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ABSTRACT 

Lamb-wave-based nondestructive testing and evaluation 

(NDT/E) methods have drawn much attention due to their 

potential to inspect plate-like structures in a variety of 

industrial applications. To estimate and/or predict fatigue 

crack growth, many research efforts have been made to 

develop data-driven or physics-based methods. Data-driven 

methods show high predictive capability without the need for 

physical domain knowledge; however, fewer data can lead to 

overfitting in the results. On the other hand, physics-based 

methods can provide reliable results without the need for 

measured data; however, small amounts of physical 

information can worsen their predictive capability. In real 

applications, both the measurable data and the physical 

information of systems may be considerably limited; it is thus 

challenging to estimate and/or predict the crack length using 

either the data-driven or physics-based method alone. To 

make use of the advantages and minimize the disadvantages 

of each method, the work outlined in this paper aims to 

develop a hybrid approach that combines the data-driven and 

the physics-based methods for estimation and prediction of 

fatigue crack growth with and without Lamb wave signals. 

First, with Lamb wave signals, a data-driven method based 

on signal processing and the random forest model can be used 

estimate crack lengths. Second, in the absence of Lamb wave 

signals, a physics-based method based on an ensemble 

prognostics approach and Walker’s equation can be used to 

predict crack lengths with the help of the previously 

estimated crack lengths. To demonstrate the validity of the 

proposed approach, a case study is presented using datasets 

provided in the 2019 PHM Conference Data Challenge by the 

PHM Society. The case study confirms that the proposed 

method shows high accuracy; the RMSEs for specimens T7 

and T8 are calculated as 0.2021 and 0.551, respectively. A 

penalty score is calculated as 7.63; this result led to a 2nd place 

finish in the Data Challenge. To the best of the authors’ 

knowledge, this is the first attempt to propose a hybrid 

approach for estimation and prediction of fatigue crack 

growth. 

1. INTRODUCTION 

Nondestructive testing and evaluation (NDT/E) methods 

have attracted a great deal of attention due to their ability to 

inspect machines, vehicles, and structures (Büyüköztürk & 

Taşdemir, 2012). A number of different NDT/E methods 

have been developed over several decades. Among the 

various techniques available, Lamb waves, which are guided 

elastic waves that propagate along thin, plate-like structures, 

have provided a convenient method for prompt and 
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continuous inspection (Cawley & Alleyne, 1996; Yashiro, 

Takatsubo, & Toyama, 2007). In particular, the Lamb-wave-

based NDT/E method has been employed for inspecting 

riveted structures. When transducers are permanently 

attached to these structures, this method has the advantages 

of being able to continuously monitor large areas with a small 

number of transducers (Konstantinidis, Wilcox, & 

Drinkwater, 2007; Wilcox, 1998). This method has been used 

to detect and locate fatigue cracks in structures that are 

caused by repeated cyclic loading. 

Many research efforts have been made to develop data-driven 

or physics-based methods for estimation and prediction of 

fatigue crack growth. As data-driven methods, Mohanty et al. 

presented principal component analysis to extract features 

from Lamb wave signals and proposed the Bayesian-based 

Gaussian process approach to predict fatigue crack growth 

(Mohanty, Chattopadhyay, Peralta, & Das, 2011). Wang et al. 

demonstrated three different machine learning algorithms 

(i.e., extreme learning machine, radial basis function network, 

and a genetic algorithm optimized back propagation network) 

for fatigue crack growth models (Wang, Zhang, Sun, & 

Zhang, 2017). As physics-based methods, Maslouhi 

explained an approach by which Lamb wave signals could be 

incorporated into the empirical model (i.e., Nasgro model) of 

fatigue crack growth (Maslouhi, 2011). He et al. presented 

Lamb-wave-based crack length quantification using finite 

element simulations (He, Ran, Liu, Yang, & Guan, 2017). To 

quantify crack length, a response surface with damage-

sensitive features (normalized amplitudes and phase change) 

was developed using finite element simulations.  

The data-driven method shows high predictive capability 

without the need for physical domain knowledge; however, 

fewer data (e.g., Lamb wave signals) can lead to overfitting 

in the results. On the other hand, the physics-based method 

can provide reliable results without the need for measured 

data; however, a small amount of physical information (e.g., 

geometric dimensions and material properties of specimens) 

can worsen the predictive capability. In real applications, 

both the measurable data and physical information of systems 

are considerably limited; it is thus challenging to estimate 

and/or predict the crack length using either the data-driven or 

physics-based method alone. To make use of the advantages 

of each method, while minimizing the disadvantages, the 

research outlined in this paper aims to develop a hybrid 

approach that combines both data-driven and physics-based 

methods for estimation and prediction of fatigue crack 

growth with and without Lamb wave signals. 

First, when the Lamb wave signals are given, the data-driven 

method is considered, with signal pre-processing and the use 

of a random forest model. A set of features is extracted from 

the pre-processed signals. Then, a random forest model is 

used to estimate crack lengths via optimal feature selection 

and grid-search-based hyper-parameter optimization. Next, 

compared with the data-driven method case, there could be 

two different situations: one is under the same loading 

condition and the other is under a different loading condition. 

Therefore, different physics-based approaches are used to 

predict the crack lengths without the Lamb wave signals. 

Using the assumption that similar fatigue crack growth 

patterns occur under homogeneous loading conditions, an 

ensemble prognostics approach with simplified particle-

filter-based weight updating is used to predict the crack 

lengths. In contrast, when the loading conditions are different, 

it is difficult to use the information from the training 

specimens because the crack propagation patterns would be 

different. Therefore, it is necessary to predict crack lengths 

for the next cycles, only using the previously estimated crack 

lengths for the corresponding test specimen. In this study, 

Walker’s equation-model-based approach is chosen and 

Monte Carlo methods are used to predict the remaining crack 

lengths for the case of different loading conditions. To the 

best of the authors’ knowledge, this is the first attempt to 

propose a hybrid approach for estimation and prediction of 

fatigue crack growth. 

 To demonstrate the validity of the proposed approach, a case 

study is presented using datasets provided in the 2019 PHM 

Conference Data Challenge by the PHM Society. The 

ultimate goal of the Data Challenge problem was to estimate 

crack lengths of a few loading cycles using the given Lamb 

wave signals under constant loading conditions and, further, 

to perform crack prediction without the signals for two 

validation specimens (T7 and T8) under different loading 

conditions (i.e., constant and variable loading conditions for 

specimens T7 and T8, respectively).  

The remainder of this paper is organized as follows. Section 

2 provides a brief review of the problem description outlined 

for the 2019 PHM Conference Data Challenge. Section 3 

demonstrates the proposed hybrid approach that combines 

data-driven and physics-based methods. Validation of the 

proposed method is covered in Section 4. Finally, the 

conclusions of this paper are provided in Section 5. 

2. PROBLEM DEFINITION 

2.1. System Description 

Figure 1 shows the system description outlined for the Data 

Challenge. Piezoelectric sensors (i.e., an actuator and a 

receiver) were placed on the aluminum lab joint specimens to 

test the growth of fatigue cracks. The distance between the 

actuator and the receiver was 161 mm. The actuator 

generated a tone burst signal of a few cycles, and a Lamb 

wave propagated along the path. The receiver measured the 

propagating Lamb wave signals. If a crack formed along the 

path, local geometry deformation (caused by the crack) 

would make the received signals different, as compared to the 

signals that propagate in the absence of a crack.  
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2.2. Data Description 

In the Data Challenge, specimens from the training datasets 

are labeled from T1 to T6; those from the validation datasets 

are labeled T7 and T8. Training datasets from all specimens 

consist of (1) crack lengths and (2) Lamb wave signals 

measured by actuators and receivers for (3) the corresponding 

cycles. Lamb wave signals were measured two times in the 

time domain. For example, the signals for specimen T1 are 

presented in Figure 2. For the validation datasets of 

specimens T7 and T8, Lamb wave signals for some cycles 

were not provided. The signals for T7 are only given for 

cycles 36001, 40167, 44054, and 47022; the signals for T8 

include only cycles 40000, 50000, 70000, 74883, and 76931. 

Table 1 summarizes the given cycles for specimens T1-T8 

and crack lengths for specimens T1-T6. 

Note that specimens T1-T7 were tested under constant 

loading, while the remaining specimen (T8) was tested under 

variable loading. Figures 3 (a) and (b) depict the constant and 

variable loading conditions, respectively. The minimum and 

maximum values of the sinusoidal stress-constant loading in 

specimens T1-T7 are 4.77 MPa and 100.21 MPa, respectively. 

On the other hand, in the fatigue loading spectra under 

variable loading conditions, the initial 500 cycles have a 

maximum value of 90 MPa and a minimum value of 4.77 

MPa. The final 500 cycles have a maximum value of 100.21 

MPa and a minimum value of 4.77 MPa.  

2.3. Scoring Process 

The main objective of the Data Challenge was to minimize 

the discrepancies between the estimated crack lengths and the 

true crack lengths for specimens T7 and T8; the true crack 

lengths were not provided to participants during the Data 

Challenge. For scoring, the 2019 Data Challenge included 

three main penalty functions: (1) a time penalty function; (2) 

an asymmetric penalty function; and (3) a monotonicity 

penalty function. First, the time penalty function was defined 

as  

 ( ) 2 10 iT i x   (1) 

where 
ix  stands for the true crack length. This penalty 

function penalized prediction error at the end of life more 

than at the initial stages of crack growth. Second, the 

asymmetric penalty function was defined as 
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where 
ix stands for the estimated crack length. This penalty 

function penalized underestimation of crack length more than 

overestimation, since underestimation has dire consequences. 

Lastly, the monotonicity penalty function was defined as 
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This penalty function penalized when the estimated crack 

lengths did not follow the physics of the monotonic trend  of 

the crack growth problem. The penalty score S(i) for any  

cycle was defined as the multiplication of the three penalty 

functions. The overall penalty score Ssum was calculated by a 

cumulative summation, specifically 
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i

S i T i A i M i

S S i


  


 (4) 

Thus, a perfect cumulative penalty score was 0, and would 

occur when the predicted crack lengths were exactly equal to 

the true crack lengths. 

Training Set Test Set 

T1 T2 T3 T4 T5 T6 T7 T8 

Cycle 
Crack 

(mm) 
Cycle 

Crack 

(mm) 
Cycle 

Crack 

(mm) 
Cycle 

Crack 

(mm) 
Cycle 

Crack 

(mm) 
Cycle 

Crack 

(mm) 
Cycle Cycle 

50000 0 50000 0 14000 0 55900 0 42000 0 55000 0 36001 40000 

60000 2.18 70033 3.25 50000 0 60200 1.61 46000 0 60078 0.82 40167 50000 

62500 2.76 72000 4.95 57038 2.57 65001 2.17 51000 2.7 68091 2.36 44054 70000 

65500 3.51   60035 4.02 67054 2.74 56000 3.64 69018 3.36 47022 74883 

69025 4.51   62017 4.72 70016 3.13   72516 4.65 49026 76931 

70026 4.90   64019 5.49 71130 4.06   73211 5.08 51030 89237 

70766 7.46   65029 5.9 73210 4.96     53019 92315 

    66012 6.52 75045 7.24     55031 96475 

    66510 6.93        98492 

             100774 

 

Table 1. Given datasets (crack length and cycle) for specimens T1-T8 
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3. METHOD 

3.1. Flowchart of the Proposed Hybrid Approach 

Figure 5 presents the overall flowchart used for the proposed 

hybrid approach that combines data-driven and physics-

based methods to estimate and predict fatigue crack growth 

with and without Lamb wave signals. When Lamb wave 

signals are measured, the proposed data-driven method 

enables estimation of crack lengths. The flowchart of the 

data-driven method consists of five steps, including: (Step 1) 

pre-processing of Lamb wave signals, such as via band-pass 

filter and phase alignment; (Step 2) feature extraction based 

on physical interpretation; (Step 3) development of a random 

forest model; (Step 4) K-fold validation for hyper-parameter 

optimization and optimal feature selection; and (Step 5) crack 

length estimation. Details of each step are provided in Section 

3.2. 

Using the crack length data estimated by the data-driven 

method, the proposed physics-based method enables 

prediction of crack lengths without Lamb wave signals. The 

first step is pre-processing of previously estimated crack 

length data to normalize the crack cycles where the crack 

occurs. After this step, compared with the data-driven method 

case, there could be two different situations: one is under the 

same loading condition and the other is under a different 

loading condition. Assuming that the homogeneous loading 

condition leads to similar fatigue crack growth patterns, an 

ensemble prognostics approach with simplified weight 

updating based on the particle filter is used. The ensemble 

prognostics approach consists of two steps, including: 

generating a probability density function (PDF) for each 

particle and calculating the weights from each PDF. For the 

case of a different loading condition, Walker’s equation is 

used. Walker’s equation approach consists of two steps, 

including: linear regression of crack lengths for the first 

several cycles and model constant estimation. Finally, the 

crack lengths for the remaining cycles can be predicted. 

Details of the two physics-based models are provided in 

Section 3.3. 

3.2. Data-driven Method with Lamb Wave Signals 

The field of Prognostics and Health Management (PHM), 

utilizes several data-driven methods, including signal 

processing, machine learning, and deep learning 

(Benkedjouh, Medjaher, Zerhouni, & Rechak, 2013; Ha et al., 

2016; Oh, Jung, Jeon, & Youn, 2017). Even though deep-

learning-based PHM techniques have the advantage of 

autonomous feature extraction, a significant amount of data 

is required to successfully perform the required tasks (e.g., 

classification and regression). In the Data Challenge, 

however, there are some issues to consider related to deep 

learning, in particular: (1) the small number of specimens in 

the training datasets, (2) the irregular trends of the cycles, and 

 
Figure 1.  Description of the system examined to test 

the fatigue crack growth 

 

 
Figure 2. Lamb wave signals measured by the actuator 

and receiver for  specimen T1 

  

(a) (b) 

Figure 3. Loading conditions in the experiment: (a) 

constant and (b) variable loading 

 
Figure 4. Pre-processed Lamb wave signals in specimen 
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(3) the specimen-dependent data characteristics. These issues 

make it difficult to apply deep learning to develop a 

generalized predictive model in this case. Thus, we proposed 

a data-driven method based on signal processing and machine 

learning. First, pre-processing was needed, as described in 

Section 3.2.1. Then, several features were extracted, as 

outlined in 3.2.2. Using the features, a random forest model 

and k-fold validation are presented in Section 3.2.3 and 3.2.4., 

respectively. 

3.2.1. Pre-processing 

It is worth noting that there are two key points in the given 

raw data. First, the raw signals are contaminated by various 

sources, such as environmental noise, boundary reflections, 

complex Lamb wave propagation, and local geometry 

deformation. Second, since the piezoelectric sensor pairs 

(actuator and receiver) are different for each specimen, the 

different distances between the sensor pairs result in phase 

differences between the specimens.  

To solve these problems, two pre-processing techniques were 

considered: (1) band-pass filter and (2) phase alignment. First, 

band-pass filter was used to remove the noise. The frequency 

of the noise ranged from 150 kHz to 350 kHz. When applying 

the band-pass filter to raw signals, which were measured two 

times, the two denoised signals were found to be very similar. 

Therefore, only the first measured signals were used for the 

training datasets. Second, based on the maximum value of the 

actuator signals, the phases of the actuator signals were 

aligned across both specimens. This phase alignment was 

applied to the signals measured by all actuators and receivers 

for all cycles. The signal processing technique reduced both 

noise and uncertainty. Furthermore, the separation between 

the signals was noticeable in a certain time range; the 

principal S0 mode of the Lamb wave was observed in this 

range. For example, Figure 4 depicts pre-processed Lamb 

wave signals of specimen T4 in the time domain of interest. 

Several features were extracted in this range; details of these 

features are covered in following subsection. 

3.2.2. Feature Extraction 

Feature extraction is a basic step in which factors that reflect 

the characteristics of the signals are obtained (Jeon, Jung, 

Youn, Kim, & Bae, 2015). Based on physical interpretation 

of crack length effects on the received Lamb wave signals, 

three important assumptions were considered. First, the 

energy of the received signals decreased as the crack size 

increased; this is due to a partial reflection of the signal at the 

interface of the crack (Staszewski, Lee, & Traynor, 2007). 

Therefore, the amplitude change might be a property of 

importance when estimating the crack length. Features 

associated with the Lamb wave energy loss were extracted, 

including (1) maximum amplitude, (2) maximum energy, and 

(3) dynamic time warp residual energy. Second, the phase 

change takes place due to scattering (i.e., reflection and 

transmission) at the crack location and the crack-length-

dependent traveling distance (He et al., 2017). Features 

associated with the phase change were extracted, including 

(1) cross-correlation time lag, (2) point time delay, and (3) 

dynamic time warp distance. Next, the correlation between 

specimens with and without a crack decreased as the crack 

length increased; this is because discontinuities at the crack 

 
Figure 5. A flowchart of the proposed hybrid approach for estimating and predicting the fatigue crack growth 
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location result in distortion of the shape of the transmitted 

Lamb wave (Le Clézio, Castaings, & Hosten, 2002). 

Therefore, the correlation coefficient was extracted for the 

loss of the similarity properties. Finally, since fatigue crack 

growth is a sequential process, only the previously estimated 

crack length was additionally taken into account. Considering 

the different ranges of the features, they were standardized 

with a standard normal distribution.  

We thoroughly investigated the trends of all extracted 

features for all cycles in specimens T1-T6. Since the 

distributions of features in the T5 specimen were 

significantly different from the others, the T5 specimen was 

considered an outlier. Therefore, the T5 specimen was 

excluded from the following data-driven model.  

3.2.3. Random Forest Model 

This subsection describes an ensemble-based model, a so-

called random forest model. As compared to a single model, 

the ensemble-based model has the merit of reducing the 

possibility of overestimation. In an ensemble model, multiple 

models are trained to solve the same problem and combined 

for the purpose of getting better results. The random forest 

model has been widely used. The random forest model 

constructs multiple decision trees for the training datasets and 

yields the mean value of the crack lengths estimated in 

individual trees for the validation datasets. By averaging the 

results obtained in the various models, it guarantees a high 

generalization performance. 

In this study, the random forest model uses the ntree bootstrap 

sample data of source samples to build a variety of ntree 

decision tree models with randomness. The random forest 

model is robust against overfitting, as compared to artificial 

neural networks or support vector machines. The random 

forest model was implemented by scikit-learn packages in 

Python (Pedregosa et al., 2011). It should be noted that there 

are two important hyper-parameters required to achieve high 

performance in estimating the fatigue crack growth: (1) 

maximum depth and (2) number of trees. 

3.2.4. K-Fold Validation 

Since neither the T7 nor the T8 specimen is included in the 

training specimens (T1-T6), any proposed model should offer 

good performance when applied to general specimens. 

Therefore, it is of great importance to minimize performance 

metrics (loss function) through optimal feature selection and 

hyper-parameter optimization. Keeping this purpose in mind, 

a k-fold cross validation technique was used with a randomly 

selected set of features from specimens T1-T6 (except T5). 

As shown in Figure 6, the training datasets were partitioned 

into five sub-datasets that correspond to each specimen in the 

k-fold cross validation. Of the five sub-datasets, a single 

dataset was regarded as the test data; the remaining four sub-

datasets were considered training datasets. The k-fold cross-

validation was thus performed five times. The performance 

metric PM was defined as 

  
5

1

1

5
T

i

PM RMSE i


   (5) 

where RMSET(i) stands for the root mean square error (RMSE) 

between the predictive crack lengths and the true crack 

lengths for all cycles of the ith specimen (here, the 5th 

specimen is T6).  

For a certain set of features, the grid-search-based hyper-

parameter optimization was executed to prevent an 

overfitting problem. The objective function was to minimize 

the performance metric PM. The search spaces of maximum 

depth and number of trees, which are discrete variables, were 

set as ndepth={1,2,3} and ntrees={5,10,15,20,25}, respectively.  

The grid search optimization provided not only the 

performance metric PM but also a set of optimal hyper-

parameters for a certain set of features.  

Next, it is desirable to select the best features; this is because 

highly correlated features can worsen the predictive 

performance (Yu & Liu, 2003). Thus, we randomly selected 

a set of features and repetitively performed the hyper-

parameter optimization. By comparing the calculated 

performance metric PM, the five optimal features were 

selected as (1) maximum amplitude, (2) maximum energy, (3) 

phase delay, (4) correlation coefficient, and (5) previous 

crack length information. This set of features includes all 

properties mentioned in Section 3.2.2. 

It should be noted that the random forest model with optimal 

feature selection and hyper-parameters is a stochastic model. 

This model leads to inherent predictive uncertainties, even 

though the same input features are given. Therefore, 20 

independent models were ensembled. Finally, the ensemble 

model estimated the fatigue crack length with high regression 

performance when Lamb wave signals were given. 

3.3. Physics-based Method without Lamb Wave Signals 

When Lamb wave signals are not given, the regression model 

must be developed using only the estimated crack length and 

 

Figure 6. A schematic diagram of the k-fold cross 

validation  
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cycles. However, due to the different loading conditions of 

specimens T7 and T8, two different approaches were 

considered. For the T7 data set, an ensemble prognostics 

method with simplified particle-filter-based weight updating 

was used, as the loading condition was identical to that of the 

training specimens (T1-T6). In contrast, Walker’s method 

based on the equation model was used to estimate the crack 

length for specimen T8, since the loading condition was 

different. For both approaches, pre-processing occurred first, 

as described in Section 3.3.1. The details of each approach 

are described in Sections 3.3.2 and 3.3.3, respectively.  

3.3.1. Pre-processing 

The first step for both approaches was to normalize the 

validation datasets of specimens T7 and T8. Referring to the 

studies of the effects of a sinusoidal, stress-constant 

amplitude on fatigue crack lengths (Rolfe & Barsom, 1977), 

it should be emphasized that the initial crack length 

corresponds to the zero cycle in the field of fatigue crack 

initiation and propagation. In Section 3.2, the data-driven 

method is used to estimate the initial nonzero crack length at 

a certain cycle, denoted as Ninitial. Assuming that the crack 

initiates at cycle Ninitial, Ninitial (44054 in specimen T7 and 

70000 in specimen T8) is subtracted from the cycles in Table 

1, while the cycles that do not have the crack are excluded. 

3.3.2. Ensemble Prognostics Approach 

An ensemble-based prognostics approach was used to 

estimate the crack length of specimen T7. Since the loading 

condition of T7 is identical to that of specimens T1-T6, we 

assumed that the trend of crack propagation would be similar. 

Thus, using a weighted sum of the models for T1 through T6, 

the crack length of specimen T7 was estimated. The 

prognostics approach utilized the following two steps. 

First, exponential models of T1 through T6 were established. 

The sum of two exponentials were used as the model, as 

    0 1 0 1exp expNa A A N B B N   (6) 

where aN is the crack length,  N is the number of fatigue 

cycles, and A0, A1, B0, and B1 are the parameters of the model. 

These two exponentials can represent more complex fatigue 

crack propagation trends than a single exponential model. 

Specifically, the model outlined above fitted T1-T6 data sets 

for the latter cycles, where the penalty weights were high. 

Thus, these two exponentials were used as the ensemble 

models. Note that specimens T2 and T5 were not used, as the 

data sets did not have enough data points for the regression.  

Typical ensemble prognostics derives the weight from the 

difference between the true value and the values from each 

model found in the prior step. It should be noted that fatigue 

crack growth is a nonlinear engineering problem. A Kalman 

filter method, one of the most widely used techniques in the 

field of prognosis modeling, has the ability to analytically 

find model parameters for linear systems. It is well known 

that high accuracy can be guaranteed only for linear systems. 

Due to the nonlinear trends of fatigue crack growth with 

respect to the number of cycles, we used the simplified 

particle filter approach. Since this approach is a simulation-

based prediction technique that is based on trial and error, it 

is appropriate for – and often used for – non-linear systems. 

Figure 7 presents the process of the simplified particle-filter-

based ensemble prognostics approach. First, the exponential 

model (Eq. (6)) of each specimen (T1, T3, T4, and T6) can 

be used to interpolate the crack length for an arbitrary cycle. 

Through the exponential models, the crack lengths of the 

specimens for prior cycles of specimen T7, in which Lamb 

wave signals are given, can be estimated. Next, the Gaussian 

distribution PDFs are generated, as shown in Figure 7; the 

mean of each PDF is equal to the estimated crack length for 

each specimen at the certain cycle. It should be noted that this 

 

Figure 7. An example of simplified particle-filter-based weight calculation for prognostics 
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suggested approach limits the maximum weight, as a 

Gaussian distribution has a maximum value at the mean; if 

there is no limitation of maximum weight with only a few 

models, the weight could quickly converge to one of the 

models and it may lead to a large error at the end. The weight 

of each specimen can be calculated from the value of the 

generated PDFs at the crack length of specimen T7. Finally, 

the summation of crack lengths at the next cycle, multiplied 

by the weights for each specimen, provides the predicted 

crack length.  

The advantages of this proposed method are as follows: (1) 

all specimens can be considered through the limited weight, 

rather than requiring that the predicted crack lengths follow 

the results of a specific specimen with similar tendencies, and 

(2) the crack length can be predicted considering the 

uncertainties from the generated PDFs, which can be found 

from a small number of specimens. 

3.3.3. Walker’s Equation Model 

Many empirical models have been developed for 

characterizing fatigue crack growth rate curve in the field of 

fracture mechanics (Bannantine, Comer, & Handrock, 1990). 

The most common models are the Paris equation, the 

Walker’s equation, and the NASGRO equation. It should be 

noted the Paris equation does not account for the stress ratio 

since it’s only for zero minimum stress of loading conditions. 

On the other hands, the Walker’s equation and the NASGRO 

equation are generalized Paris equation to take stress ratio 

effects into account. However, since the NASGRO equation 

has more model parameters than the Walker equation, it can 

lead to serious uncertainties if the data is not enough to 

estimate model parameters. Therefore, in this study, the 

Walker’s equation is under consideration. 

Using normalized datasets of specimen T8, three estimated 

crack lengths are valid for predicting the remaining five crack 

lengths. To apply Walker’s equation models, several model 

parameters (or coefficients) should be determined to allow an 

accurate model to be obtained. However, three datasets are 

not enough to acquire parameters of an accurate model, as the 

variance of the parameters is too large. To predict the crack 

lengths for cycles 89237 and 92315, a simple linear 

regression model was thus used. Thus, five crack lengths 

were used to build the Walker’s equation model.  

Denoting the initial crack length as ai, the fatigue crack length 

aN after N cycles can be numerically obtained from  

 
1

N

N i

j j

a
a a

N

 
   

 
  (7) 

Under the assumption that the variable loading condition can 

be equivalent to the repeated constant loading, Walker’s 

equation model provides that the increment in crack length 

Δaj for one cycle (ΔN=1) can be expressed as  

   0 max
1

m

j
j

a C K R


    (8) 

where C0 is a constant and m is the slope on the log-log plot; 

γ stands for a constant of the material; R, which is associated 

with the loading conditions, indicates the ratio of minimum 

nominal stress Smin to maximum nominal stress Smax; and Kmax 

indicates the maximum stress intensity factor Kj, which is 

defined as 

 j j
K FS a  (9) 

Here, the stress intensity factor Kj is a function of geometric 

parameter F, nominal stress S, and crack length aj. If the 

aluminum plate is large enough, F can be regarded as one. If 

the repeating history contains NB cycles, the increase in crack 

length ΔaB during one repetition is obtained by 

   0 max

1

1
BN

m

B
j

j

a C K R




    (10) 

The average crack growth per cycle during one repetition of 

the variable loading history can thus be expressed as  

   0 max

1avg B

1
1

BN
m

j
j

a
C K R

N N





 
  

 
  (11) 

By substituting Eq. (11) into Eq. (7), the final crack length af 

for a certain cycle can be obtained. Table 2 summarizes some 

information about the variable loading conditions, such as the 

number of cycles Ni, the minimum nominal stress Smin to 

maximum nominal stress Smax, and ratio R. 

It should be noted that the constants C0, γ, and m could not be 

determined because they depend on the material properties of 

the specimen. In addition, we assumed that there are 

uncertainties σFC in the first cycle, where a nonzero crack 

length is estimated, because no information was given about 

the exact cycle at which the crack initiates. In summary, there 

are four uncertain parameters. 

In the study outlined in this paper, generic algorithm-based 

optimization was considered for parameter estimation. The 

optimization problem can be formulated as  

 

    
5

22

1

0

1
Minimize

5

{ , , , }

Subject to 

WE WE

i

FC

RMSE i y y

C m 



 



 



L U

d d

d

d d d

   (12) 

i Ni Smax (MPa) Smin (MPa) R 

1 500 91 4.77 0.053 

2 500 100.21 4.77 0.0476 

3 1 100.21 4.77 0.0476 

Table 2. Information on variable loading conditions for 

Walker’s equation model 
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where a set of four parameters is denoted as d; yWE(d) is the 

predicted crack length from Walker’s equation model; y 

stands for the estimated crack length from the random forest 

model and the linear regression model for the first five cycles 

70000, 74883, 76931, 89237 and 92315, and; dL and dU are 

the lower and upper bounds of the parameters, respectively. 

Here, the objective function RMSEWE is defined as RMSE 

with more weights on the cracks in the latter cycles. The 

weighting is used to prevent the predicted crack length from 

being overestimated.  

Depending on the initial design variables (parameters of the 

Walker’s equation model), the optimization problem has 

various solutions. Therefore, the sets of estimated parameters 

provided various curves of crack length versus cycle. Taking 

these uncertainties into account, Walker’s equation models 

were generated by Monte Carlo methods. To examine the 

trends of the generated models, we gradually increased the 

number of models. It was observed that the average of the 

models converged to a certain regression model as the 

number of models approached 100. Considering the 

computing cost, an average of 100 generated models was 

used to predict the remaining crack lengths of specimen T8. 

4. VALIDATION OF THE PROPOSED METHOD 

This section describes the validation of the proposed method. 

Recall that the k-fold cross validation provided an optimal set 

of five features: (1) maximum amplitude, (2) maximum 

energy, (3) phase delay, (4) correlation coefficient, and (5) 

previous crack length, as outlined in Section 3.2.4. Figure 8 

presents the trends of optimal features in the training 

specimens (T1-T6) and the validation specimens (T7 and T8) 

with respect to cycles when Lamb wave signals are given. 

Figures 8 (a) and (b) depict the trends of maximum amplitude 

and energy. As the cycle increases, both maximum amplitude 

and energy tend to decrease, due to the impedance mismatch 

(or discontinuities) at the crack location. Figure 8 (c) presents 

the trend of the phase delay. The larger the crack size, the 

greater the phase delay, as the Lamb wave travels a longer 

distance due to local geometry deformation. Figure 8 (d) 

illustrates the trend of the correlation coefficient. The 

correlation coefficients between the specimens without and 

with cracks tends to decrease as the crack length increases; 

this is due to the distorted shapes of the transmitted Lamb 

wave at the interface of the crack. The crack lengths that are 

estimated through use of the data-driven method are listed in 

Table 3. 

Figures 9 (a) and (b) present the predicted crack lengths 

obtained from the ensemble prognostics approach (Section 

3.3.2) and from Walker’s equation model (Section 3.3.3), 

respectively. Cross points of orange and sky-blue colors 

indicate the true crack lengths provided by the PHM Society 

after closing the Data Challenge. Dotted lines of gray and 

black colors indicate predicted crack length for specimens T7 

and T8, respectively. It should be noted that the physics-

 
(a) 

 
(b)

 
(c) 

 
(d) 

Figure 8. Trends of selected optimal features with respect 

to cycles in the data-driven method: (a) maximum 

amplitude; (b) maximum energy; (c) phase delay; and (d) 

correlation coefficient 
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based method can predict the crack length for an arbitrary 

cycle. The predicted crack lengths derived from the physics-

based method for the cycles given in Table 1 are summarized 

in Table 3. As a result, the RMSEs for specimens T7 and T8 

were calculated as 0.2021 and 0.551, respectively. The 

penalty score in the Data Challenge was calculated to be 7.63. 

5. CONCLUSION 

This paper proposed a hybrid approach that combines data-

driven and physics-based methods to estimate and predict the 

fatigue crack growth of an aluminum lap joint specimen with 

and without Lamb wave signals. First, a data-driven method 

based on signal processing and machine learning was used to 

estimate the crack lengths for a few cycles, for which Lamb 

wave signals were given. Band-pass filter and phase 

alignment were used to de-noise the raw Lamb wave signals. 

Next, a random forest model was used to estimate crack 

lengths through optimal feature selection and grid-search-

based hyper-parameter optimization. Second, a physics-

based method was used to predict the remaining crack lengths 

without the use of Lamb wave signals. Due to different 

loading conditions, two approaches were considered: (1) an 

ensemble prognostics approach that simplified particle-filter-

based weight updating for use under the same loading 

conditions, and (2) Walker’s equation models with Monte 

Carlo methods for use under different loading conditions. To 

demonstrate the validity of the proposed approach, a case 

study was presented using the datasets provided in the 2019 

PHM Conference Data Challenge by the PHM Society. The 

case study confirmed that the hybrid approach showed high 

accuracy; the RMSEs for specimens T7 and T8 were 

calculated as 0.2021 and 0.551, respectively. A penalty score 

was calculated as 7.63; this resulted in a 2nd place finish in 

the competition. It can be thus concluded that the proposed 

method overcomes the overfitting characteristics of either 

data-driven or physics-based methods that are caused by the 

lack of data or physical information, respectively. To the best 

of the authors’ knowledge, this is the first attempt to propose 

a hybrid approach for estimation and prediction of fatigue 

crack growth with and without Lamb wave signals. The 

proposed hybrid model can be potentially incorporated into 

the maintenance and management systems. If the model is 

used in an embedded system or a cloud system, crack lengths 

can be estimated and predicted in real-time, as long as data 

acquisition is possible in real-time. Moreover, this approach 

is applicable not only to specimens, but also to large 

engineering systems such as rotors, bearings, and wind 

turbines. However, there are some limitations of 

commercialization such as dependence on hardware 

performance, manual procedures in signal processing, and 

difficulties in automated model improvement even under the 

big data. 

This study has focused on estimating and predicting a 

deterministic value of the crack length at a certain cycle. The 

predictive results will have uncertainties that arise in the 

 (a) 

  (b) 

Figure 9. Predicted fatigue crack length using physics-

based methods: (a) specimen T7 and (b) specimen T8  

T7 

Method Cycle True Prediction 

Data-

driven 

36001 0 0 

40167 0 0 

44054 2.07 2.175 

47022 3.14 3.017 

Physics-

based 

49026 3.56 3.423 

51030 4.13 4.310 

53019 5.05 5.547 

55031 7.22 7.170 

T8 

Data-

driven 

40000 0 0 

50000 0 0 

70000 0 1.722 

74883 1.94 2.291 

76931 2.5 2.565 

Physics-

based 

89237 3.71 3.630 

92315 3.88 3.930 

96475 4.61 4.571 

98492 4.96 4.956 

100774 5.52 5.500 

 

Table 3. Results of the proposed method 
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process of determining the random forest model, simplified 

particle filter, and empirical constant estimation in Walker’s 

equation. In future work, statistical distributions and 

confidence intervals of the predicted crack lengths will be 

investigated using uncertainty propagation analysis. In 

addition, it should be noted that this study was performed 

with a limited number of training and test samples. In future 

work, by generating virtual data (e.g., Lamb wave signals) 

through developing a multiphysics finite element model with 

the help of statistical model calibration, deep-learning-based 

fatigue crack growth prediction will be studied. 
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