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ABSTRACT

The life and condition of a mine truck frame are related to
how the machine is used. Damage from stress cycles is accu-
mulated over time, and measurements throughout the life of
the machine are needed to monitor the condition. This results
in high demands on the durability of sensors, especially in
a harsh mining application. To make a monitoring system
cheap and robust, sensors already available on the vehicles
are preferred rather than additional strain gauges. The main
question in this work is whether the existing on-board sensors
can give the required information to estimate stress signals and
calculate accumulated damage of the frame. Model complex-
ity requirements and sensors selection are also considered. A
final question is whether the accumulated damage can be used
for prognostics and to increase reliability. The investigation is
performed using a large data set from two vehicles operating
in real mine applications. Coherence analysis, ARX-models,
and rain flow counting are techniques used. The results show
that a low number of available on-board sensors like load
cells, damper cylinder positions, and angle transducers can
give enough information to recreate some of the stress signals
measured. The models are also used to show significant dif-
ferences in usage by different operators, and its effect on the
accumulated damage.

1. INTRODUCTION

A common approach for data driven prognostics and health
management is to train models based on historic failure data.
The method relies heavily on the quality of the data that can be
obtained. This work targets how to generate prediction models
for a mine truck in a real application.

Erik Jakobsson et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

There are two main approaches to obtain failure data. The
first is to induce all imaginable types of faults in controlled
tests. This approach can be costly, but also dangerous, for
example in the case of nuclear power plants. Further, there
are no guarantees the investigated faults are the ones that will
actually occur. For frequent faults, like clogged filters or worn
out brakes on a vehicle, the method could work well. But for
certain types of components, such as the frame structure of a
vehicle, it is both hard to detect actual damage through sensor
signals, and time consuming to reach the worn out state.

A second method is to let a vehicle run in normal operation,
and to collect both sensor data and record any faults. To
test different algorithms, such an approach could be quite
effective, since a large number of units could be monitored
at a fairly low cost. But when the target is to generate a
predictive maintenance model for a newly developed machine,
the method has some major drawbacks. Collecting enough
data for creating a failure model will take a long time, require
many units, and are still likely to never see many faults that
can occur. Another issue is that the data sets generated will
most certainly be imbalanced due to the low number of faults
and therefore hard to learn from as discussed in (Japkowicz &
Stephen, 2002).

Slowly developing errors, such as cracks in frames, poses a
specifically complicated case for collecting data since it takes
too long to generate any failure data at all. Before enough
data could be collected, the vehicle is likely to be outdated and
preceded by the next model. The result is that neither of the
two common methods to collect data are suitable in this case.
Physics based modeling, PBM, is one approach when failure
data is insufficient, as discussed in (Zio, 2016).

For the type of mine truck studied here, damage accumulation
can be such a physics based approach. Instead of detecting
actual faults, the complete time history of the vehicle can be
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used to estimate how much of its operational life that has been
consumed and compare to known material data. In this way,
known theory on material behavior can be combined with
on-line monitoring on a vehicle. This also enables valida-
tion of the method using only a small number of vehicles and
relatively short time periods, assuming the relation between
stress cycles and failure probability is correct. The rate of life
consumption is dependent on how the vehicle is used, and
on the external loads affecting it (Gurgenci & Guan, 2001).
Such an approach is commonly used in fatigue analysis, where
strain gauges can be used to measure stress in a structure and
accumulated damage be calculated. However for mobile ma-
chinery, the introduction of a large number of strain gauges on
each machine is of little interest given the increased complex-
ity and high cost to maintain such a system (Molent, Barter,
& Foster, 2012; Molent & Aktepe, 2000). Accelerometers in-
stead of strain gauges is one option, but as seen in (Koistinen
& Juuso, 2015) also these robust sensors are prone to failure
when used on mining machinery.

This paper suggests an alternative to equip machines with high
cost sensors, where different types of sensors already available
on-board the machines are used to recreate a stress history sig-
nal. This is commonly known as operational load monitoring
in the aerospace industry (Staszewski, Boller, & Tomlinson,
2004; Abelkis & Potter, 1979). In (Pais & Kim, 2015), an
approach where finite element modeling is combined with an
analytical model to recreate a stress signal is developed. This
requires deep knowledge on how loads affect the structure.
To reduce the need for such detailed system knowledge, the
contribution of this work is how to use a data set under real
operating conditions to find a linear relationship between stan-
dard on-board sensors and temporary strain gauge sensors on a
vehicle, and how to combine the result with fatique prediction
to reach a measure of accumulated damage. The work also
covers how to select signals for such a linear model, and what
level of complexity is required. For future products, this rela-
tionship can be found using high fidelity simulation models,
thus enabling the creation of a condition monitoring system
already during the design phase of the vehicle. Some ideas
such as the use of coherence, auto regressive models and dam-
age accumulation are shared with previous work (Jakobsson,
Frisk, Pettersson, & Krysander, 2017). Major differences from
(Jakobsson et al., 2017) include results from different operat-
ing modes, segmentation, model complexity considerations
and long term damage and prognostics. The data-set used for
this work is also vastly different from previous work since
other types of sensors and sampling frequencies are used.

Underground mining trucks share most mechanical character-
istics with other more commonly known earth moving ma-
chinery, such as dumpers and dump trucks used in surface
applications. Some differences worth mentioning are their
more rigid and compact design, and the absence of damping
at the rear axle. This makes them suitable to be modeled as

linear systems as proposed. However, the main difference
to surface vehicles lies not within the mechanics, but rather
in the harsh environment in which the vehicles are operated.
Mines are a damp, dusty, and often corrosive environment.
This makes sensor installation a difficult task. In many mines
the maintenance of machines is also kept to a minimum, and
only systems critical for the immediate operation are kept
in working order. This is catastrophic for more long term
measurements, where benefits for the customer only becomes
useful over time, and in particular for the damage accumula-
tion calculation, where a continuous measurement over the full
life span of the machine is required. This makes the proposed
technique of using available sensors, critical for short term
operation, to estimate long term damage especially suited for
mining machinery.

The use of existing on-board sensors is an enabler for imple-
menting the models developed here on existing vehicles, and
is one step towards the target of fleet wide prognostics (Zio,
2016). By comparing vehicles from different sites, applica-
tions and operating conditions the full potential of prognostics
and health management can be unlocked.

2. PROBLEM FORMULATION

A mine truck contains numerous sensors intended to supply the
on-board control system with information. Load sensors for
production target follow up, inclination sensors for guaranteed
stability, pressure sensors for controlling the hydraulic system
are examples. The main question of this work is: Can these
sensors be used to estimate damage on the mine truck frame for
prognostic purposes, even though they were not at all designed
for such a task? This main research question is divided into
the following sub questions:

Q1. From a large number of non-dedicated sensors, how can
one select the most appropriate sensors to use for damage
estimation purposes?

Q2. Is it possible to use a model-free approach, such as statis-
tics on a single on-board sensor, to estimate accumulated
damage at a point on the frame?

Q3. If a model-free single signal approach is not sufficient, is
a linear model with multiple inputs such as an autoregressive
model, enough to recreate a stress signal usable for damage
accumulation calculations? And if so, is this possible for all
different damage generating tasks a vehicle performs?

Q4. How can the developed models be used for prognostic
purposes, and in the long run help predicting failure, ease
maintenance planning, and improve reliability?

To answer these questions, a large data set with vehicles from
two different mine sites during real operation is used. Different
model-free and model-based approaches are evaluated, and
accumulated damage calculations are verified against the real
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Figure 1. Relationship between stress range and the number
of cycles until fatigue failure occurs for a given probability,
here 2.3%. For a given stress range level, the structure can
withstand a number of cycles as given by the curve.

data.

Once a model is found, the intention is to enable a condition
monitoring system where the only modification required on
the machine is a software upgrade. The condition monitoring
capabilities will preferably cover any point modeled in the
structure, but hopefully also generalize to a measure on how
roughly the machine is used.

3. BACKGROUND

To give the reader some more background on the techniques
used, a short summary follows. Three techniques are pre-
sented: Accumulated damage, Coherence, and ARX models.

3.1. Rain flow count and accumulated damage

Cycle counting and damage accumulation is commonly used
to evaluate the damage caused by a certain stress-time signal.
A typical metallic material can withstand a certain number
of load cycles with a given stress range before failure. The
number of cycles is dependent on the cycle amplitude, and the
relation is often presented in the stress to number of cycles-
diagram or SN-diagram for short. More information on metal
fatigue and SN-diagrams can be found in (Stephens, Fatemi,
Stephens, & Fuchs, 2000). For this work, the SN-diagram
(Byggavdelningen, Göransson, & Åkerlund, 1999) in Fig. 1 is
used.

A recognized way to handle spectral time-stress signals con-
taining variable amplitude loading is by using the rain flow
counting method (ASTM E 1049-85 (Reapproved 1997), 1999)
and then to apply the Palmgren-Miner rule for damage accumu-
lation (Palmgren, 1924). Rain flow counting is used to define
load cycles of varying amplitude from a stress-time-signal.
The cycles are sorted in bins according to stress amplitude,

and the Palmgren-Miner rule stated as

D =

k∑
i=1

ni
Ni

(1)

is used to evaluate and sum up the accumulated damage for
each bin. In (1), ni is the number of cycles at the stress
amplitude indexed by i from the rain flow count, and Ni is
the number of constant amplitude cycles until fatigue failure
at the same stress range given by the SN-diagram. D is the
accumulated damage.

For future prognostics and real-time implementations, work is
available on real-time rain flow counting (Musallam & John-
son, 2012) but was not further investigated in this work since
complete time series data was available.

3.2. The coherence function

In order to minimize the complexity of a future measurement
system, it is important to have as few sensors as possible. To
reduce the number of input signals, signals can be discarded
based on what input signals contained the most information to
describe a given output signal. The ordinary coherence func-
tion (Newland, 2012) describes how much of a systems output
signal that can be explained using a linear relationship from
the input signal, for each frequency covered in the measure-
ment. If the ordinary coherence function approaches one, the
relationship is purely linear and noise free. A low coherence
indicates either a lack of relation between input and output, or
that the relation is highly non-linear or contaminated by noise.

Let xt and yt be input and output signal respectively. Then
the ordinary coherence Cyx is defined as

Cyx(f) =
|Gyx(f)|2

Gxx(f)Gyy(f)
, (2)

where Gyx(f) is the cross spectral density, and Gxx(f),
Gyy(f) the auto-spectral density for the input and output sig-
nal respectively.

3.3. System identification and ARX models

System identification can be used to create models from multi-
ple input signals, to a single output signal. The single input
single output ARX (AutoRegressive model with eXogenous
inputs) model is given by

yt + a1yt−1 + · · ·+ ana
yt−na

=

b1ut−nk
+ · · ·+ bnb

ut−nk−nb+1 + et (3)

where yt is the output at time t and ut is the input at time t.
Parameters a1, . . . , ana

, b1, . . . , bnb
are adjusted to create the

best fit of the model, and nk is an optional time delay. The
term et represents the noise.
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In matrix notation, expanded to multiple inputs, the expression
can be written as a linear regression

y(t) = ϕT
t θ + et (4)

where{
ϕ(t) = (−yt−1, . . . ,−yt−na , u

1
t , . . . , u

1
t−nb

, unb
t , . . . , unb

t−nb
)T

θ = (a1, . . . , ana , b
1
1, . . . , b

1
nb
, bnu

1 , . . . , bnu
nb

).

The multiple input signals are notated with superscripts from 1
to nu where nu is the number of input signals. The same nota-
tion is used for the corresponding set of parameters b1, . . . , bnu

The parameter vector θ in (4) can be estimated using a least
squares approach. This minimizes the residual between the
measured and estimated stress signals, and since the least
squares problem is convex, a global optimum is found. For
more details, see (Ljung, 1999).

4. DATA AND SYSTEM DESCRIPTION

This section describes the data available and also briefly how
the particular type of machine is used.

4.1. System description

The Epiroc MT65 mine truck is a heavy-duty machine de-
signed for usage in underground mining. Equipped with a 567
kW engine, it is rated for 65 metric tons payload. A typical
usage cycle includes the following:

– Loading, when a wheel loader drops rock material into the
dump box of the truck. Typically 3 scoops are required to
fill the box, resulting in over 20 metric tons per scoop.

– Hauling, when the truck moves the material. A common
scenario is driving up a steep incline, possibly for hours,
until the machine reaches the surface of the mine. Roads
vary from paved roads to very rough gravel roads.

– Unloading, when the truck lifts the dump box and the
load falls off.

– Driving empty, when the truck drives back to be loaded
once more.

There is also a risk other use cases contribute with a non-
negligible amount to the accumulated damage. Examples of
such cases are compaction of the load using a large wheel
loader or hitting a rock wall while driving. This type of events
are unknown, but possibly present in the data sets available.

4.2. Available sensors

The machines used in the study contain both standard sensors
and a number of high sampling rate sensors not commonly
available on the Epiroc Mine trucks. Some sensors include

multiple directions, which is indicated with x,y,z in the sensor
name. Some key sensor positions are shown in Fig. 2.

Standard sensors on the machine are:

– Vehicle speed, (e1)
– Load sensor at front point, (lc1)
– Load sensor at left pivot point, (lc2)
– Load sensor at right pivot point, (lc3)
– Inclination sensor in vehicle pitch direction, (incx)
– Inclination sensor in vehicle roll direction, (incy)
– Length of left shock absorber, (h1). The equilibrium

location can be manually controlled.
– Length of right shock absorber, (h2). The equilibrium

location can be manually controlled.
– Steering angle sensor, (ang1)
– Steering pressure, (p5). This is hydraulically connected

to the dumping cylinders while dumping takes place.

Additional sensors, available during these trials only are:

– Two 3-axis accelerometers, (a1 and a2)
– One 2-axis accelerometer, (a3)
– Two pressure sensors for steering cylinders, (p1 and p2)
– Two pressure sensors for damping cylinders, (p3 and p4)
– One 3-axis gyroscope, (g1, only on a few experiments)

To be able to calculate reference damage, the data set also
contains 25 strain gauges attached to the frame and dump
box of the machine, s1-s25. The locations of these sensors
were chosen as critical locations with the purpose to verify
the development Finite Element Analysis models. The selec-
tion was not part of this work. Not all sensors were available
at all times. In particular sensors s11, s12, and s14-s16 on
the dumpbox were removed due to a change of dumpbox at
some time during the trials. From the available sensors, s6
was selected for further investigation and model generation for
two main reasons: First, it was one of few strain sensors that
didn’t suffer from various kinds of faults during the measure-
ments. Second, the location of s6 makes it interesting since
strain at this location is affected both when driving and when
loading/unloading.

For a shorter measurement period it is possible to use strain
gauges, even if they are considered too fragile to be useful
during the full life of a machine.

4.3. Processing of data

Data was collected using two separate logging systems. One
system handled logging of strain gauge and accelerometer
data, at a sampling rate of 500Hz. The other system logged all
messages available on the vehicle’s communication bus. Dif-
ferent messages were sent at different rates, but most signals
of interest were available at approximately 25Hz.
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Figure 2. A selection of sensor locations on the mine truck
frame. Remaining sensors s18-s25 where located on the dump
box, not included in this image. Important standard sensors
are highlighted in green, and the investigated output signal in
red.

Data was post-processed to generate a homogeneous data set
suitable for system identification and other forms of machine
learning. The following procedure was used:

– Resample both data-sets to 50Hz using an anti-aliasing
low pass filter and zero padding.

– Use correlation analysis on a pressure, that was measured
using both logging systems, to find time shifts between
the signals.

– Merge 50Hz data into a single array.
– Validate signal quality and reject faulty measurements

(mainly failing strain gauges).

To ensure that the down sampling of the signals did not cause
major loss of information, accumulated damage for down sam-
pled stress signals are compared to accumulated damage for
the high frequency signals. Fig. 3 shows how much difference
it makes on the accumulated damage to down sample the strain
signals to 50Hz. As seen, some sensor positions capture most
of the accumulated damage at 50Hz, while other positions do
not. The reason is that damage in some positions are driven
by high frequency components, and other by low frequency
components.

Accurate synchronization of the signals from the different
measurement systems showed to be of high importance for
the modeling technique used. Due to differences between
the two measurement systems’ clocks, the signals in the two
systems slowly drifted apart and this can cause problems when
several measurements are used to generate a model. Since the
modeling technique used relies on a linear relation between
input and output signal, any increase/decrease in time delay
between the signals cause inaccuracies. To solve the issue, the
data is synchronized using shorter time intervals.

Table 1 shows a summary of the available data set. Not much is
known about the actual usage of the machine, since no detailed
log-book was kept during the trials. From investigating the
full data set one can draw some conclusions about the main
differences of the sites:

– The truck at site 1 haul smaller loads, with an average

Accumulated damage captured at 50Hz
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Figure 3. Accumulated damage captured by a downsampled
strain signal compared to the original signal. For signal s6,
around 90% is captured, meaning that most damage originates
from low frequency components at this position.

Table 1. The data set available

Site 1 Site 2

Number of vehicles 1 1
Number of load cycles 775 190

Calendar time 4mo, 17d 2mo, 14d
Total time 442h 238h

Hauling time 130h 116h
Driving empty time 102h 83h

around 38 tonnes. The truck at site 2 often uses the full
payload capability with an average around 53 tonnes.

– The truck at site 1 drives shorter distances, with a typical
duration of 0.5 hours complete cycle. The truck at site
2 drives longer distances, with a typical duration of 2.5
hours.

5. SIGNAL SELECTION AND AVAILABLE INFORMATION

The data for this work contains a large number of sensors
and an important task is to investigate what input signals
are most informative about the output signals. This section
describes how signal selection can be done with the purpose
to create a linear model, and thus answers question Q1 from
the problem formulation. The selection is also important for a
future implementation of such a system, where the number of
sensors should be kept to a minimum for cost and complexity
reasons. Linear models are of interest, which lets us use the
coherence function to give valuable information on what input
signals contain information on the output signals.

Fig. 4 shows the average coherence in the range 0 to 12.5Hz
between different signals for a half-hour long driving segment.

5



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

St
an

da
rd

A
dd

iti
on

al

s1 s2 s3 s4 s5 s6 s7 s8 s9
s1

0x
s1

0y
s1

0z s1
1

s1
2

s1
3x

s1
3y

s1
3z s1
4

s1
5

s1
6

s1
7x

s1
7y

s1
7z s1
8

s1
9

lc1
lc2
lc3

incx
incy

h1
h2
p5

a1x
a1y
a1z
a2x
a2y
a2z
a3x
a3z
p1
p2
p3
p4 0

0.1

0.2

0.3

0.4

Figure 4. Average coherence in the range 0-12.5Hz for input-
output signal combinations. Black indicates high coherence
and white low coherence. Sensors above the red line are
standard sensors on the vehicles today, and are the sensors
considered for further investigation.

The frequency range 0 to 12.5Hz corresponds to the Nyquist
frequency of the signals with the lowest sampling rate, and
is thus the range where the signals are valid without aliasing.
The figure gives an overview of which input signal that can be
used to estimate an output signal with a linear model. A black
field indicates high coherence between the two signals, and
a white field indicates no coherence. No field is completely
black, since this would mean that there is no noise present
in the measurement. It would also mean that no other input
signal contains any additional information, since the output is
completely explained by the single input signal and a linear
model through the definition of coherence.

More details on the frequency dependency of coherence are
seen in Fig. 5 that shows how some signals have high coher-
ence in specific frequency regions. Signal lc3 is a good choice
of the standard sensors for use in a linear model, showing high
coherence from 0-5 Hz. This is a reasonable result, since lc3
is a load cell located near the s6 strain sensor. Signal h1 is a
length sensor for the vehicle suspension, showing some coher-
ence in the region 0-6Hz, but much lower than the load cell.
Signals p5 and ang1 are a pump pressure and the waist steering
angle respectively. Their low coherence shows they do not
need to be part of the model development as they contain little
information on strain at s6 while driving.

The specific selection of signals for different tasks of the vehi-
cle are seen in Fig. 6. The signals with the highest coherence
are chosen for each case, and the selection for further work
is marked by “x”. Driving tasks, empty and hauling, depend
on the same sensors as expected. The loading task is mainly
dependent on the load cells located close to the box being
filled with material. The unloading task shows low coherence
for sensor lc1, and high coherence for p5. This is intuitive
since force is shifted from the load cell lc1, to the hydraulic
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Figure 5. Coherence between a selection of input signals,
and the s6 output signal. Signal lc3 shows a large linear
relationship as is probably useful to create a linear model. p5
and ang1 can be deselected for further work since they show
hardly no coherence at all for the s6 signal.
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Figure 6. Level of coherence (shaded). Symbol “x” marks the
input signals selected (horizontal axis) for model generation
for signal s6. The choice is based on the level of coherence
for each signal during the performed task (vertical axis).

cylinders with pressure p5 during unloading.

The coherence investigation shows there are linear relations
available between a number of available on-board sensors in
the data set. This suggests that available on-board sensors do
contain useful information on damage generating processes.
Whether this is sufficient to create useful models is investigated
in the following sections.

6. MODEL FREE APPROACHES

For a condition monitoring system for a mine truck, the sim-
plest possible algorithm is preferred. To correlate individual
statistic measures from the input signals to accumulated dam-
age (see Section 3.1) at the output signals represents such
algorithms. A number of investigations are presented below
to answer question Q2 in the problem formulation. The target
to find if a model free approach is sufficient for the task of
estimating accumulated damage. Only driving with the vehicle
is included in these examples.
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Figure 7. Damage accumulation rate for a large number of
hauling segments. The figure shows no clear relationship
between mass carried by the vehicle and the accumulated
damage suffered.

Accumulated damage for signal s is given by (1) as

D =

k∑
i=1

ni
Ni

(5)

where the number of cycles ni for each stress range i during
time segment τ is given by

{n1, . . . , nk} = rfc(s(t)), t ∈ τ (6)

and damage accumulation rate for signal s is defined as

DR =
1

|τ |

k∑
i=1

ni
Ni

(7)

where s(t) is the stress signal for time t, τ a fixed size time
segment, D the Accumulated damage, DR the Damage accu-
mulation rate, rfc() the rain flow counting algorithm, Ni the
number of cycles until failure of amplitude range i, as given
by Fig. 1, and k is the number of cycle ranges.

6.1. Mass carried

The mass carried by the vehicle is believed to influence the
amount of damage generated. To verify this the damage accu-
mulation rate, i.e., the damage accumulation for the hauling
segment divided by its length was plotted against the load
carried during the hauling segment. This was done for a large
number of hauling segments from both available sites. Fig. 7
shows no clear trend between the load carried and the damage
accumulation at location s6.
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Figure 8. Damage accumulation rate for a large number of
hauling segments. The figure shows no clear relationship
between vehicle speed and the accumulated damage suffered,
needed for the unloaded nor the loaded case of driving.

6.2. Travelling speed

Looking at the average speed traveled for a full hauling seg-
ment is not a good way to evaluate the influence of speed on
accumulated damage, since the segments typically contain a
range of speeds. A better option is to divide the segments into
shorter sections with less varying speed, and compare the dam-
age generation for such sections. Fig. 8 shows accumulated
damage vs. vehicle speed for a large number of two-minute
driving segments. The lack of trend between speed and ac-
cumulated damage shows that no simple relation exists. One
reason for this could be that the driving speed is related to the
road condition through the operator. If the road is rough, the
operator is likely to reduce speed, to maintain a certain level of
perceived vibration. This behavior would mask the influence
of speed on accumulated damage.

6.3. Standard deviation of load sensors

The load sensors gives important information about the stress
signals, as shown in the coherence analysis. Since oscillations
drives accumulated damage, the standard deviation of these
signals could be closely related, if the assumption of similar
frequency content is done. Fig. 9 shows the damage accumula-
tion rate vs standard deviation of the load cell signal for a large
number of hauling segments for two different mine sites. Some
trend can be seen that higher standard deviation corresponds
to a larger damage accumulation rate. The large difference
between the two different sites show that some other parameter
is also effecting the relation, and only using the standard devi-
ation will not be sufficient to predict the damage accumulation
accurately.
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Figure 9. Damage accumulation rate vs. standard deviation of
a load sensor signal for a large number of hauling segments.
The figure shows some relation between standard deviation
and the accumulated damage suffered.

Table 2. Correlation results against accumulated damage rate
for the different measured quantities.

Measured quantity Combined Unloaded Loaded

Mass -0.14 - -
Speed 0.09 -0.06 0.35

Std dev. load 0.09 0.02 0.59
Rainflow load 0.33 0.16 0.61

6.4. Cycle count on load cell signal

Using a rain flow cycle counting algorithm directly on an input
signal is a way to capture similar load changes as is done in
the strain signal. Fig. 10 show accumulated damage plotted
against a rain flow count on one of the load cells. The linear
trends in the figure indicate some relationship between the rain
flow count on the load sensor and the associated damage. As in
the standard deviation plot, the spread is large, and variations
exist between the two test sites.

6.5. Correlation

Table 2 shows correlations in summarized form. Some moder-
ate correlation is seen, in particular when separating out the
driving cases with load. None of the investigated statistics are
deemed sufficiently good for estimating accumulated damage.
To use standard deviation or cycle counting on one of the load
cell signals would however give a better result than to simply
assume constant damage generation over time. Since large
variations in damage are seen that are not explained by the
single statistics, model-based approaches with multiple inputs
are investigated.
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Figure 10. Damage accumulation rate vs. rain flow count on a
load sensor signal directly. A slight linear trend can be seen,
but the noise is large. Variation between the sites also exist.

7. DIVIDING THE DRIVING CYCLE

Since statistics on a single signal did not explain the varia-
tions in accumulated damage, models with multiple inputs are
investigated next. First, a single model for the entire cycle
is presented and then an improved approach using segments
based on what operation the vehicle performs is shown.

7.1. A single model for entire driving cycle

To use a single model for the full driving cycle would be the
least complicated approach of using a linear model. There
would be no need to keep track on what the machine is doing,
or when to switch between different models. Fig. 11 shows that
such an approach is not possible using a single linear model
from all available input signals. During the first section, the
machine is driving without load and stress is underestimated.
During loading the model is unable to recreate the amplitude of
the steps as mass increases. Hauling is fairly well represented
but stresses from unloading are missing completely. Looking
at the vehicle structure, these results are intuitive. While
driving, the vehicle is largely linear as long as the load does not
move around considerably. The main source of excitation is
the road profile, entering the vehicle through the wheels. When
unloading the vehicle, the load paths change considerably. All
force acting on the front load cell is shifted over to the dump
cylinders. As the load is lifted, load also falls off, generating
even more changes to the previous mechanical system which
had constant mass. The driving force changes from wheel
input, to oscillations from load cylinder end stops, and falling
rocks. To have a single linear model capturing such variations
does not work well and a multi-model approach is needed.
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Figure 11. Results from having a single model for the entire
operating cycle of the machine. The driving portion is esti-
mated fairly well. The loading portion fails to capture the
magnitude of stress as a result of load increase. Worst result
is seen for unloading, where the model completely misses the
very important oscillation peaks.

7.2. A need for segmentation

To find better models, the data needs to be partitioned into dif-
ferent segments where the vehicle behavior is as close to linear
as possible within the same segment. The main changes of the
vehicle creating non-linearities are change of mass in the box,
and change of shape of the vehicle when raising the box to un-
load. This gives four main segments: driving empty, loading,
hauling, and unloading. A simple and sufficient method devel-
oped for dividing the measurement data into these segments is
described next.

First the break points for different segments are located, based
on two conditions. If the vehicle speed passes a threshold
above the noise level of the speed signal, a new segment
is created. For this case 0.1km/h is chosen. Loading and
unloading typically takes place while the machine is stationary,
and this condition creates new segments for each load change.
If the sensor for checking if the box is closed changes state, a
new segment is created since this indicates that the machine
has changed shape by opening the box. The mass signal is not
a good candidate for setting the break points, due to its high
noise level while driving.

The second step is to determine which of the following condi-
tions are true between each break point from step one. These
conditions ensure that no single segment can be placed in two
different categories.

• Idle: Average speed < 0.1 km/h and no mass change > 3
tonne and no box open.

• Hauling: Average speed > 0.1 km/h and mass in
box > 10 tonne and no box open and no mass change > 3
tonne.

• Unloading: (Box open or a mass decrease > 3 tonne to
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Figure 12. Drive cycle segments for one full working cycle
based on speed, mass and box location

next segment) and average speed < 0.1 km/h .

• Loading: Mass increase > 3 tonne during the segment and
average speed < 0.1 km/h and no box open.

• Driving empty: Average speed > 0.1 km/h and mass in
box < 10 tonne and no box open and no mass change > 3
tonne.

• Mixed: Average speed > 0.1 km/h and (mass change
> 3 tonne or box open), i.e., driving while loading or
unloading.

The segments of a complete driving cycle are shown for each
segment on the measured mass signal in Fig. 12.

7.3. Damage accumulation for different segments

To show the need for modeling the different segments, the
accumulated damage (see Section 3.1) for each segment is
shown in Fig. 13 and Fig. 14. For signal s2, located on a
suspension component in the front of the truck, hauling and
driving empty causes most of the damage as seen in Fig. 14.
For signal s6, it is the unloading task that generates the main
part of the damage as seen in Fig. 13. Hence the unloading
model is very important to capture most of the damage on
signal s6. The need for different models to capture the full
cycle is clear since loading, driving empty, and hauling all
have large contributions to the overall damage.

8. LINEAR MODELS FOR DIFFERENT SEGMENTS

This section targets question Q3 from the problem formulation,
that is whether linear models are sufficient to recreate the stress
history with purpose to calculate accumulated damage. Fig. 15
gives an overview of the process of first generating a model
from sensor data, and then to compare both the stress and the
accumulated damage to evaluate the model performance.
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Figure 15. Schematic view of the process for calculating
accumulated damage and comparing the results.

8.1. Model generation for the driving segments

The ARX (AutoRegressive model with eXogenous inputs)
structure is considered in this work, because more advanced
linear models did not show any major improvements in a
previous work (Jakobsson et al., 2017).

A model according to (4) with na=8, nb=16 and nk=0 is shown
to be a good compromise of accuracy and complexity, by test-
ing a large number of model orders. The ARX model structure
allows such testing with a low computational cost given its
convex closed form solution. Fig. 16 shows a comparison be-
tween models generated from the standard on-board sensors,
and models generated from external sensors such as accelerom-
eters only. It also shows a combined model consisting of all
the sensors. Using standard on-board sensors outperforms
the use of only accelerometers as seen on the higher visual
similarity between on-board sensor simulation and measure-
ment. Fig. 17 shows the accumulated damage for the same
case over a longer time period. Even though the accelerometer
based model captures fast dynamics, it misses much of the
slow moving changes. And since the slow moving changes
typically result in large amplitude, it is better to have a model
accurate in those regions. For this example a linear model is
sufficient to capture over 80% of the measured damage during
the 500 second hauling segment.

One issue in (Jakobsson et al., 2017) was how to handle the
effect of different amounts of load in the box. In the previous
work, not much data with varying load level was present,
preventing the investigation of load effects. The current data
set contains many more cycles with different load levels and
thus enable such investigations. Two alternatives for handling
varying load levels are presented below.

The most convenient approach is to let many different mass
levels be part of the training data, and identify a model suit-
able to all. The background to such an approach is that the
load cells for measuring the mass in the box is available as
dynamic sensor signals. However, using an ARX model did
not yield satisfactory results for damage accumulation using

10
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Figure 16. Signals generated from different models compared
to measured data. The standard on-board sensors, a com-
bination of load cells, damper position and angular sensors
outperform the use of accelerometers only. This is seen on
the much better resemblance between these signals to the
measured. Best result is obtained using all the sensors.

this approach. An alternative approach to a single model, is
to estimate one model for each suitably divided mass range.
Fig. 18 shows the mean squared error (MSE) between simu-
lated and verification data, for a large number of driving cycles.
Each dot corresponds to one driving segment, evaluated using
one model and compared to verification data. A perfect model
would result in zero error for each cycle evaluated. Three
different models are compared. The “0-80” model is trained
using cycles with different load levels between 0-80 tonnes.
The “0-20” model and “30-80” models are estimated using
data from respective mass range.

Despite the load mass information being available to the “0-
80” model through the load sensor signals, the structure is
unable to capture the different dynamics involved when driving
with/without load and the result is average for both low loads
and high loads. A good result for the “0-80” model would
show as small error for both low loads and high loads. One
possible reason for the poor result could be nonlinear relations
between the load level and the rate of damage generation.
Other possible reasons could be that the load cells where
somewhat unreliable during the measurement, causing load
changes without the mass actually changing.

The “0-20” model show low mean square error for the low
load cases, but very high MSE for the high load cases, and the
“30-80” model shows the opposite. This shows that a linear
model is able to capture the driving dynamics well, but fail to
capture the dependence from different mass levels.

By using a separate model for the low- and high load case, a
direct comparison with correlation results from the model-free
approach in Table 2 is possible. The ARX model output gives
a correlation of 0.26 in the unloaded case, 0.74 in the loaded
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Figure 17. The accumulated damage for location s6 is dom-
inated by large cycles. Since the on-board sensors do a bet-
ter job capturing such changes, it outperforms the use of ac-
celerometers only. A combined model using all sensors, gives
a slightly better result.

case and 0.56 for the combined case, all higher than the best
results from Table 2.

8.2. Model generation for the loading segment

During loading, the truck is typically stationary. A wheel
loader drops rocks and gravel into the box until it is filled,
which typically takes 3-4 buckets depending on the size of the
wheel loader used. This is seen in the stress signal in Fig. 19
as four distinct plateaus.

The model was trained from a number of loading cycles from
site 1. Validation shows that the model capture fasts dynamics
well, i.e., the oscillations that occurs at each mass-increase.
However the model fails to get the static levels correct, and
simulations for specific loading cases often drift. One example
of such a case suffering from drift is shown in Fig. 19. This
has significant effect on the accumulated damage, since large
erroneous cycles emerge from the drift.

The drift in model output is caused by the strain gauges drift-
ing during the measurements. The model tries to capture this
output signal drift, by adding a pure integrator to the ARX
model. The drift is not constant between different loading
cycles, and does not correspond to any change in input signal.
When the model later is used to simulate an output, the integra-
tor causes drift in the output that do not exist in the measured
data. To improve the models for the loading segment, either
new measurements without drift issues, or a model structure
better capable of handling such errors in the training data are
required.
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Figure 18. Mean squared error between simulated and mea-
sured stress is used to compare three models for a large number
of driving cycles. A model trained from a wide range of mass
levels results in a compromise for both high and low loads.
Training separate models for low/high load reduce the errors
in the range where it was trained.

8.3. Model generation for the unloading segment

During unloading, hydraulic pressure is applied to two lift
cylinders. This causes stress close to the attachment points of
the cylinders and is seen at (A) in Fig. 20. The lift cylinders
are 4-step telescopic cylinders, and for each change of steps a
small stress oscillation is seen (B,C,D). At (E), the box is first
raised to its maximal position and hits the end stop. Rocks and
gravel fall out, and the box is closed again. The operator can
choose to lift/lower the box arbitrarily, and may also hit the
end stop multiple times if needed to get the gravel to fall out.
This is seen at (F,G,H). These additional end-stop hits create
large stress oscillations. When lowering the box, the operator
can either use the main pump, or simply letting the box free
fall to its minimum location. Each step in the cylinders closing
is seen at (I,J,K), but causes only minor oscillations.

The model captures all major events in the signal, but the
accumulated damage is underestimated as seen in Fig. 21.
This is due to two effects. One is inability to capture slow
moving changes of the signal, causing some of the largest
cycles to be distorted. The other is a constant underestimation
of peak height for oscillations. This underestimation could be
caused by noise in the timing of different signals.

To demonstrate the difference in performance between differ-
ent unloading cycles, accumulated damage for a large number
of cycles is plotted. The cycles are sorted by the simulated
damage of the cycle. As seen in Fig. 22 the model consistently
captures around half the actual damage, and this is true for
both low-damage cycles and high-damage cycles. This en-
ables the model to distinguish a gentle unloading cycle from
a harsh unloading cycle. The importance of this distinction
is discussed further in Section 10.2. An alternative approach
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Figure 19. The model captures dynamic oscillations, but drifts
considerably. This cause very bad performance when calculat-
ing damage.

would be to assume a constant amount of damage contribution
for each unloading cycle. As seen in Fig. 22, choosing the
level for such a contribution would be hard given the large
difference in accumulated damage between different cycles.
Despite the large spread in how much damage the linear model
predicts, it outperforms the constant-damage-per-unloading
approach since it takes into account the variability between
different cycles.

9. LIMITATIONS OF THE MODELS

A number of limitations exists both for the proposed types of
models, and the methods to generate them. Most prominent
is the general issue of data driven methods: It is very hard to
estimate how well the models will generalize to unseen cases,
such as the machine hitting the wall while driving. This needs
to be kept in mind when using the models.

Another important limitation comes from the assumption that
damage is only generated from forces that can be detected in
the measured signals. If there is a way to create strain in the
structure that do not effect the monitored load cells, inclina-
tion sensor and pressure sensors, etc, this strain will generate
damage unnoticed by the the monitoring system. Since no
such strain was identified during training, it is however un-
likely that normal operating cases causes such strain. For
external events however, we know little about such effects.
Also the sampling rate of the sensors also plays a part, since
short peaks can cause damage, but pass completely unnoticed
by the monitoring system. A good understanding of the strain
frequency contents in point of interest is crucial for successful
application of the models.

The process of generating the models from measured data
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Figure 20. Simulated data vs. measured strain data for the
unloading of the box. The model captures all distinct events
during unloading, but underestimates peek height causing poor
performance when calculating damage.

poses a limitation especially for newly developed vehicles.
The cost and effort required to create a suitable amount of data,
covering all relevant driving cases, is not to be underestimated.
One way to mitigate this limitation would be to generate the
models using data from high fidelity simulation models.

10. EXTENDING THE RESULTS TO PROGNOSTICS

This section covers question Q4 from the problem formulation,
how to use the models to improve reliability of the vehicles.
The models developed in this work are light-weight from a
computational point of view. This enable real time calculations
of the stress history in a large number of positions, and also
damage accumulation calculations in real time. This can be
utilized for prognostic purposes in a number of ways.

10.1. Levels of damage estimation

The simplest way of estimating current damage, is to assume
all machines are used equally, and let damage be a function
of engine hours only. Based on experience from other vehi-
cles, an average damage per time unit is used to evaluate the
current condition. The most obvious flaw with such a method,
is that no care is taken with regard to machine usage. No
individualization of the machines can be done.

A more advanced scheme would be to use drive cycle segmen-
tation, and to base current accumulated damage on how much
time the machine spends doing different tasks. An unloading
cycle, for example, generates vastly more damage on some
locations than driving without load. This would give a more
accurate result on a per-vehicle basis, but still allow a lot of
room for error with regards to how roughly the machine is
used. In short we could differentiate vehicles that run long
hauling cycles and few unloading cycles from vehicles running
short hauling cycles and many unloading cycles.
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Figure 21. Accumulated damage during unloading. A gross
underestimation of damage is the result from poor peek-height
estimation in the stress signal.

With access to virtual stress measurements on various locations
on the machine, a new paradigm of individualized monitor-
ing is possible. Knowing the stress history enables a system
where calculated accumulated damage is available in real-time.
Fig. 23 shows a complete cycle, where the simulated stress
signal is shown on top of the measured stress signal. Different
models are used for the different segments of the cycle. Ac-
cess to such stress-time history lets us differentiate vehicles
on a per-cycle basis. The following section shows a real data
example of how the information can be used.

10.2. A concrete example of individualized monitoring

The following example is based on the real data from the mea-
surements used in this work. Fig. 24 shows the accumulated
damage at position s6 for each different segment for every
cycle during two weeks of operation at site 1. The upper dots
of each color show measured damage, and the lower dots show
damage as calculated from the simulated stress signals. The
total damage is underestimated by the model, but more impor-
tantly, the variations in damage rate are captured by the model.
As seen, most of the total damage at position s6 originates
from the unloading segment. The cycles appear grouped in
short sections lasting about half a day, which are interpreted
as the work shifts on site. Another pattern seen is that the
slope of damage accumulation seems to alternate between a
high and low value. This is particularly clear around day 10 as
emphasized by two red lines corresponding to the slope. By
manual investigation of the data during these unloading cy-
cles, it could be shown how two different operators used very
different techniques to unload the vehicle. The first was more
aggressive, running all functions at maximum. The second
was gentler, slowly lifting the box and reducing lifting speed
before hitting the end stop. Such difference in usage has a
large impact on the life of the vehicle, and by measuring the
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Figure 22. Accumulated damage for a large number of unload-
ing cycles, sorted after simulated damage. The linear model
captures around half the actual damage, both for small and
large damage cycles.
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Figure 23. Stress for the joined segments of a full driving
cycle. Simulated stress is shown as one color per segment type
on top of the black measurement.

accumulated damage the difference can be found and acted
upon.

10.3. Continous feedback of machine life

By analyzing the damage generated during different segments,
we can learn how a particular individual vehicle is used, and
how damage is likely to evolve over time. The influence from
operator behavior is already shown in the previous section.
Similar differences are likely to be found from different fac-
tors in the mine, such as road condition and size of material
transported. Other possible differences could be found in the
vehicle configuration, such as air pressure in the tires.

As long as the current damage level is known, and the usage of
the machine is not expected to change, a prediction of future
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Figure 24. Damage accumulation for different segments for
all cycles during a two week period. Upper dots of each color
show measured damage and lower dots simulated damage,
since the simulation models underestimated the damage. Dots
are clustered in small half-day long groups representing the
work shift. Interesting to note is the large differences in dam-
age accumulation for different shifts, as shown by the red lines
at day 10-11.

damage can thus be made with much better accuracy than
using a time average. This prediction can in turn be used to
schedule maintenance intervals, and in the long run also the
economic life of the entire machine.

An even more important application for monitoring the dam-
age continuously, is when machines become more and more
autonomous. With an operator on-board, usage is adjusted to
local conditions. For an autonomous truck, it is not obvious
how to choose optimal speed with respect to both production
and life of equipment. Algorithms such as the ones presented
in this work provides an important piece to designing such
systems.

11. CONCLUSION

We have shown that available on-board sensors can be used
to estimate damage on a mine truck frame. The investigation
suggests that it is not possible to use any simple statistics on
input signals to predict damage well on a per-vehicle basis.
The usage of linear models show to be more reliable in captur-
ing damage. The best result is obtained for a constant driving
scenario, i.e., when the mass and shape of the vehicle do not
change. To handle variations in mass and configuration of the
vehicle, a segmentation of the usage cycle is proposed. When
the data is divided in segments such as hauling, driving empty,
loading, and unloading, the usage of separate models for each
segment results in a better fit to verification data. Using this
approach, linear models give a sufficient fit for all driving seg-
ments, at least to compare relative damage between different
vehicles and usage.
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When it comes to loading and unloading, linear models fail
to get the static levels of stress correct. Nevertheless, a linear
model for unloading is able to capture important differences
in unloading behavior by the operators, and could be used in a
relative manner. Finally, a number of ways to extend the re-
sults into prognostics are presented. By continuously knowing
the accumulated damage of the vehicle, the task of predicting
future damage can be individualized both to a specific ma-
chine, but also down to a specific shift or cycle. This enables
improvements both for manually operated machines, but also
in the case when mining machinery operates autonomously.
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