and Mosallam et al. (Mosallam,
Medjaher, & Zerhouni, 2016).

On the other hand, the influence of the RUL on making de-
cisions has been introduced in the literature through different
methods of integrating the prognostic information in the deci-
sion process. Goebel et al. in (Goebel et al., 2017), explained
that the possible actions to take in the decision-making pro-
cess depend on the prognostic horizon, which was defined by
the RUL of the system. Therefore, the RUL was used as a
classification criterion to limit the decision search space. The
works in literature integrated the RUL with different levels in
the decision-making process. Some works used it as a con-
straint to define the system maintenance dates like in (Cai, Li,
& Chen, 2016) in which the authors optimized the mainte-
nance cost of an airplane by finding the suitable maintenance
date based on the aero-engine RUL. While others used it as a
predefined decision variable that limits the production profile
and the horizon of production of the machine, like what was
proposed by Herr et al. in (Herr, Nicod, & Varnier, 2014).
They try to vary the different production profiles of the ma-
chines to maximize the production horizon while satisfying a
constant demand. Few works used the RUL in the optimiza-
tion objective function, like Zhang et al. in (Zhang et al.,
2014) when they planned the path for an autonomous vehicle
in a way to save its battery energy consumption and to reduce
its degradation. Fewer fully integrated the RUL as a variable
to define the control parameters of an actuator as presented
in (Langeron, Grall, & Barros, 2013) by redefining the LQR
control parameters with the evolution of the RUL. This proves
that decisions in the context of PHM are highly dependent on
the estimated RUL value. One can outline the integration of
RUL in the decision-making process into four levels:

• As a classification criterion to select an option from
a predefined range of decision, or to simply schedule
maintenance intervention if the RUL exceeds a thresh-
old. Khoury et al. (Khoury, Deloux, Grall, & Bérenguer,
2013) used the estimated RUL to select the suitable
maintenance opportunity.
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• As a constraint by considering a threshold above which
the system is not allowed to function. In this case, the
system actions are assumed to have a known degradation
rate. In the work of Herr et al. (Herr et al., 2017) each
trip has its degradation rate on the system. The sum of
the degradation rates for a train is constrained to be lower
than a threshold so that the schedule is considered feasi-
ble.

• As a penalty in the objective function to add a certain
level of sensibility to the degradation rate of the decisions
(Zhang et al., 2014) or to reduce the lost remaining useful
life due to early maintenance et al. (Liu et al., 2017).

• As a variable to define new settings of control. This is
very commonly used in the works that considered adapt-
ing the predictive controller’s parameters to the health
state of the actuator such in Pereira et al. (Pereira et al.,
2010).

To summarize, the prognostic and the decision-making mod-
ules are highly inter-dependent. The prognostic module influ-
ence the decision support system and its output with the RUL
value. Besides, the selected decisions can change the sys-
tems state and affect on the degradation evolution, and thus
modify the remaining useful life. Moreover, integrating the
decision in the form of future loads in the prognostic proce-
dure can improve the RUL precision and reduce the level of
the uncertainties. These processes are often considered se-
quentially and studied separately. Some works have consid-
ered this point. This is the case of Zhang et al. (Zhang et
al., 2014). However, the processes were used sequentially.
Once a decision is selected it is applied to the system, then a
new RUL is estimated to select the next decision. Although
this approach highlights the importance of considering future
decisions in the prognostic algorithm, it assumes that a se-
quence of local optimal decisions leads to a global optimal
decision. This approach makes decisions on a single step
ahead and does not allow to question the previous decision
quality. This paper aims to emphasize the interactions be-
tween decision-making and prognostics by considering both
processes simultaneously. To improve the RUL estimations
and provide more coherent decisions, these processes are ad-
justed to construct decisions over multiple steps ahead simul-
taneously while estimating their outcomes on the evolution of
the system’s health state. The proposed framework allows to
question the relevance of previously selected decisions before
applying them on the system.

Another major challenge in the PHM context is the used
data for the prognostics modeling and training (in the case of
data-driven and hybrid prognostic methods). As it has been
proven, degradation data are highly related to the operation
conditions of the system. For example, in the data generated
by PRONOSTIA (Nectoux et al., 2012) for rolling bearing,
the speed of rotation has a major influence on the degradation
profile. Therefore, using data from historic degradation can

be a good starting point for the prognostic process. But if
such a prognostic process is still in use under new operating
conditions, it will lead to questionable outcomes. There-
fore, there is a need to incrementally update the process.
Several approaches could be used for these updates such as
case-based reasoning, reinforcement learning, etc.

In post-prognostic decision-making literature, the decision is
directly made over a long duration. Moreover, in most of the
works, the future decisions and their influence on the systems
health state are not considered in the decision-making pro-
cess nor the prognostic module. For example, one can see
the works of Van Horenbeek and Pintelon (Van Horenbeek
& Pintelon, 2013), Wang et al. (Wang et al., 2015), and de
Medeiros et al. (De Medeiros et al., 2014). The parameters of
the prognostic method are not updated with new data that are
obtained under unknown operating conditions. To keep the
framework consistent with any observed changes in the sys-
tem operations, the parameters of the prognostic algorithm
should be updated when unknown conditions occur. How-
ever, to our knowledge, this point was not discussed in most
works and the question of how does the prognostic method
react to system changes remains unanswered. Therefore, one
can qualify the PHM framework in this case as an open-loop
process. To answer these challenges, the purpose of this work
is to provide a new adaptation to the PHM framework to up-
grade it to a closed-loop process. The proposed framework
allows the construction of decisions while integrating their
effects on the system’s health state evolution in the remain-
ing useful life estimation process. The interactions between
prognostics and decision-making are modeled by building de-
cisions iteratively over the duration of the considered horizon.
Also, the data used as a reference for the prognostic module
are refined to include new variation in the system behavior to
guarantee a consistent prognostic method towards systems’
changes. The Focus of the adaptation of the framework is on
the decision-making process to improve the integration and
the quality of the prognostic information. Therefore, in the
paper, we concentrated more on post-prognostic decisions,
but some elements of thoughts are proposed for the prognos-
tic part. Although the proposition aims to improve certain
points of the PHM framework, as discussed above, it remains
with certain limits based on the following major assumptions:

• The data from the system sensors can be processed and
allows to obtain suitable health indicators.

• The system health state and degradation are supposed
to be observable to a certain extent. Meaning, that from
sensors acquired data, one can estimate with a measur-
able confidence the actual health state or degradation
level of the system.

• The degradation of the system is mastered to some ex-
tent. In other words, one can model the degradation
through physics-based models, stochastic models, data-
driven models or hybrid models
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• The matter of adequate prognostic methods is not ad-
dressed in this paper, under the assumption that adequate
methods exist for short and long term prognosis.

To better introduce the proposed framework, some essential
definitions are presented in the next section.

3. DEFINITIONS

3.1. Elementary Action

In a PHM context while stating the decision problem, there
is a need to define the possible actions that can be applied.
These actions are called, in this context, Elementary Actions.
One can define an elementary action αi as a countable set of
descriptors di,j (attribute aj ,value vi,j). Attributes can be for
instance:

• The type of action: The elementary action can either be
an operational decision as in automatic control, sched-
uled production order, assigned mission, supply chain
management action, or maintenance of a component,
subsystem or the whole system.

• The concerned system, or component: Here, one de-
fines the part of the system concerned by the proposed
action.

• The task: In the case of mission assignment, production
scheduling, or supply chain management, the task to ex-
ecute, or the job the schedule for production is defined
here.

• The control parameters: In the case of automatic con-
trol, this field is used to define the values of the control
parameters. For example in (Langeron et al., 2013), this
attribute corresponds to the new values of the Q and R
matrix of the used LQR controller.

• The new control set-points: Still in the case of auto-
matic control, one can modify the set-points of the con-
trollers and therefore the new reference values are de-
fined here.

• Duration: The duration of the action needs to be defined
or estimated if no exact value can be known.

• Other attributes can be used to fully define the possible
action. These attributes can be different from one activity
to another and also from one application to another.

Therefore, one can write an elementary action as:

αi = {di,j = (aj , vi,j)}Card(αi)
j=1 (1)

For every application, there is a countable set of elementary
actions. Therefore the following notation is used:

• A: The countable set of elementary actions for a specific
application.

• Card(A): The number of elementary actions.

A is defined as:

A = {αi} with i ∈ {1, ..., Card(A)} (2)

3.2. Local Decision

The local decision represents the elementary action execution
on the system. A Local decisions ei is defined with a count-
able set of descriptors di,j (attribute aj , value vi,j). First, lo-
cal decision inherits the descriptors of the elementary action.
They are completed by other descriptors that can be classified
into three categories:

• Schedule related descriptors:
– Start time or date: To define the schedule of the

actions, we need to define the start time or date of
the decision.

– Allocated Resources: Some actions can require a
special set of resources to be executed. Therefore,
when these actions are transformed into decisions
the required resources or the available resources are
assigned to the local decision. The resources could
be (i) material, like special tools for maintenance
activity, or spare parts, or (ii) human, like a techni-
cian, maintenance teams, and production operators.

• Health descriptors: Here, we are going to define two
attributes to describe the evolution of the system health
state with the integration of the present decision. These
attributes are:
– The initial health state indicators: This can be de-

fined by a set of health indicators of the studied sys-
tem before the execution of the local decision.

– The estimated final health state indicators: This is
the set of the estimated final values of the health
indicators after the execution of the local decision.

– Reliability level: This describes the reliability of the
system when executing the specified local decision.

– RUL values, and so on.
• Application related descriptors: In this section of the

local decision definition, we will define the attributes of
the decision in the context of the proposed application.
These attributes are used in the computation of the per-
formance indicators of the application. For example, in
this section we can find:
– Cost: The estimated cost of the execution of the ac-

tion.
– Benefits: The likely benefits from the execution of

the action.
– Mission success rate: The predicted success rate of

the mission if the action defined is integrated.
– and so on.

So a local decision ei can be written as:

ei = {dij = (aj , vi,j)} with j ∈ {1, 2, ..., Card(ei)} (3)
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We suppose that for any studied application there is a finite
number of the local decisions, thus we note:

• E : The countable set of local decisions.

• Card(E): The number of the local decisions in set E .

Therefore, E is defined as:

E = {ei} with i ∈ {1, 2, ..., Card(E)} (4)

For most of the applications, the set of feasible local decision
is time-sensitive. The set of feasible local decisions at instant
t is defined as a subset of the set of possible decisions E . The
feasibility of local decisions is defined by the time constraints
and the local prognosis of the elementary action they repre-
sent. This point is more detailed in section 4.1. One can note:

• F(t): The countable set of feasible local decisions at in-
stant t.

• Card(F(t)): The number of feasible local decisions in
set F(t)

Therefore, F(t) is defined by:

F(t) = {ei} with i ∈ {1, 2, ..., Card(F(t))} (5)

With:
F(t) ⊂ E (6)

3.3. Global Decision

A global decision is a sequence of local decisions over a dura-
tion H called decision horizon. Therefore, a global decision
gu(t) can be defined with a countable set of descriptors Du,j

(attribute Aj , value Vu,j). The descriptors of the global deci-
sion can be classified into three categories:

• Composition Descriptors: In this set of descriptors, the
composition of the global decision is defined. Thus it
contains two attributes:

– The Sequence of local decisions: This attribute con-
tains the sequence of local decisions. For example
the schedule of jobs and maintenance actions.

– The Duration of the Horizon: This attribute will
define the duration of the decision horizon of the
global decision.

• Health Descriptors: Similar to the local decisions,
global decision defines the estimated evolution of the
system’s health state. For this some of the most com-
monly used attributes are presented:

– Initial Health State Indicators: This contains the set
of the initial health indicators before applying the
global decision.

– Final Health State Indicators: This is the set of the
estimated final health indicators after applying the
global decision.

– Reliability Level: The evolution of the reliability of
the system while applying a global decision, could
be a relevant indicator of the system health.

– ...

• Application Related Descriptors: In this category, one
defines the attributes of the decision that are oriented to
the application objective. These attributes are the perfor-
mance indicators of the application plus other descriptors
that can be used in the computation of the performance
indicators. Some examples of the most common indica-
tors are:
– The cost of the global decision
– The predicted gain of the global decision
– The Occupation (%) of the system
– ...

Therefore, gu(t) is defined as:

gu(t) = {Du,j = (Aj , Vu,j)}with j ∈ {1, ..., Card(gu(t))}
(7)

To preserve the consistency of the definitions, the following
notations related to the definition of the global decision are
proposed. Global decisions are related to their time of con-
struction, thus one can note:

• G(t): The set of global decisions at time t.

• gu(t): The uth global decision at time t of G(t).
• Card(G(t)): The number of global decisions in G(t).

Therefore, G(t) is defined as:

G(t) = {gu(t)} with u ∈ {1, 2, ..., Card(G(t))} (8)

In some cases, the number of possible actions can be tremen-
dous causing a considerable number of feasible combinations
and consequently a big set of global decisions. This can be
considered as an optimization problem. Therefore, a suit-
able optimization method from the literature should be used
to construct a smaller set of global decisions by finding the
most interesting sequences of elementary actions. The choice
of such an optimization method is based on the application
specifications in terms of constraints, real-time performances,
the quality of the desired solution and so on. Such a point
should be discussed during the implementation phase.

While the other descriptors may vary from one application
to another, the composition descriptors are common for all
types of applications since they are related to the proposed
framework. Therefore descriptors Du,1 and Du,2 are defined
as:

Du,1 = (Sequence of local decisions, Vu,1) (9)

where:
Vu,1 =

(
ei
)mgu(t)

1
(10)
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and: mgu(t): The number of local decisions that build global
decision gu(t)

Du,2 = (Decision Horizon, Vu,2) (11)

where:
Vu,2 = H(t) (12)

H(t) is the duration of the decision horizon at time t.

4. PHM FRAMEWORK ADAPTATION

One aim of this work is to highlight the inter-dependencies of
prognostics and decision-making. Thus, these two processes
are integrated into a common process within the PHM con-
text. The resulted process consists of building global deci-
sions while iteratively estimating the outcomes of elementary
actions through a decision-building loop. The decision build-
ing loop highlights the interaction between decision-making
and prognostics by including the future loads and conditions
in the prognostic module and emphasizing prognostic infor-
mation in the optimization algorithm. Although the decision
applying loop is a natural process, it was not presented as a
component of the PHM framework. In this paper, we formal-
ize the definition of the decision applying loop and we study
its parameters. This loop estimates dynamically the remain-
ing useful life and/or the health indicators of the system such
as its reliability, degradation level and so on. Thus, it captures
the effect of decisions on the system’s health states. Finally,
to update parameters of both short and long-term prognos-
tics process, we introduce an information loop, which aims
at comparing real evolution of the system health indicators to
the estimated one during the previous period. Based on this
comparison, if the real data is judged to be relevant (important
deviation of the estimation) the prognostic method parame-
ters should be updated. The upgrade of the PHM framework
is presented in this section through the aforementioned loops.

4.1. Estimators and Decisions Builders

The proposed method to highlight the prognostic decision
interactions consists of building elementary actions into se-
quences of decisions while evaluating the outcomes of these
local decisions in terms of the system’s health and the ob-
jective of the studied application. In this context, two new
modules are proposed to be added to the phases of analysis
and decision support as shown in Figure 4.

A decision builder is joined to the decision support phase of
the Figure 2. This decision builder module can interact with
the prognostic phase using an estimator module that is de-
signed to forecast the degradation level of the system. The
two modules are shown in Figure 4 and described as:

• Decision builder: This module is responsible for build-
ing the global decisions thanks to the set of available el-
ementary actions A. This module is part of the decision

support phase of the PHM process. It has four main func-
tions; (i) finding the possible elementary actions, and cre-
ate the set of feasible local decisions F(t) (ii) creating
the set of possible sequences of local decisions S(t) at
time t (iii) evaluating the elements of S(t) (iv) select-
ing and scheduling the suitable sequence of local deci-
sions s∗ from S(t). The decision builder is the first ele-
ment of decision-making in which it will assemble a set
of global decision G(t) at time t. Since post-prognostic
decision-making is considered as an optimization prob-
lem, decision builders can be classified as an optimiza-
tion method. Various optimization methods can be mod-
ified to become a decision builder, such as the search al-
gorithms D∗, A∗, ..., heuristics like the ant colony op-
timization, particle swarm optimization, and so on. The
selection of the suitable decision building method is ap-
plication related and should be addressed during the im-
plementation phase.

• Estimator: This is a function that aims to forecast the
degradation of the system under the new local deci-
sion. It evaluates the outcome in terms of health state
(i.e. degradation, reliability, ...) of the studied system
for each possible elementary action at time t. It is also
equipped with a virtual system, that contains the future
state of the system once a local decision is selected by
the decision builder. This module is part of the analysis
phase of the PHM process. Figure 5 shows an example
of the output of the estimator. Estimator could be defined
as a short term prognostic algorithm that can integrate
future loads of the system. The choice of the used algo-
rithm in this process can be subject to some constraints
like the execution time and/or precision. The estimator
has to evaluate the outcome of a large number of ele-
mentary actions and for some time-sensitive application,
it could be more beneficial to use a swift prediction al-
gorithm to reduce the estimation time. For applications
that are not time-sensitive but that require a high level
of precision, the estimator could be a replicate of the
prognostic algorithm. Therefore, the estimator could be
any model-based or data-driven prognostic algorithm.
One can use various types of methods as estimators,
for example, auto-regressive methods, linear regression-
based methods, particle filters, neural networks, etc...
The novelty here is to include the future local decisions
in the estimation of the system future state. However, we
limit the choice of the estimator by the conditions that it
should be a short-term prognostic approach and it should
take future decisions as an input.

The feasibility of local decisions and their sequences is a two
steps process:

• In the first step, the decision builder considers all pos-
sible local decisions at an instant t. These possible
local decisions are, then, tested against their time con-
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Figure 5. Example of the estimator output

straint. For example, let us consider the local decision
of scheduling a production job at t = 100 u.t. The job
in question has a processing time of 50 u.t. meaning
that its completion date will be equal to 150 u.t. But the
job has a due date equal to 140 u.t. Thus it is judged as
unfeasible. The time aspect of local decisions feasibility
is presented in figure 6. Where, e1 is time-unfeasible and
e2 is time-feasible.

• The second step is dependent on the results of the local
prognosis provided by the estimator. For example, if we
consider another production job that is feasible from a
time point of view. The job could be considered as un-
feasible if the outcome of its local prognosis exceeds the
failure threshold of the system. The health aspect of lo-
cal decisions feasibility is presented in figure 7. Where,
e1 is health-unfeasible and e2 is health-feasible.

A sequence of local decisions is judged to be feasible if all
the local decisions it contains are feasible in both time and
health aspects.

Time

M
ac
h
in
e

e1 due date

t

e1

Time

M
ac
h
in
e

e2 due date

t

e2

Figure 6. Time Feasibility of Local Decisions

4.2. Decision Building Loop

Figure 8 presents the sequential diagram of the decision
building procedure. At the beginning of a PHM Stage k,
the current state of the system is used to update the state
of the estimator. A step of construction is initiated and the
information is transmitted to the decision builder. The latter
considers the set of elementary actions A and create the set
of candidate local decision sequences S(t). The set is feed
to the estimator to obtain the short term prediction of the
systems’ state under each of these sequences. Once all the
local prognostics are performed the set of possible sequences
is updated with the final estimated state of the system and
returned to the decision builder. The latter selects one of
the sequences s∗ based on the performance evaluation. The
selected sequence s∗ is given to the estimator to re-update its
state. The estimator, then, checks the remaining time to the
end of the decision horizon. If the duration of the decision
horizon is reached, the building process is completed. Else,
another step of construction is launched, until the end of the
decision horizon is reached.

Once the decision-making process has received the set of
global decisions G(t). The process can evaluate the evolution
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of the health indicators of each global decision by running it
through the prognostic process then select the suitable global
decision gs(t) to be applied on the system or it can go directly
to the selection process.

Although the construction of one global decision is quite a
sequential process, the building of the set of global decisions
G(t) can be done concurrently. The possibility of construct-
ing several global decisions at the same time depends on the
capacity of the chosen algorithms for the decision builder and
the estimator. For example, if one chooses the ant colony op-
timization as decision builder and linear regression as an es-
timator, the construction of Card(G(t)) global decision can
be done all at once.

4.3. Decision Applying Loop

As said earlier, decisions are built in the PHM context to pre-
vent a system from failing or to mitigate the effects of failure
if avoiding it is no longer an option. Thus, when a global deci-
sion is selected, it will be applied in totality or partially on the
system. The application of decisions (partial or global) leads
to a real evolution of the health state of the system that can
differ from the estimated one. Moreover, to capture the effect
of this feedback, a re-execution of the prognostic and deci-
sion process is needed. Therefore, the proposed framework
is set to be executed more than once, at specified moments
called stages.

At a specific stage k (when t = Tk), the system undergoes
a normal PHM process, from data acquisition to health in-
dicators assessment. Once the current state of the system is
identified, the decision building process is triggered and the
construction of global decisions over the specified horizon
begins. When the decisions are built, the decision-making
module selects a suitable decision for the next horizon. The
selected decision gsk = gs(Tk) is applied to the system until

t = Tk+1 the time of the next stage k + 1. At this new stage
k + 1, the decision horizon is shifted, and the system under-
goes once more the same PHM process. This process can be
done over and over again as much as needed. This dynamic
is represented in Figure 9 by the red feedback wire. An ex-
ample of the decision process at stages k and k + 1 is shown
in Figure 10.

The applied part of the selected global decision gsk between
two consecutive stages k and k+ 1 is called partial decision
of stage k (denoted pk). This partial decision is also repre-
sented by the set of descriptors (Du,j) like the global deci-
sion, although, the values (Vu,j) of the attributes (Aj), here,
are the result of the application of the global decision on the
system. Thus these values Vu,j represent the real values of
the state of health evolution, the cost, and the duration.

The partial decision duration or the duration between two
stages of decision is an important parameter of the proposed
framework. If this duration is reduced to be equal to the dura-
tion of a local decision, then the proposed framework is sim-
ilar to the activities of real-time decision-making like in the
case proposed by Zhang in (Zhang et al., 2014), or the auto-
matic control decisions detailed by Pereira et al. in (Pereira et
al., 2010), Nguyen et al. (Nguyen, Dieulle, & Grall, 2014) or
by Vieira et al. in (Vieira, Kawakami, Galvao, & Yoneyama,
2015) in which the dynamic of the RUL estimation is high.
On the Opposite, if the duration of the partial decision is ex-
tended to be equal to the decision horizon duration, here the
proposed framework is similar to the works that integrates a
rolling horizon like the work of Van Horenbeek and Pintelon
(Van Horenbeek & Pintelon, 2013), plus if we suppose that
the PHM process will be executed only once, the framework
will be treating the post-prognostic decision-making like the
one presented by Herr et al. in (Herr et al., 2014) or (Herr et
al., 2017).

The decision horizon and the duration of the partial decision
are two application-related parameters. We do not define a
formula for these two parameters here since they highly de-
pend on the application. When applying this framework, one
has to study their suitable values to optimize the decision pro-
cess.

4.4. Information Loop

When the global decision is built, the evolution of the system
health indicators is estimated under the selected local deci-
sions. On the other hand, when the partial decision is applied
to the system, the real evolution of the system health indica-
tors is acquired and identified. Therefore, the partial decision
contains both the estimated evolution and the real one. The
difference between the estimated and the resulted evolution of
the system health indicators provides the errors of local prog-
nostics that can be measured by different indicators like the
root mean square error (RMSE). An example of the real and
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estimated evolution of a component are shown in Figure 12.
The evolution of the corresponding RMSE through the stages
of the example is shown in Figure 13. Based on these errors or
their representative metrics, one can fine-tune the parameters
of the estimators to improve the accuracy of the local prog-
nostics. This allows to increase the efficiency of the decision
process. Thus the third loop of the proposed framework is

defined as information loop as presented in Figure 11.

The information loop is considered as a foundation for meth-
ods that aims at fine-tuning the parameters of the estimator.
While the role of the information loop is to gather the real
evolution of the system state and compare it to the estimated
one. The resulting error can be directly used to adjust the
parameters of the estimator. One can find several methods
for the estimator that benefits from the implementation of the
information loop such as artificial intelligent methods, regres-
sion methods, case-based reasoning, and so on. For instance,
the newly available degradation data can be added to the set of
training data for artificial intelligence-based estimators (like
neural networks). Another example is the use of a case-based
reasoning approach as an estimator. In this case, one can
imagine the importance of the feedback information provided
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by the information loop, in the phase of revision to improve
the estimator’s parameters and/on in the phase of memorizing
to save new relevant cases. In the case of regression methods,
the new data can be used to re-adapt the parameters or even
the type of regression model.

The integration of such a loop into a PHM process keeps the
systems model up to date with the real system. Thus for a
complex system with high variability of operating conditions
or system behavior, such an information loop has an impor-
tant in monitoring the system and in allowing the adaptation
of the used methods to the newly available conditions.

4.5. Overview of the Proposed Framework

To summarize this subsection, a new PHM process frame-
work is proposed in which improvements are made on the
classic PHM process by integrating three closed-loops pro-
cesses (Figure 14). This new framework aims at dynamically
estimating the RUL of the system while integrating the feed-
back of the decision on the system through the decision ap-
plying loop. The presented framework emphasizes the re-
lationship between decision-making and prognostic modules
by building decisions and estimating their outcomes via the
decision building loop. Moreover, the information loop can
be used to optimize the estimator’s parameters and to analyze
its performance.

To guarantee the efficiency of this framework, one should
choose the suitable methods to use in the different modules.
Some of the possible methods have been discussed earlier in
the definition of the different modules. Yet, the choice of
methods needs to be based on the treated problem and the
requirement of the application in terms of execution time, ac-
curacy and other constraints metrics.

In the proposed framework, local and global decisions are
defined as a set of descriptors. However, not all descriptors
influence the space of possible decisions. For example, the
id of the production order can be a descriptor of the solution

space while the cost, benefits, and the machine’s health state
at the start and the end of the decision are a consequence of
the schedule/decision. The space of descriptors for local and
global decisions is incredibly large. Therefore, when apply-
ing this framework on a real-life application, a much more
detailed investigation should take place to identify the ade-
quate descriptors for the intended application. Furthermore,
in a general sense, a descriptor could have a large space of
possible values. This could result in a computational explo-
sion. However, in a practical scenario, the options for each
descriptor have only a few options available. These options
could be derived from previous experiences and/or from the
machine’s design.

5. CASE STUDY ILLUSTRATION

Considering the previously presented framework, we pro-
pose now to illustrate how it can be used on an application.
All the details about this illustration are given in the paper
of Bougacha et al. (Bougacha, Varnier, Zerhouni, & Hajri-
Gabouj, 2018). The section contains first a definition of the
problem then some elements of resolution according to the
proposed framework.

5.1. Problem Description

The proposed application is inspired by the studies done on
the computer numerical control (CNC) machines used for
machining. The considered system is known to operate on
different products that come in a variety of sizes, shapes, and
materials. Thus, the machining operations are different from
one product to another. Consequently, the degradation of the
system is highly influenced by the type of product that is pro-
cessed. The CNC machines, also, provide a range of possi-
ble operating parameters. These parameters are defined as the
cutting speed and the feed rate. The degradation of the system
is assumed to be influenced by the chosen production profile
(i.e. the cutting speed and the feed rate). In this application,
without any loss of generality, it is assumed that the higher
the speed of cut and the higher the feed rate is, the faster the
components are deteriorating.

Let’s consider a single CNC machine composed of n non-
identical components that are subject to wear and tear. The
failure of component i causes the failure of the whole sys-
tem (i.e. n-component series system). The failure of a com-
ponent and/or the system is noticed immediately without in-
spection. The degradation of the components is influenced
by the type of product ρp and the operational profile σj used.
The component degradation is described through a variable
Di with i ∈ {1, ..., n}, where {Di(t), t ≥ 0} is a homoge-
neous Gamma Process with shape parameter νi(t) and scale
parameter µi and the following properties:

• Di(t
′ = 0) = 0

• Di(t) has independent increments
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Figure 12. Degradation Evolution of Component Number 1

• For t > 0 and h > 0 during which the CNC machine
is producing product type l with profile j, Di(t + h) −
Di(t) follows a gamma distribution with shape parame-
ter (νi(t+ h)− νi(t)) ∗ γj and scale parameter ρp ∗ µi

The following assumptions are verified in this example:

• The degradation processes of the components are inde-
pendent. In other words, we only considered structural
dependencies from the dependencies described by Nico-
lai and Dekker (Nicolai & Dekker, 2008).

• When the degradation Di of component i reaches the
failure threshold set at 1 (Di ≥ 1), the component fails.

• The degradation level of the components is retrieved at
each inspection date.

• The inspection dates are equally distant and defined by
the value of the duration of the Partial Decision.
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Figure 13. Evolution of RMSE of Component Number 1

• The Partial Decision is equal to the Decision Horizon.
• The inspections are performed at zero cost.
• Maintenance interventions bring the component to an ’as

good as new’ status with a degradation level equal to
zero.

• The corrective maintenance cost and duration are higher
than the predictive ones.

• P types of products can be produced by the CNC, each
type p has a production cost per unit per production pro-
file Cp,j and a price per unit SPp.

• J production profiles can be performed by the CNC, each
production profile has a production duration per unit per
type of product Pj,p.

The aim is to better manage the machine in terms of avail-
ability and reliability. Thus, a compromise between produc-
ing different orders and maintaining the system is needed to

13



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Sensors Signals Features HI(0)

Decision

Observation

System

Sensors

Analysis

Condition
Monitoring

Health
Assessment

Estimator

Prognostics

Decision Support

Decision Builder

Decision Making

Local Prognosis

Local Decisions

Global Decisions

Applying Decision

Fine Tune Estimator
+

−

Estimated Evolution

R
e
a
l
E
v
o
lu
ti
o
n

Remaining

Useful Life

Figure 14. The Closed Loops PHM Process

maximize the benefits of the workshop. The benefits of the
workshop are defined by the difference between the total cost
over the simulation horizon (including production cost, main-
tenance cost and the cost of lost opportunity when the ma-
chine is capable of producing but no order is possible) and
the gain obtained by selling the produced orders.

The presented problem treats mixed decision-making, in
which two options are available either produce a job or
schedule a maintenance intervention. Jobs in this context
are defined as in the case of production scheduling problems,
i.e. each production order l requires a quantity ql of prod-
uct p, the delivery of the order should be done before a due
date dl otherwise some penalties are to be paid for delays,
and once the time exceeds the deadline DLl the order is no
longer valid.

In the next subsection, some elements of resolution according
to the proposed framework are presented. First, the elemen-
tary actions are defined. Then, an example of local decisions
and global decisions is given.

5.2. Elements of Resolution

5.2.1. Elementary Actions

To solve the aforementioned problem, one starts by defin-
ing possible elementary actions. Since the problem is treat-
ing mixed decisions, two kinds of elementary actions are in-
volved:

• Operational Actions; The action should specify the order
to produce and with which production profile.

• Maintenance Actions; The action points out the compo-
nent(s) to be maintained to improve the overall reliability
of the machine.

These elementary actions can be defined as in tables 1, 2.

Table 1. An Example of an Operational Elementary Actions

ai vi,j
Type Production Order

Target CNC Machine
Task Order number 2

Cutting Speed 100 rpm
Feed Rate 10 products per hour
Duration 48 minutes

Table 2. An Example of a Maintenance Elementary Actions

ai vi,j
Type Maintenance

Target Component C1
Duration 60 minutes

5.2.2. Local Decisions

As defined earlier, local decisions are obtained by sche-duling
the elementary actions in the process of jointly scheduling
production and maintenance at time t. Thus, the elementary
actions presented in tables 1 and 2, are transformed into the
following local decisions, presented in tables 3 and 4.

5.2.3. Global Decisions

Global decisions are built in the decision building loop by
scheduling local decision in a sequence. As defined earlier,
global decisions present different categories of descriptors but
they all have in common the first two descriptors; which de-
fine the sequence of the local decisions and the decision hori-
zon. An illustration of a global decision is given in table 5.

5.3. Numerical Example

Let us consider the numerical example in which the machine
is composed of three stochastically degrading components.
The purpose of this example is to provide proof of the utility
of such a proposed framework.
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Table 3. An Example of an Operational Local Decision

Set of
Descriptors Attribute Value

Action
Descriptors

Type
Target
Task

Cutting Speed
Feed Rate
Duration

Production Order
CNC Machine

Order number 2
100 rpm

10 products per
hour

48 minutes
Resolution
Descriptors

Start Time
Needed

Resources

t = 200
none

Health
Descriptors

Initial
Degradation

Final
Degradation
Reliability

Level

(0.547, ..., 0.012)

(0.597, ..., 0.147)

0.4

Application
Related

Descriptors

Quantity
Produced
Cost(e)
Gain(e)

Utilization(%)
Maintenance

120

12
20
20%
none

In this aim, the proposed framework is using an ant colony
optimization (Dorigo & Caro, 1999) method as a decision
builder module and a simple linear regression for the estima-
tor. The components degradation data is obtained by simulat-
ing the gamma process for different combinations of produc-
tion profiles and products. then, based on which the parame-
ters of the linear regression are obtained for each component
under different operating conditions. New degradation data
is progressively acquired when we simulate the application of
new decisions on the machine. This new data will be added to
the estimator to fine-tune its parameters and thus improving
its accuracy as it is shown in Figures 12 and 13.

The proposed approach will be referenced as PHM+. The
system is simulated on a small simulation horizon. The
obtained results are compared to a classical method of pro-
duction scheduling in literature combined with a periodic-
inspection condition-based maintenance protocol. This ap-
proach will be noted M-CBM. For more detail on the M-
CBM algorithm and the ant colony algorithm used, one can
refer to the following works (Bougacha et al., 2018). As a
small description, the algorithm used for production schedul-
ing is the Moore Algorithm as defined in (Moore, 1968), the
choice of this algorithm is based on the objective of minimiz-
ing the production cost by minimizing the number of tardy
jobs. The CBM protocol consists of periodically inspect
the machine, if the degradation of one or more components
exceeds a maintenance threshold, a preventive replacement

Table 4. An Example of a Maintenance Local Decision

Set of
Descriptors Attribute Value

Action
Descriptors

Type
Target

Duration

Maintenance
C1

60 minutes

Resolution
Descriptors

Start Time
Needed

Resources

t = 400

M-Operator 2

Health
Descriptors

Initial
Degradation

Final
Degradation
Reliability

Level

(0.897, ..., 0.562)

(0.0, ..., 0.562)
0.8

Application
Related

Descriptors

Quantity
Produced
Cost(e)
Gain(e)

Utilization(%)
Maintenance

0

20
0
0%
2

takes place otherwise the machine continue its normal func-
tion. While functioning, and if the degradation of one or
more components exceeds a failure threshold, the machine is
stopped and corrective maintenance takes place. Therefore,
the combination of Moore algorithm and CBM strategy aims
to minimize the total cost of the solution (i.e. maintenance
and production costs). Corrective maintenance is assumed
to be more costly and takes more time than a preventive
intervention.

Both PHM+ and M-CBM are simulated in the same period
and the evolution of the component’s degradation under the
two methods are presented respectively in Figures 15 and 16.
It is important to note that the dashed red line presents the
failure threshold. Once the degradation of a component ex-
ceeds this threshold the component breaks down and cor-
rective maintenance takes place. One can easily note that
the degradation of the components is better managed with
PHM+, this can be deduced from the number of maintenance
activities processed on the different components.

Another comparison of the performances of the two methods
is presented in table 6. The methods are compared in terms
of:

• Total cost: including production cost, maintenance cost,
inspection cost, and unavailability cost.

• Expected benefits of the workshop.
• The number of corrective maintenance.
• The number of pieces produced during the simulation.

As shown in table 6, the cost generated using PHM+ is lower
than the one obtained by the M-CBM. This can be explained
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Table 5. An Illustration of a Global Decision

Set of
Descriptors Attribute Value

Composition
Descriptors

Sequence (ei)
Decision
Horizon

(e1, ..., emgk,u
)

Hk

Health
Descriptors

Initial
Degradation

Final
Degradation

(0.897, ..., 0.562)

(0.190, ..., 0.762)

Application
Related

Descriptors

Quantity
Produced
Cost(e)
Gain(e)

Utilization(%)
Maintenance

1200

260
490
98%
2
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Figure 15. PHM+ Results

by the fact, that PHM+ does not present any corrective in-
terventions and it uses different production profiles (rotation
speed and feed rate) that in some cases have a lower cost than
the profile used by the M-CBM. M-CBM presents two cor-
rectives maintenance, these actions can be seen in figure 16,
on component number 3 at times 4158 and 9200. Although
the quantity of pieces produced by M-CBM is larger than
the one produced by PHM+, the expected benefits of PHM+
is higher. The ant colony optimization used in the decision
building loop of PHM+ aims to maximize the benefits of the
workshop by:

• Reducing maintenance interventions.

• Prioritizing jobs that produce products with higher rev-
enue.

• Minimizing the wasted time when the machine is avail-
able for producing but no order is available for produc-
tion by using a slower production speed.
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Figure 16. M-CBM Results

Table 6. Results Comparison

Criteria PHM+ M-CBM
Total Cost (e) 13268,86 17114,58
Benefits (e) 19444.4 16986.02

Number of Corrective
Maintenance 0 2

Quantity Produced 14591 15624

One can conclude that the use of the proposed PHM frame-
work is, potentially, beneficial compared to the classical ways
of decision-making for predictive maintenance. Therefore,
the integration of prognostics and decision-making in a com-
mon process can improve both the prognostics performance
and the health management of the considered system.

6. CONCLUSION

In this paper, we presented an adaptation of the existing PHM
framework by integrating Prognostics and decision-making in
a common process. This new process presents an enhance-
ment for the decision-making of the previous process that
has been introduced by the OSA-CBM (Lebold & Thurston,
2001). The main idea of the updated framework is to build
decisions from elementary actions. At each step, the decision
builder considers the system’s health status and the possible
elementary actions and builds a sequence of these actions.
The obtained sequences are evaluated with a short term prog-
nostic algorithm to estimate their impact on the system. This
decision-building loop is based on the inter-dependencies be-
tween decision-making and prognostics. Thus by implement-
ing this loop, the first objective, of emphasizing the relation-
ship between decision-making and prognostics, is achieved.
The built decisions are transferred to the decision-making and
the prognostic modules to evaluate the evolution of the sys-
tem under these global decisions. One global decision is
then selected by the decision-making algorithm and applied
to the system for a predefined duration. This loop of the
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decision application is responsible for the integration of the
decision’s effects on the system. Combined with the use of
rolling decision horizons this allows us to update the RUL
values and to integrate the new available prognostics informa-
tion in the decision-making process iteratively. Therefore, the
RUL of the system is dynamically estimated and this infor-
mation is more explicitly integrated into the decision-making
process. Finally, an information loop allows the adaptation
of the estimator parameters from one stage to another. Thus,
the framework can dynamically take into consideration the
new changes in the system states and reducing the uncertain-
ties that can be caused by the operating conditions (i.e. future
loads and environmental context). An example of implement-
ing this framework is given on a multi-component single ma-
chine. The machine is used for machining products. The con-
sidered example deals with joint optimization of production
and maintenance.

As a perspective, new applications of the framework on more
complex contexts are in progress. Multiple machines with
different dependencies are in an ongoing study. On the other
hand, the proposed framework requires further investigation
of the possible methods to be used as estimators, decision
builders, and decision-makers. For an instant, one poten-
tial idea could be studying the implementation of a modified
case-based reasoning as both estimator and decision builder.
Another possibility is to study the use of Multi-Agent Sys-
tems to obtain a distributed decision-making process to re-
duce the execution time. One can imagine different archi-
tectures for multi-agent systems in PHM, in which the agent
could presents the resources (like machines, production oper-
ators, and maintenance teams) or the different modules of the
proposed framework. The use of multi-agent systems would
potentially reduce the complexity of the problem resolution.
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Huynh, K. T., Grall, A., & Bérenguer, C. (2017). Assessment
of diagnostic and prognostic condition indices for effi-
cient and robust maintenance decision-making of sys-
tems subject to stress corrosion cracking. Reliability
Engineering & System Safety, 159, 237–254.

Kandukuri, S. T., Klausen, A., Karimi, H. R., & Robbersmyr,
K. G. (2016). A review of diagnostics and prognostics
of low-speed machinery towards wind turbine farm-
level health management. Renewable and Sustainable
Energy Reviews, 53, 697–708.

Khoury, E., Deloux, E., Grall, A., & Bérenguer, C. (2013).
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Comté University.

Skima, H., Varnier, C., Dedu, E., Medjaher, K., & Bourgeois,
J. (2017, February). Post-prognostics decision making
in distributed mems-based systems. Journal of Intelli-
gent Manufacturing.

Sun, B., Zeng, S., Kang, R., & Pecht, M. (2010, January).
Benefits analysis of prognostics in systems. 2010 Prog-
nostics and System Health Management Conference,
1–10.

Tamilselvan, P., & Wang, P. (2013). Failure diagnosis us-
ing deep belief learning based health state classifica-
tion. Reliability Engineering & System Safety, 115,

124–135.
Uckun, S., Goebel, K., & Lucas, P. J. (2008, October). Stan-

dardizing research methods for prognostics. In Inter-
national Conference on Prognostics and Health Man-
agement, 2008. PHM 2008., 1–10.

Vachtsevanos, G., & Wang, P. (2001). Fault prognosis using
dynamic wavelet neural networks. In In autotestcon
proceedings, 2001. ieee systems readiness technology
conference (pp. 857–870). IEEE.

Van Horenbeek, A., & Pintelon, L. (2013). A dynamic predic-
tive maintenance policy for complex multi-component
systems. Reliability Engineering & System Safety,
45(50), 39–50.

Vieira, J. P., Kawakami, R., Galvao, H., & Yoneyama, T.
(2015, December). Predictive control for systems with
loss of actuator effectiveness resulting from degrada-
tion effects. Journal of Control Automation and Elec-
trical Systems, 26(6), 589–598.

Vileiniskis, M., & Remenyte-Prescott, R. (2017). Quan-
titative risk prognostics framework based on petri net
and bow-tie models. Reliability Engineering & System
Safety, 165, 62–73.

Wang, Z., Hu, C., Wang, W., Kong, X., & Zhang, W. (2015).
A prognostics-based spare part ordering and system re-
placement policy for a deteriorating system subjected
to a random lead time. International Journal of Pro-
duction Research, 53(15), 4511–4527.

Welz, Z., Coble, J., Upadhyaya, B., & Hines, W. (2017, Au-
gust). Maintenance-based prognostics of nuclear plant
equipment for long-term operation. Nuclear Engineer-
ing and Technology, 49(5), 914–919.

Wu, G., Vachtsevanos, F., Lewis, M., Roemer, A., & Hess,
B. (2006). Intelligent fault diagnosis and prognosis for
engineering systems. Wiley, Hoboken, NJ.

Yang, Z. M., Djurdjanovic, D., & Ni, J. (2008, Febru-
ary). Maintenance scheduling in manufacturing sys-
tems based on predicted machine degradation. Journal
of Intelligent Manufacturing, 19(1), 87–98.

Zhang, B., Tang, L., Decastro, J., Roemer, M., & Goebel,
K. (2014, July). Autonomous vehicle battery state-of-
charge prognostics enhanced mission planning. Inter-
national Journal of Prognostics and Health Manage-
ment, 5(8).

19


