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ABSTRACT 

This paper deals with the design of a decentralized fault 

diagnosis and prognosis scheme for interconnected nonlinear 

discrete-time systems which are modelled as the 

interconnection of several subsystems. For each subsystem, a 

local fault detector (LFD) is designed based on the dynamic 

model of the local subsystem and the local states. Each LFD 

consists of an observer with an online neural network (NN)-

based approximator. The online NN approximators only use 

local measurements as their inputs, and are always turned on 

and continuously learn the interconnection as well as possible 

fault function. A fault is detected by comparing the output of 

each online NN approximator with a predefined threshold 

instead of using the residual.  Derivation of robust detection 

thresholds and fault detectability conditions are also included. 

Due to interconnected nature of the overall system, the effect 

of faults propagate to other subsystems, thus a fault might be 

detected in more than one subsystem. Upon detection, faults 

local to the subsystem and from other subsystems are isolated 

by using a central fault isolation unit which receives detection 

time information from all LFDs.  The proposed scheme also 

provides the time-to-failure or remaining useful life 

information by using local measurements. Simulation results 

provide the effectiveness of the proposed decentralized fault 

detection scheme.  

1. INTRODUCTION 

Several practical systems such as the well-known power 

generation and distribution systems, telecommunication 

networks, water distribution networks, traffic networks, 

exhibit complex and spatially distributed dynamics and can 

be referred to as large-scale interconnected systems. With 

increasing complexity with these systems, there is a high 

possibility of occurrence of faults. Therefore, suitable fault 

diagnosis schemes that help the reliable operation of such 

 
 

interconnected systems at all times are needed.  In this paper, 

a quantitative decentralized fault diagnosis scheme for a 

large-scale interconnected system in discrete-time is 

introduced and its rigorous analysis is included.  

Out of the data-driven and model-based fault diagnosis 

framework, data driven methods (Dash & 

Venkatasubramanian, 2000) need healthy and faulty data 

from the system, which can be quite expensive to collect, store 

and process. Model-based fault diagnosis schemes (Isermann, 

2005; Sampath, Sengupta, Lafortune, Sinnamohideen, & 

Teneketzis, 1995) and model based prognostics (Daigle & 

Goebel, 2009; Kulkarni, Daigle, Gorospe, & Goebel, 2014; 

Luo, Namburu, Pattipati, Qiao, Kawamoto, & Chigusa, 

2003), on the other hand, do not require significant quantities 

of data for development and only require data to detect faults 

online. Therefore, a number of researchers have worked on 

model-based FD schemes, using adaptive estimators or 

observers (Demetriou & Polycarpou, 1998; Ferdowsi & 

Jagannathan, 2013; Wang & Daley, 1996), neural network 

(NN) based observers (Bernieri, D'Apuzzo, Sansone, & 

Savastano, 1994; Maki & Loparo, 1997), fuzzy observers 

(Blake & Brown, 2007; Patton, Chen, & Lopez-Toribio, 

1998) and so on, for several practical industrial systems. 

However, these schemes are centralized and not suitable for 

large scale systems with multiple distributed subsystems. In 

such systems, measurements are taken at a subsystem need to 

be transmitted to all subsystems, which is not appropriate 

since continuous transmission of large amounts of data over 

the entire distributed system is both costly and prone to errors 

and delays. This is the main motivation behind the 

development of decentralized methods for control and 

diagnostics. 

While traditional fault diagnosis articles (Bernieri et al., 

1994; Blake & Brown, 2007; Demetriou & Polycarpou, 1998; 

Ferdowsi & Jagannathan, 2013; Maki & Loparo, 1997) offer 

only centralized FD schemes that require the entire state 

vector of the system to be measured and transmitted, in the 

recent literature, decentralized control of distributed systems 

(Boskovic & Mehra, 2002; Huang, Tan, & Lee, 2005, 2006; 
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Ferdowsi & Jagannathan 2017) by using local subsystem state 

vector is introduced. By using overlapping decomposition 

(Ferrari, Parisini, & Polycarpou, 2009), a large-scale system 

is decomposed into a set of subsystems which are connected 

by unknown nonlinear functions. Then a distributed fault 

diagnosis scheme is introduced by assuming that the entire 

state vector is available. On the other hand, decentralized fault 

diagnosis schemes in (Ferrari et al., 2009; Stankovic, Ilic, 

Djurovic, Stankovic, & Johansson, 2010) are introduced for 

continuous-time systems by assuming that the 

interconnection functions are known and the entire estimated 

system state vector is available at each subsystem.  However, 

for large-scale interconnected systems, it is very expensive 

and time consuming to transmit measured or estimated states 

to all subsystems to aid in an accurate diagnosis and even if 

the required hardware is already in place, such transmissions 

can be delayed and prone to errors. 

On the contrary, our objective in this paper is to design a 

network of local fault detectors (LFD) or observers for 

interconnected nonlinear discrete-time systems so that each 

LFD monitors a single subsystem by making use of the local 

information or state vector in contrast with (Ferrari et al., 

2009; Stankovic et al., 2010). In addition, partial isolation of 

faults and TTF estimation will be performed upon detection, 

which provide further advantages over the existing schemes 

(Bernieri et al., 1994; Blake & Brown, 2007; Ferrari et al., 

2009; Stankovic et al., 2010).  

Since discrete-time implementation is preferred for 

hardware implementation (Caccavale & Villani, 2004), in this 

work, a nonlinear discrete-time system is considered with 

external disturbances, unmodeled dynamics, interconnection 

effects, and nonlinear fault functions that cover both abrupt 

and incipient faults. Incipient faults may be difficult to deal 

with due to the fact that their small effects on residuals can be 

hidden as if they are due to the modeling uncertainty. Here, 

we stress the design of truly decentralized fault diagnosis 

scheme in discrete-time for incipient faults. 

As mentioned above, one local fault detector is designed 

for each subsystem. Each LFD mainly consists of a nonlinear 

observer with an online NN approximator which is used to 

estimate the unknown part of the subsystem dynamics, i.e. 

interconnection and possible fault functions, by using only the 

local state information. It is mathematically shown that 

although the interconnection term is a function of nonlocal 

state vector, it can be estimated by an online approximator 

whose inputs are the measured local states at the current and 

previous time instant.  The history of local state vector will 

help overcome the need for the entire system state vector. 

A local residual signal is generated by comparing the 

estimated local state vector from the observer with the 

measured subsystem state vector.  However, this residual is 

not used for performing fault detection, whereas it is used to 

update the unknown parameters of the online NN 

approximator. In contrast with other model-based fault 

detection methods (Bernieri et al., 1994; Blake & Brown, 

2007; Demetriou & Polycarpou, 1998; Ferdowsi & 

Jagannathan, 2013; Ferrari et al., 2009; Maki & Loparo, 1997; 

Patton et al., 1998; Stankovic et al., 2010; Wang & Daley, 

1996), the online approximator is always active and the 

detection is performed by comparing the output of the online 

NN approximator in discrete-time (OLAD) with a predefined 

threshold. This is possible due to the fact that the 

interconnection term remains bounded as long as the system 

is healthy with no fault present since the system state vector 

remain bounded in the absence of fault due to the presence of 

a stabilizing controller.  In addition, a mathematically 

rigorous approach to the derivation of robust detection 

thresholds and fault detectability condition is given. 

The approximation of interconnection and fault functions 

allows a good estimation of state vector, thus allowing proper 

estimation of TTF by comparing the system state estimate 

vector against the user defined failure limits (Thumati & 

Jagannathan, 2010). The TTF can help ensuring that the 

system will not be operated beyond this limit as it is unsafe. 

In this paper, the TTF is determined by using estimated 

system state vector instead of parameter estimate vector. 

Upon detection, a fault isolation algorithm is utilized to 

determine whether or not the fault is local by making use of a 

central fault isolation unit. Under the assumption that the local 

faults affect local measurements quicker than non-local faults, 

the location of the fault is identified by comparing the 

detection times from all LFDs. Note that the detection and 

prediction units are purely decentralized since they are 

independent of the isolation unit. 

In our earlier and preliminary work (Ferdowsi, Raja, & 

Jagannathan, 2012a; Ferdowsi, Raja, & Jagannathan, 2012b), 

the fault diagnosis is addressed for interconnected systems 

where it is assumed that the interconnection terms are 

bounded as a function of state and parameter estimation errors 

which is a stringent assumption. In contrast, in the current 

work the interconnection terms are estimated online which 

allows determination of fault effects on other subsystems. 

Consequently, the fault detection is performed differently by 

using the OLAD outputs rather than residual. Moreover, the 

TTF estimation in (Ferdowsi et al., 2012a) was directly 

borrowed from (Thumati & Jagannathan, 2010) by using the 

magnitude of the fault parameters, whereas the TTF 

estimation in this paper is based on the observer dynamics 

instead of weight update law since failure limits cannot be 

determined for the NN weights. Rigorous convergence 

analysis, analytically derived detection threshold, and 

detectability condition are other contributions of this paper 

over (Ferdowsi et al., 2012a). 

Thus the major contributions of this paper include the 

development of a decentralized fault diagnosis scheme for 

nonlinear discrete-time systems wherein a LFD only uses 

local measurements in contrast with (Bernieri et al., 1994; 

Blake & Brown, 2007; Demetriou & Polycarpou, 1998; 

Ferdowsi & Jagannathan, 2013; Maki & Loparo, 1997; Patton 

et al., 1998; Wang & Daley, 1996). Here the interconnection 

term is not neglected in contrast with (Ferdowsi et al., 2012a). 

Furthermore, the TTF estimation is performed upon fault 
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detection by using the observer dynamics whereas such 

scheme is not available in existing methods (Ferrari et al., 

2009; Stankovic et al., 2010) for interconnected systems.  

This paper is organized as follows. Section 2 gives a system 

description for interconnected nonlinear discrete-time 

systems. Section 3 proposes the decentralized fault detection 

scheme, and discusses the partial isolation of faults as well as 

TTF determination, and Section 4 reports simulation results. 

An automated highway system is used as a running example 

throughout the paper to better illustrate the design steps. 

2. SYSTEM DESCRIPTION 

Consider the interconnected nonlinear discrete-time 

systems described by 

       1 ( ), ( ) ( ), ( ) ( ), ( ) ,x k F x k u k x k u k h x k u k     

where 𝑢 ∈ ℝ𝑚  is the control input vector, 𝑥 ∈ ℝ𝑛  is the 

system state vector, 𝐹:ℝ𝑛×ℝ𝑚 → ℝ𝑛  represents the 

nonlinear system dynamics, 𝜂:ℝ𝑛×ℝ𝑚 → ℝ𝑛 represents the 

system uncertainties, and ℎ:ℝ𝑛×ℝ𝑚 → ℝ𝑛  represents a 

vector of possible fault dynamics. Suppose that this system is 

comprised of N interconnected subsystems. The ith subsystem 

dynamics are given by 

     

   

1 ( ), ( ) ( ), ( ), ( )

( ), ( ) ( ), ( ) , (1)

i i i i i i i i

i i i i i i

x k f x k u k g x k x k u k

x k u k h x k u k

  

 

 

where 𝑢𝑖 ∈ ℝ
𝑚𝑖  is the local control input vector, 𝑥𝑖 ∈ ℝ

𝑛𝑖 is 

the local state vector, �̅�𝑖 ∈ ℝ
�̅�𝑖 is the non-local state vector (�̅�𝑖 

includes all system states except for those in 𝑥𝑖, which means 

𝑥𝑖  and �̅�𝑖  are mutually exclusive and 𝑥 = 𝑥𝑖 ∪ �̅�𝑖 ), 𝑓𝑖: ℝ
𝑛𝑖×

ℝ𝑚𝑖 → ℝ𝑛𝑖  and 𝑔𝑖: ℝ
𝑛𝑖×ℝ�̅�𝑖×ℝ𝑚𝑖 → ℝ𝑛𝑖  represent the 

known local and unknown interconnection functions 

respectively, 𝜂𝑖: ℝ
𝑛𝑖×ℝ𝑚𝑖 → ℝ𝑛𝑖  denotes the system 

uncertainties, and ℎ𝑖: ℝ
𝑛𝑖×ℝ𝑚𝑖 → ℝ𝑛𝑖  is the local fault 

function or fault dynamics. 

The fault function ℎ𝑖  can obviously represent an abrupt 

fault. However, in order to cover a wider range of faults, ℎ𝑖 
can be expressed as the multiplication of a time profile and 

the fault magnitude, i.e. ℎ𝑖 = Π𝑖(𝑘 − 𝑘0)ℎ̅𝑖. The time profile 

Πi(𝑘 − 𝑘0) is modeled by 

        
1 20 0 0 0Π Ω ,Ω , ,Ω ,

ni
i i i ik k diag k k k k k k       

where  
0,                     0

Ω       1, ,
1 ,      0

j j
i i

if
for j n

e if
 









  

 

, is the 

time profile and �̅�𝑗 is an unknown constant that represents the 

rate at which a fault develops. A larger value of �̅�𝑗 indicates 

that the fault has a larger growth rate. The use of such time 

profiles is common in fault diagnosis literature (Thumati & 

Jagannathan, 2010; Zhang & Morris, 1994).   Next the 

standard assumptions are needed in order to proceed. 

Assumption 1 (Demetriou & Polycarpou, 1998): The 

modeling uncertainty is locally bounded, i.e. 

‖𝜂𝑖(𝑥𝑖(𝑘), 𝑢𝑖(𝑘))‖ ≤ 𝜂𝑖𝑀 , ∀(𝑥𝑖 , 𝑢𝑖) ∈ 𝑆𝑖 , 𝑖 = 1,2, … , 𝑁 , 

where 𝜂𝑖𝑀 is a positive known constant and 𝑆𝑖 is a region to 

be defined in assumption 4. 

Remark 1: Assumption 1 is needed to distinguish between 

faults and system uncertainties. 

Assumption 2 (Thumati & Jagannathan, 2010): Both 

interconnection and fault functions are expressed as nonlinear 

in the unknown parameters (NLIP) (Jagannathan, 2006), i.e. 

they can be approximated by two-layer NN with bounded 

activation functions and weight parameters.   

Assumption 3 (Huang et al., 2005): The interconnection 

terms are bounded by polynomial-type nonlinearities 

as ‖𝑔𝑖(𝑥(𝑘), 𝑢𝑖(𝑘))‖ ≤ ∑ (𝜁𝑖𝑗
0 + 𝜁𝑖𝑗(𝑥𝑗))

𝑁
𝑗=1 , 𝑖 = 1,2, … , 𝑁 , 

where 𝜁𝑖𝑗
0  is constant and 𝜁𝑖𝑗(∙) is a bounded smooth function 

for 𝑖, 𝑗 = 1,2, … , 𝑁. 

Assumption 4 (Demetriou & Polycarpou, 1998): There 

exists a stabilizing controller that guarantees the boundedness 

of system state vector during the healthy conditions. This 

implies that (𝑥𝑖 , 𝑢𝑖) ∈ 𝑆𝑖 where 𝑆𝑖 is a bounded region.  

Remark 2: By combining Assumptions 3 and 4, it can be 

shown that, under healthy operating conditions, the 

interconnection term is bounded by ‖𝑔𝑖(𝑥(𝑘), 𝑢𝑖(𝑘))‖ ≤

𝑔𝑖𝑀 , 𝑖 = 1,2, … , 𝑁 , where 𝑔𝑖𝑀  is a positive constant. This 

result is only used to identify the fault detection thresholds as 

it is not valid under faulty condition. On the other hand, 

during fault conditions, the OLAD to be defined in the next 

section approximates the interconnection function as it 

propagates the fault from one subsystem to another. 

Assumption 5: All system states are measureable. 

Assumption 6: Only a single fault can exist in the system 

at any given time. 

Remark 3: Assumption 6 is only required for the isolation 

part and it is not needed for fault detection or failure 

prediction. 

As mentioned in the introduction, a running example will 

be provided throughout the paper for improved clarity. An 

automated highway system (Yan & Edwards, 2008), is selected 

for this purpose. Each vehicle will be considered as one 

subsystem. The dynamics for the ith vehicle is given by 

{
 
 

 
 𝜓𝑖(𝑘 + 1) = 𝜓𝑖(𝑘) + 𝑇(𝑣𝑖(𝑘) − 𝑣𝑖−1(𝑘))

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) +
𝑇

𝑀𝑖
(−𝐷𝑖𝑣𝑖

2(𝑘) + 𝜉𝑖(𝑘) − 𝑑𝑖)

𝜉𝑖(𝑘 + 1) = 𝜉𝑖(𝑘) +
𝑇

𝜏𝑖
(𝛿𝑖(𝑘) − 𝜉𝑖(𝑘))

    (2) 

where 𝛿𝑖  is the control input for ith vehicle, 𝜉𝑖 is the 

driving/braking force applied to the ith vehicle, 𝑣𝑖  is the 

velocity of the ith vehicle, 𝜓𝑖  is the distance between vehicle i 

and the vehicle in front of it (note that based on its definition, 

𝜓 will be negative), 𝑇 is the sampling time, and 𝑀𝑖 , 𝐷𝑖 , 𝑑𝑖 , 
and 𝜏𝑖 are the ith vehicle’s mass, aerodynamic drag, frictional 

force, and engine/brake time constant respectively. Moreover, 

a virtual leader is defined for the first vehicle to follow. The 

control objective is to make each vehicle follow the vehicle in 

front of it with a safe distance. This problem is formulated to 

regulation of 𝑦𝑖 = 𝜓𝑖 + 𝐿 + 𝑃𝑣𝑖  to zero (Yan & Edwards, 

2008), where 𝐿 and 𝑃 are positive constants that determine the 
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required distance at zero speed and velocity-dependent 

distance ratio. Typical values foe 𝐿  and 𝑃  are 1 and 0.9 

respectively. A backstepping controller designed to satisfy the 

requirements is as follows: 

𝛿𝑖(𝑘) = 𝑢𝑖(𝑘) + �̅�𝑖(𝑘) 
where 

𝑢𝑖(𝑘) = 𝜏𝑖 [
𝜉𝑖(𝑘)

𝜏𝑖
−

𝑀𝑖

𝑃
(2𝑣𝑖(𝑘) + 𝜓𝑖(𝑘) + 𝐿 + 𝑃𝑣𝑖(𝑘)) +

(
2𝐷𝑖

𝑀𝑖
𝑣𝑖(𝑘) −

1

𝑃
− 2) (−𝐷𝑖𝑣𝑖

2(𝑘) + 𝜉𝑖(𝑘) − 𝑑𝑖) −
𝑑𝑖−1

𝑃
]  

�̅�𝑖(𝑘) = 𝜏𝑖 [
2𝑀𝑖

𝑃
𝑣𝑖−1(𝑘) +

1

𝑃
(−𝐷𝑖−1𝑣𝑖−1

2 (𝑘) + 𝜉𝑖−1(𝑘))]    

Note that 𝑢𝑖 is only a function of states of vehicle i, while 

�̅�𝑖 includes states of the vehicle ahead. The system dynamics 

in (2) is in the form of system description in (1) if the local 

and interconnection terms are defined as 

𝑓𝑖(𝑥𝑖 , 𝑢𝑖) =

[
 
 
 
 

𝜓𝑖(𝑘) + 𝑇𝑣𝑖(𝑘)

𝑣𝑖(𝑘) +
𝑇

𝑀𝑖
(−𝐷𝑖𝑣𝑖

2(𝑘) + 𝜉𝑖(𝑘) − 𝑑𝑖)

𝜉𝑖(𝑘) +
𝑇

𝜏𝑖
(𝑢𝑖(𝑘) − 𝜉𝑖(𝑘)) ]

 
 
 
 

     (3) 

𝑔𝑖 =

[
 
 
 

−𝑇𝑣𝑖−1(𝑘)
0

𝑇 (
2𝑀𝑖

𝑃
𝑣𝑖−1(𝑘) +

1

𝑃
(−𝐷𝑖−1𝑣𝑖−1

2 (𝑘) + 𝜉𝑖−1(𝑘)))
]
 
 
 

 

where 𝑥𝑖 = [𝜓𝑖   𝑣𝑖   𝜉𝑖]
𝑇 is the state vector of subsystem i. 

Several different faults can be investigated for the automated 

highway system. For example partial loss of actuation in the 

ith vehicle which can be induced in simulations by the 

following fault function 

ℎ𝑖 = [

0
𝑇

𝑚𝑖

(−𝑏𝜉𝑖(𝑘))

0

] 

where 0 < 𝑏 < 1 is the ratio of loss in actuation. Modeling 

uncertainty and noise will also be added in the simulations 

(refer to section 4) to the make the problem even more 

realistic. 

3. FAULT DIAGNOSIS AND PROGNOSIS SCHEME 

Next the proposed fault detection scheme is introduced. 

3.1. Fault Detection (FD) 

In order to monitor the system state vector, estimators 

using local measurements are designed. Since the 

interconnection and fault functions are not known, an NN-

based online approximator in discrete time, referred to as 

OLAD, is incorporated in each local estimator to approximate 

these functions. Unlike other fault detection schemes where 

the OLAD is turned on only after the detection, the OLADs 

used in our proposed estimators are always turned on, in order 

to learn the possible fault dynamics as well as the 

interconnection dynamics. 

Let 𝜔𝑖  be defined as the summation of interconnection 

term and fault function in subsystem i as 

     0( ) ( ), ( ), ( ) Π ( ), ( ) .i i i i i i i ik g x k x k u k k k h x k u k     

It is clear, based on (1), that the interconnection term at time 

k, will affect the local state vector at the next time instant k+1. 

Using this fact, the interconnection term at time k can be 

represented as a function of local state vector at time k+1 and 

local state and input vector at time k. Thus, 𝜔𝑖(𝑘) can be 

approximated by an online approximator such as a two layer 

neural network (NN) whose inputs consist of 𝑥𝑖(𝑘), 𝑢𝑖(𝑘), 
and 𝑥𝑖(𝑘 + 1) , with bounded weights and approximation 

error, i.e.         ( ) 1 , , ( )T

i i i i i i ik k x k x k u k k     

,where 𝜃𝑖(𝑘)  is the unknown parameter matrix, 

𝜙𝑖(𝑥(𝑘), 𝑢(𝑘)) is a basis function like sigmoid, and 𝜀𝑖(𝑘) is 

the approximation error which is bounded by 𝜀𝑖𝑀. However, 

since the measured state vector, 𝑥𝑖(𝑘 + 1), is not available at 

time k, we will consider the online approximator one time step 

behind the actual system, in order to make the proposed 

scheme practical. Thus, the OLAD will be incorporated in the 

nonlinear observer which is designed to work one time step 

behind the actual system. The residual, which is defined as the 

error between measured and estimated states, will then be 

used to update the NN weights. 

Consider the local nonlinear estimator for the ith subsystem 

described by 

          

        

ˆ 1 1 , 1 1

ˆ , 1 , 1 ; 1 , (4

ˆ

)ˆ

i i i i i i

i i i i i

x k x k f x k u k x k

x k x k u k k

 

 

      

   
 

for 𝑘 ≥ 1 , where �̂�𝑖(𝑘) ∈ ℝ
𝑛𝑖  is the estimated local state 

vector of the ith subsystem, �̂�𝑖: ℝ
𝑚𝑖×ℝ𝑛𝑖×ℝ𝑝𝑖×𝑛𝑖 → ℝ𝑛𝑖  is 

the output of the OLAD with �̂�𝑖 ∈ ℝ
𝑝𝑖×𝑛𝑖  being its set of 

unknown parameters and 𝜆 is a user defined constant, which 

must be selected in a way that the eigenvalues of the closed 

loop system lie within the unit disc (Jagannathan, 2006). 

Initial values of the local fault detection (FD) estimator are 

taken as �̂�𝑖(0) = �̂�𝑖0, �̂�𝑖(0) = �̂�𝑖0 . 

During the healthy operating condition of the system, the 

following holds     ( ) ,i i ik g x k u k  so that ‖𝜔𝑖(𝑘)‖ 

remains bounded based on Assumptions 3.  When a fault 

occurs in a subsystem, the magnitude of the fault function in 

the subsystem and the magnitude of the interconnection term 

in the other subsystems will increase. Therefore, a fault can 

be detected by comparing the norm of OLAD output, ‖�̂�𝑖‖, 

with a detection threshold 𝜌𝑖 which will be defined later by 

using the bound on the interconnection functions in the 

healthy operating conditions as well as the bound on the 

OLAD approximation error. This is in contrast with detecting 

a fault by using the residual or state estimation error. In this 

method, the residual cannot be used for fault detection since 

it will always remain close to zero because the OLAD is 

always online and it will estimate the unknown part of the 

subsystem dynamics. 

To move forward, define the ith subsystem residual as 

𝑒𝑖(𝑘) = 𝑥𝑖(𝑘) − �̂�𝑖(𝑘).  Prior to the occurrence of a fault, the 

local residual dynamics are obtained by comparing (1) and 

(4), as  
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     

        

( 1) ( 1), ( 1) ( 1), ( 1)

ˆˆ , 1 , 1 ; 1 , (5)

i i i i i i i

i i i i i

e k e k g x k u k x k u k

x k x k u k k

 

 

       

   

where x is the entire state vector, i.e. 𝑥 = ⋃ 𝑥𝑖
𝑁
𝑖=1 . The next 

step in the design is to determine an update law for the OLAD. 

Define the parameter update law of the OLAD as 

( ) ( 1) ( 1) ( 1ˆ ˆ

ˆ

)

( 1) ( 1) ( 1), (6)

T

i i i i i

T

i i i i i

k k k e k

I k k k

   

    

    

    

 

where 𝛼𝑖>0 is the learning rate, 0 < 𝛾𝑖 < 1 is the forgetting 

factor, and 𝜙𝑖(𝑘) = 𝜙𝑖(𝑥𝑖(𝑘), 𝑢𝑖(𝑘)) is a basis function such 

as sigmoid or radial basis functions (RBF).  Then, the output 

of the OLAD is calculated as 

          ˆ 1 1 , 1 , 1 . (7)ˆT

i i i i i ik k x k x k u k        

Upon detection the local error dynamics can be derived by 

comparing (1) and (4) at time k as 

     

 

        

( 1) ( 1), ( 1) ( 1), ( 1)

( 1), ( 1)

ˆ , 1 , 1 ; 1 . (8)ˆ

i i i i i i i

i i i

i i i i i

e k e k g x k u k x k u k

h x k u k

x k x k u k k

 

 

       

  

   

 

Asserting the NLIP assumption on the local fault function, the 

above equation can be rewritten as 

   

        

( 1) ( 1), ( 1)

1 , 1 , 1 ( 1), (9)

i i i i i

T

i i i i i i

e k e k x k u k

k x k x k u k k

 

  

    

    

 

where �̃�𝑖(𝑘) = 𝜃𝑖(𝑘) − �̂�𝑖(𝑘)  represents the parameter 

estimation error and 𝜀𝑖(𝑘) is the OLAD approximation error, 

which is bounded by 𝜀𝑖𝑀  due to Assumption 2.  Next the 

stability of the local FD residual and parameter estimation 

errors is discussed.  

Theorem 1 (Local Fault Detection Observer 

Performance): Let the proposed local FD observer defined 

in (4) be used to monitor the subsystem described by (1), and 

let the update law in (6) be used to update the unknown 

parameter vector, �̂�𝑖(𝑘) . In the presence of system 

uncertainties and under the Assumptions 1 through 4, the 

local FD residual, 𝑒𝑖(𝑘) , and the parameter estimation 

error, �̃�𝑖(𝑘), are uniformly ultimately bounded, provided the 

user-defined constants, 𝜆  and 𝛼𝑖 , and 𝛾𝑖 , are selected such 

that |𝜆| < 0.5 , 𝛼𝑖 < √(1 − 4𝜆
2)/24𝜙𝑖𝑚𝑎𝑥

4 , and 0.6 < 𝛾𝑖 <

1.4

1+𝛼𝑖𝜙𝑖𝑚𝑎𝑥
2 . 

Proof: Refer to the appendix. 

 

Theorem 1 guarantees the stability of the local FD residual 

and parameter estimation errors provided the design 

parameters are selected as per Theorem 1. When a fault 

happens in a subsystem, the output of the OLAD in that 

subsystem will include an approximation of the fault function 

in addition to the interconnection term, while the OLADs in 

other subsystems will only approximate interconnection 

functions. Although the fault function only exists in one of the 

subsystems, it will affect the other subsystems through the 

interconnection terms. Therefore, the estimation of 

interconnection functions in non-faulty subsystems, allows 

determination of non-local fault effects. 

Based on Assumptions 3 and 4, the interconnection terms 

are bounded during healthy conditions and based on Theorem 

1, the OLADs approximate the interconnection terms with 

bounded error during healthy conditions. Therefore, OLAD 

outputs are bounded as long as the system is working under 

healthy conditions. This result is used in the next theorem to 

show that no false alarms will be generated if the detection 

thresholds are selected appropriately. Consequently, a 

detectability condition is analytically derived that guarantees 

the detection of faults which can satisfy this condition. 

Theorem 2 (Robustness and Detectability): Consider the 

nonlinear subsystem defined by (1) and the local observer (4). 

No fault is detected under healthy operating conditions if the 

detection threshold is selected as 

max 2/ ,
M Mi i i i ig D C q                  (10) 

where 𝑞𝑖 is a user-defined small positive constant, and D and 

C2 are defined in the appendix. On the other hand, the fault in 

subsystem i will be detected by its local fault detector, if there 

exists a time instant 𝑘𝑑, at which the following condition on 

the fault function is satisfied 

( ( ), ( )) 2 .i i d i d i ih x k u k q       (11) 

Proof: Refer to the appendix. 

 

To better illustrate the fault detection method, the running 

example is revisited here. A local estimator should be 

developed for each vehicle in the automated highway system 

introduced in section 2. The observer for the ith vehicle can be 

obtained based on (4) as follows 

          

 

ˆ

1

ˆ 1 1 , 1 1

ˆ , (12)

i i i i i i

i

x k x k f x k u k x

k

k 



  



   



 

Recall that 𝑥𝑖 = [𝜓𝑖   𝑣𝑖   𝜉𝑖]
𝑇 is the state vector of vehicle I 

and 𝑓𝑖(. )  is provided in (3). �̂�𝑖  is the online approximator 

created by a two layer neural network with 10 neurons in the 

hidden layer. For this example, a sigmoid function is used as 

basis function, i.e. 𝜙𝑖(𝑧) = 1/(1 + 𝑒−𝑧) , thus �̂�𝑖  is 

calculated by 

      ˆ 1 1 ( ) ( 1) ( 1) (13)ˆ TT

i i i N i i i Nk k A x k x k u k B         

where the matrices 𝐴𝑁 ∈ ℝ
10×7 and 𝐵𝑁 ∈ ℝ

10×1 are selected 

randomly and �̂�𝑖 ∈ ℝ
10×3  is the weight matrix initiated at 

zero. The weights start updating by equation (6) as soon as the 

observer starts working.  

To select the observer and update law parameters based on 

theorem 1, 𝜙𝑖𝑚𝑎𝑥  is needed. The maximum value of the 

selected basis function 𝜙𝑖  is one and 𝜙𝑖  is a 10×1  vector, 

therefore 𝜙𝑖𝑚𝑎𝑥 = √10. Therefore, the observer and update 

law parameters should be selected such that 

|𝜆| < 0.5 
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𝛼𝑖 < √(1 − 4𝜆2)/2400 

0.6 < 𝛾𝑖 <
1.4

1 + 10𝛼𝑖
 

For this example the parameters were selected as 𝜆 = 0.01, 

𝛼𝑖 = 0.01, and 𝛾𝑖 = 0.7 to satisfy the above conditions. 

 Next section will discuss the partial fault isolation, upon 

detection of a fault by a local FD. With the proposed isolation 

method, the detected fault can be characterized as local or 

non-local fault to each subsystem. 

 

3.2. Fault Isolation 

As discussed earlier, the OLAD in faulty subsystem 

estimates both the local fault function and the interconnection 

term, while the OLADs in other subsystems estimate only 

their interconnection function, which could be affected by the 

nonlocal fault. Therefore, not only the output of OLAD where 

the fault has occurred will increase above the detection 

threshold, but also the outputs of other OLADs can possibly 

increase due to interconnection effects. Thus, detection of a 

fault might happen in more than one subsystem.  

In this context, local and non-local faults should be 

defined. A fault that has occurred in subsystem i, will be 

called a local fault for this subsystem and it will be referred to 

as a non-local fault for other subsystems. Under the 

assumption that local faults affect local measurements quicker 

than the non-local faults due to smaller propagation delay, a 

heuristic fault isolation algorithm is developed based on the 

detection times in all subsystems. In the proposed isolation 

method, communication between the LFD and the centralized 

isolation unit is required. However, there is no need for the 

transmission of the measured or estimated state vector of all 

the subsystems at each sampling interval. Also, note that the 

detection information must only be transmitted when a fault 

is detected, which means no transmission is needed in healthy 

operating condition which is the majority of the time. The 

only information that must be transmitted after detection is 

the detection time in each local fault detector and there is no 

need for the detection information to be transmitted at each 

and every time instant. In fact this information must be sent 

from all the subsystems to a central isolation unit at time 

instants 𝑘 = 𝑗𝑛 where 𝑗 = 1,2, …  and 𝑛 is a positive integer 

which determines the rate at which detection information 

must be collected from all the subsystems.  

In other words, the time interval between two consecutive 

transmissions will be equal to 𝑛𝑇  where 𝑇  is the sampling 

time. Larger value of 𝑛  will result in fewer number of 

transmissions over the network, while smaller value of 𝑛 

leads to faster isolation of faults. So there is a tradeoff here 

which means that 𝑛 should be selected according to both the 

required isolation speed and preferred transmission interval in 

a specific system.  

To formulate the isolation scheme, let 𝑡𝐷
(𝑖)

 be the variable 

used to store the detection information of subsystem i and let 

𝑡𝐷
(𝑖)(0) = 0. The value of 𝑡𝐷

(𝑖)
 will remain at zero unless a fault 

is detected by the LFD of subsystem i. Once a fault is detected 

by this LFD, 𝑡𝐷
(𝑖)

 will be set to the detection time, i.e., 

𝑡𝐷
(𝑖)(𝑘) = 𝑇𝑘𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

(𝑖)  𝑓𝑜𝑟 𝑘 ≥ 𝑘𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
(𝑖)

where 𝑘𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
(𝑖)

 is 

the time at which a fault is detected by the LFD in subsystem 

i. Note that 𝑡𝐷
(𝑖)(𝑘) is sent to the central isolation unit only 

when 𝑘 = 𝑛𝑗 where 𝑗 = 1,2, … .  
The fault isolation flowchart is depicted in Figure 1. Once 

detection information (𝑡𝐷
(𝑖)) is sent to the isolation unit by all 

the subsystems, the minimum among all of the nonzero 

detection times is calculated. Then for each subsystem, say 

subsystem i, 𝑡𝐷
(𝑖)

 is first compared to zero. When 𝑡𝐷
(𝑖)

 is equal 

to zero obviously no fault has been detected in subsystem i. 

However, when 𝑡𝐷
(𝑖) > 0 a local or nonlocal fault has been 

detected in subsystem i. In this case, if the detection time 𝑡𝐷
(𝑖)

 

is equal to the minimum of all nonzero detection times, then 

the fault will be isolated local to subsystem i, otherwise the 

fault is a nonlocal fault which has propagated to subsystem i. 

Regarding the running example, the isolation algorithm 

will only be required if a fault is initiated in one vehicle but 

detected in more than one vehicle. In that case the central 

isolation unit must receive the detection times and compare 

them to find out where the fault has been detected first to 

identify the location of fault. 

 
Figure 1: Flowchart of the fault isolation. 

 

Remark 4: Note that with this method of fault detection and 

isolation, not only the location of fault can be determined, but 

also all the subsystems which are affected by this fault are 

identified. 

Remark 5: The effectiveness of this isolation method 

depends on the selection of fault detection thresholds. For 
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example, if the detection threshold of the subsystem where the 

fault occurs is significantly larger than the actual bound on the 

OLAD output of that subsystem in healthy conditions, the 

fault might be first detected in other subsystems, leading to an 

incorrect isolation decision. The proposed isolation strategy 

is most suitable for networks of similar subsystems with same 

characteristics where one threshold value is appropriate for all 

subsystems. In that case, all subsystems share the same 

situation with respect to the detection threshold, which will 

prevent incorrect isolation decision with the proposed 

method. 

 

3.3. Failure Prediction 

The time-to-failure (TTF) determination is necessary for 

prognostics and this is referred to as remaining useful life of 

the system. After the detection of a fault, by comparing the 

estimated state vector obtained from the observer to the user 

defined limits, time to failure can be determined (Thumati & 

Jagannathan, 2010). System states represent physical 

parameters that have failure limits. The TTF is defined as the 

remaining time until at least one state reaches its limit. As 

mentioned before, a fault might be detected in more than one 

subsystem, since any local fault can influence other 

subsystems as well. Therefore, TTF estimation should be 

performed for all the subsystems which are significantly 

affected by the fault, i.e. all subsystems where detection has 

occurred. The TTF estimation starts in a subsystem 

immediately after detection. 

In order to predict the time of failure, the dynamics of the 

system can be used which will help determine the rate of 

change of system states. Since there exist unknown terms in 

the actual system dynamics (1), the observer dynamics (4) is 

utilized. According to the stability analysis presented earlier, 

observer states follow actual states with bounded error which 

can be decreased by proper selection of design parameters.  

Therefore, in the TTF determination, the estimated state 

dynamics in (4) are utilized to project the estimated state to 

reach a predefined threshold.  The estimated state is driven by 

the fault approximator. The following theorem provides an 

analytical formula for finding an estimation of TTF at any 

time after the detection of a fault. The main idea is introduced 

in (Thumati & Jagannathan, 2010) for systems that are not 

distributed in nature. In contrast, the derivation of the formula 

introduced here is different due to the distributed nature of the 

system and the fact that the weight update law cannot be used 

to estimate time-to-failure, because the NN weights do not 

correspond to real physical parameters and their failure 

thresholds are not available. This is why the observer 

dynamics are used instead of the NN weight update law.   

Theorem 3 (TTF Estimation): Upon detection in 

subsystem i, TTF for the jth state at the kth time instant can be 

estimated using 

 
 

     
, ,

,

, ,
ˆ

(1 ) 1
log ,

1 1 1

Mi j i j

i j

i j i j

x s k
TTF

x k s k




  

  


   
   (14) 

where 𝑥𝑖,𝑗𝑀  is the failure threshold of the jth state of the ith 

subsystem, �̂�𝑖,𝑗  is the estimated value of the corresponding 

state, and 𝑠𝑖,𝑗(𝑘 − 1) is the jth element of the vector 𝑠𝑖(𝑘 − 1) 

which is defined by 

 

        

        

1 1 , 1 1

, 1 , 1 ; 1 . (1 )ˆˆ 5

i i i i i

i i i i i

s k f x k u k x k

x k x k u k k



 

     

   

 

Proof: Refer to the appendix. 

 

Figure 2 illustrates the process of finding the TTF after a 

fault is detected in subsystem i. At each time instant, after 

calculating the TTF for all the local subsystem parameters, the 

overall minimum of all TTFs for all of the parameters is 

calculated to get the overall TTF for the subsystem. This is 

because the system will be unsafe even if only one of its 

parameters reaches its limit.  

 

 
Figure 2: Flow chart of the TTF determination. 

 

The failure prediction scheme can be easily applied to the 

automated highway system example. Each of the states of 

vehicle i have failure limits. For example, the failure limit on 

each vehicle’s distance to the vehicle ahead of it cannot be 

less than one meter, thus setting a failure limit of -1 on the 

value of 𝜓𝑖 . Similarly, the failure limit on each vehicle’s 

Yes 

No 

 

𝑇𝑇𝐹𝑖 > 0 

 

Calculate �̂�𝑖(𝑘 − 1) and 𝑣𝑖(𝑘 − 1) 

Fault detected 

 𝑘 = 𝑘𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛  

Calculate 𝑇𝑇𝐹𝑖,𝑗   

for all the system parameters 

Calculate 𝑇𝑇𝐹𝑖 = min(𝑇𝑇𝐹𝑖,𝑗) 

System unsafe 
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velocity 𝑣𝑖 and driving force 𝜉𝑖 are 30 and 5000 respectively. 

Since the state vector is defined as 𝑥𝑖 = [𝜓𝑖   𝑣𝑖   𝜉𝑖]
𝑇 , the 

failure limit vector will be 𝑥𝑖𝑀 = [−1  30  5000]𝑇. After the 

detection of a fault in any vehicle, equation (15) will provide 

an estimate of the time-to-failure in that subsystem. 

 

4. SIMULATION RESULTS 

Two examples are selected to show the effectiveness of 

the proposed scheme. First, the automated highway system 

and then a five-tank water system will be presented. 

 

4.1. Automated Highway System 

An automated highway system consisting of 50 vehicles 

is considered here. Each vehicle dynamics is give by (2) and 

all vehicles start at rest with initial distances of 1 meter. 

Vehicle parameters are given as 𝑚𝑖 = 1300𝑘𝑔 , 𝐷𝑖 =
0.3 𝑁𝑠2/𝑚2, 𝑑𝑖 = 100𝑁, 𝜏𝑖 = 0.2𝑠, and the sampling time is 

𝑇 = 0.1𝑠. The desired velocity of the virtual leader is selected 

as 𝑣𝑑(𝑘) = 20 + 0.2 sin(0.1𝑘𝑇)  and the backstepping 

controller presented in section 2 is used to control the 

vehicles. 

The states of the first three vehicles in healthy operating 

conditions are shown in Figure 3. Next, an abrupt fault in the 

form of 50% loss of actuation is induced in the second vehicle 

at time t=50s and the second system states are shown in Figure 

4. As mentioned in section 2, the fault function is  

ℎ2 =
1 + 𝑠𝑖𝑔𝑛(𝑘𝑇 − 50)

2
[

0
𝑇

𝑚2

(−𝑏𝜉2(𝑘))

0

] 

where 𝑏 = 0.5. 

 

 
Figure 3: First three vehicle states in healthy conditions 

 
Figure 4: Actual second vehicle states in faulty conditions 

 

 

To apply the proposed scheme on this system, each 

vehicle is considered as one subsystem for which the observer 

in (12) along with the online approximator in (13) are used for 

fault detection. As mentioned in section 3, the observer and 

approximator parameters were selected as 𝜆 = 0.01 , 𝛼𝑖 =
0.01, and 𝛾𝑖 = 0.7 to satisfy the stability conditions. In order 

to simulate the real world situation, modeling uncertainty and 

noise are added to the model and measurements used by the 

observer. Uncertainty is created by a 2% inaccuracy in engine 

time constant for the model used in equation (12).  

The estimated states of the second vehicle are shown in 

Figure 5 and the state estimation error is shown in Figure 6. It 

can be observed from Figure 6 that the state estimation error 

does not increase after the occurrence of fault which is due to 

the fact that the online approximator is always active and 

estimating the unknown parts of the system dynamics, namely 

the interconnections, uncertainty, and fault. Obviously, the 

state estimation error will not be used for fault detection. As 

discussed in section 3, fault detection is performed by 

comparing the norm of the online approximator output in each 

subsystem with the detection threshold, which is selected by 

using equation (10). The norm of online approximator outputs 

for the first three vehicles are given in Figure 7 along with the 

detection threshold. As seen in the figure, ‖�̂�2‖ exceeds the 

detection threshold at 60 seconds. Since the norm of online 

approximator outputs for other subsystems do not reach the 

detection threshold, fault is only detected in the second 

subsystem. Therefore, in this case there is no need for the 

central isolation unit. 
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Figure 5: Estimated second vehicle states in faulty conditions 

 
Figure 6: State estimation error for the second vehicle 

 

Upon detection of fault, the failure prediction starts by 

using equation (14) with the failure limits mentioned in 

section 3.3. Even though the actuator fault that is initiated in 

subsystem 2, does not make the velocity and driving force 

reach their failure limits, it does affect the distance between 

the second and third vehicle. As illustrated in Figure 8, at time 

124 seconds, a collision occurs between the second and third 

vehicle (Note that the inter-vehicle distances 𝜓𝑖  are negative 

based on the definition and collision occurs when distance 

reaches zero). The failure prediction algorithm continuously 

estimates the time-to-failure (time-to collision) after detection 

of fault. The result is shown in Figure 9. Time-to-failure 

estimation is not accurate in the first few seconds after the 

detection, but it is almost accurate after that, which shows the 

effectiveness of the prediction scheme. 
 

 
Figure 7: Norm of online approximators in the observers of the first 

three vehicles and the detection threshold 

 

 

 

 
Figure 8: Distance between the second and third vehicles 

 

 
Figure 9: Time-to-failure 

 

Next, a comparison between the proposed method and two 

other methods of model-based fault detection is performed by 
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using metrics provided by (Feldman, Kurtoglu, Narasimhan, 

Poll, Garcia, de Kleer, Kuhn, & van Gemund, 2010). One of 

the two other methods a centralized observer-based fault 

detection scheme (with a single observer designed for the 

entire system of 100 vehicles) and the other one is a semi-

decentralized scheme (Stankovic et al., 2010) (which has a 

decentralized observer structure and assumes 

interconnections are known and estimated system states are 

transmitted to neighboring subsystems). Simulations were 

performed 500 times with each method. 5 different faults 

(multiplicative fault on sensor or actuator, bias faults on 

sensor or actuator, or component fault simulated by an 

increase in friction constant) with random magnitudes and 

growth rates were injected in the system at random times and 

in randomly selected vehicles. Only one fault occurs in each 

one of the simulations. The number of false positives, false 

negatives and average detection time is recorded for each 

method and summarized in Table 1. Note that false positives 

are not taken into account in calculation of average detection 

time.  

The table clearly shows that both the semi-decentralized 

method and the proposed decentralized method outperform 

the centralized method in all three fault detection metrics, 

which is due to the fact that the centralized method is less 

sensitive to a single fault in one subsystem as it takes a longer 

time for the entire system to be affected by a fault in a single 

subsystem. A comparison between the results of the semi-

decentralized method and the proposed decentralized method 

shows a small difference between their effectiveness, 

although the semi-decentralized method has a slightly better 

performance. However, the semi-decentralized method 

requires estimated states in each vehicle to be transmitted to 

the neighboring vehicles, while the proposed decentralized 

fault detection method does not require that. Therefore, even 

though the semi-decentralized method has a better 

performance in simulations, it will not be as efficient in 

practice, not only because continuous transmission of data 

between subsystems is not always possible, but also due to 

problems like delay and packet loss that can occur in 

transmissions and downgrade the fault detection performance.  

 

Method Number of 

false 

positives 

Number 

of false 

negatives 

Average 

detection 

time 

Centralized 29 78 18.38s 

Semi-

decentralized 

13 21 9.67s 

Proposed 

Decentralized 

17 20 11.85s 

Table 1: Comparison of fault detection results 

 

4.2. Five-Tank System 

In this section a five-tank water system (Ferrari et al., 

2009), which is shown in Figure 10, is considered to verify 

the proposed decentralized fault diagnosis scheme. This 

system has two input pumps with five connected water tanks. 

There are many different ways to decompose the system into 

smaller subsystems. For instance, each tank can be considered 

as one subsystem, or one subsystem can include tanks 1 and 

2 while the other subsystem includes the three tanks. The 

decomposition shown in Figure 10 is one of the possible 

ways, where subsystem 1 includes tanks 1, 2, and 3, and 

subsystem 2 includes tanks 3, 4, and 5. This kind of 

overlapping decomposition for the five-tank system was 

introduced in (Ferrari et al., 2009) and it is intentionally 

selected in this paper to show that subsystems can be 

overlapping, which means they can share one or more states. 
 

 
 Figure 10: Five tank benchmarking system. 

 

 

The system dynamics are described by (Ferrari et al., 

2009) 
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where 𝑥1(𝑘) = [𝑥1
(1)(𝑘), 𝑥1

(2)(𝑘), 𝑥1
(3)(𝑘)]

𝑇
  is the first 

subsystem state vector, 𝑥2(𝑘) = [𝑥2
(1)(𝑘), 𝑥2

(2)(𝑘), 𝑥2
(3)(𝑘)]

𝑇
 

is the second subsystem state vector, T  is the sampling time 
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chosen to be 0.1 seconds, 𝐴 = 0.0154 𝑚2 is the cross section  

of the tanks, 𝑠 = 5×10−5 𝑚2  is the cross section of the 

connecting pipes, 𝑐 = 1 is the outflow coefficient, and 𝑔 =
9.8 𝑚/𝑠2  is the standard gravity. Note that the two 

subsystems share one of the states, i.e. 𝑥1
(3)
= 𝑥2

(1)
. Moreover, 

𝜂(𝑥(𝑘)) = [𝜂1(𝑘)  𝜂2(𝑘)  𝜂3(𝑘)  𝜂4(𝑘)  𝜂5(𝑘)]
𝑇  represents 

the modeling uncertainty and is defined by 

     

 

2 2 2

2 2

[10 sin 0.7 1  0 cos 0.8 1  0 cos 0.5  
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k k k

k cos k

   

 


 

An incipient actuator fault in pump 1 (located in 

subsystem 1) is seeded at time 𝑡0 = 50s. The dynamics of 

actuator fault in subsystem 1 is described by 
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Subsystem observers are designed in the form of equation 

(4). Online approximators  �̂�1 and �̂�2 are both made up of 7-

input 3-output neural networks which consists of 8 basis 

functions. The basis functions are sigmoid type and they 

satisfy 𝜙𝑖𝑚𝑎𝑥 < 0.5. The inputs are local states at current and 

next time instants and the local input. Moreover, the 

parameter update law in (6) is used to update the neural 

network parameters (weights). The estimator and adaptive 

law parameters are taken as  𝛼𝑖 = 0.1, 𝛾𝑖 = 10−5, 𝑎𝑛𝑑 𝜆 =
0.01 . The bounds on the uncertainty and interconnection 

terms are 𝜂𝑖𝑀 = 0.029 and 𝑔𝑖𝑀 = 0.022. In order to calculate 

the detection thresholds from (10), the maximum neural 

network approximation errors 𝜀𝑖𝑀  are required. Unless the 

interconnection term is represented as a linear function of 

states and inputs, 𝜀𝑖𝑀 cannot be found analytically. However, 

the approximation error in healthy conditions is definitely less 

than the upper bound on interconnection term. Thus, we will 

replace 𝜀𝑖𝑀 by 𝑔𝑖𝑀. By using these parameter values in (10), 

the detection thresholds are calculated as 𝜌𝑖 = 0.09.  

As mentioned previously, the OLADs are always online to 

learn the interconnection dynamics in all subsystems. After 

the occurrence of fault, the OLAD in faulty subsystem will 

also approximate the fault dynamics. Norms of the outputs of 

both OLADs are plotted along with the detection threshold in 

Figure 11. Since the fault in subsystem 1 affects the local 

states as well as the interconnection terms, the output of both 

OLADs increase after occurrence of fault. However, the 

growth rate of the output of OLAD in subsystem 1 (where the 

fault is initiated) is significantly higher than the growth rate 

of the output of OLAD in subsystem 2. Thus the fault is 

detected first in subsystem 1. 

Local residuals, which are generated by comparing the 

actual and estimated subsystem states, are mainly used for 

updating the NN weights. The norm of local residual is plotted 

in Figure 12 for both subsystems. Residuals are small and 

bounded both before and after the fault, which shows the 

boundedness of the state estimation errors due to successful 

estimation of unknown dynamics by the stable weight update 

laws.  

 

Figure 11: OLAD outputs and detection threshold. 

 

 
Figure 12: Residuals in subsystem 1 and subsystem 2. 

 

The OLAD in subsystem 1 is used to estimate the vector 

function 𝜔1(. )  which is the summation of interconnection 

term and the fault function in this subsystem. Two of the 

outputs of the OLAD along with their true values are shown 

in Figure 13. Since the fault is in tank 1 and the state equation 

describing tank 1 does not include an interconnection term, 

the first element of 𝜔1(denoted by 𝜔11) only corresponds to 

the fault function. Therefore, its estimation �̂�11 , which is 

shown in Figure 13(a), reflects the approximated fault 

function. On the other hand, since the interconnection term 

appears in the state equation of the third tank and the fault is 

not directly affecting this tank, the third element of 

𝜔1(denoted by 𝜔13) only corresponds to the interconnection 

term. Therefore, its estimation �̂�13 , which is shown in Figure 

13(b), reflects the approximated interconnection function.  

The OLAD reasonably tracks the unknown vector 

function 𝜔1(. ) which results in a good estimation of system 

states under faulty condition and allows the estimation of 

time-to-failure. Figure 14 shows the estimated TTF for both 

subsystems. The TTF is calculated for each state based on the 

proposed algorithm, and then the subsystem time-to-failure is 

obtained by taking the minimum among estimated TTF for all 

states of the corresponding subsystem. The TTF of subsystem 

1 approaches zero faster than subsystem 2, because the fault 

is seeded in subsystem 1 and it has an attenuated and delayed 
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effect on second subsystem. Nevertheless, the entire system 

should be stopped before the TTF in any subsystem reaches 

zero. In this example, the operation of system is unsafe after 

t=100.2s where TTF for subsystem 1 reaches zero. 

 

 
(a) 

 
(b) 

Figure 13: (a) Actual and estimated magnitude of 𝜔11, (b) actual 

and estimated magnitude of 𝜔13 

 
(a) 

 
(b) 

Figure 14: (a) Estimated TTF for first subsystem, (b) Estimated 

TTF for second subsystem. 

5. CONCLUSIONS 

The proposed decentralized fault prognosis scheme 

renders satisfactory performance by only using the local 

subsystem state vector at each LFD.  A fault can be detected 

in all the subsystems that are significantly affected. Upon 

detection in each subsystem, the TTF can be predicted by 

using the estimated state dynamics driven by the fault 

approximation. The fault detection and failure prediction 

methods are purely decentralized and are independent of the 

isolation scheme that requires some data transmission. 

In contrast with centralized diagnosis methods, the 

proposed decentralized scheme does not require transmission 

of large amounts of data between subsystems which saves 

cost and avoids transmission errors. Moreover, multiple local 

fault detectors increase the reliability of fault detection due to 

multiple layers of fault detectors. No priori offline training or 

fault data is necessary in order to detect or isolate faults. 

Hence, this scheme can save both time and cost while it is 

easily implementable on embedded system. The only 

drawbacks of the proposed scheme are the requirement for 

measurement of all states and the centralized isolation unit. 

Therefore, the future work in this topic includes development 

of a decentralized isolation scheme and extension of the 

proposed method to systems where some states are not 

measured. 
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APPENDIX 

Proof of Theorem 1: Consider the following Lyapunov 

function candidate 
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The Lyapunov function is deliberately selected at time 𝑘 −
1, because the observer is one time step behind the actual 

system and its output is not available at time 𝑘 . In other 

words, 𝑘 − 1 is the current time instant for the observer. The 

first difference of the Lyapunov function is given by 
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Substitute  𝑒𝑖(𝑘) from the local error dynamics (9), in Δ𝑉1 

to get 
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i

T
T

i i i i i

i i i i i

T

i i i i i

T

i i

i

V e k x k u k k

k x k x k u k

e k x k u k k

k x k x k u k

e k e k

  


 

  

 



      

    

      

    

  

 

 

By using the Cauchy-Schwarz inequality  (  (s1+s2+…+sn 

)T(s1+s2+…+sn)≤n(s1
Ts1+s2

Ts2+…+sn
Tsn) ) we arrive at 
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   

   

max max

max

max

max

2

1 2 2

2

2

2

( 1) ( 1)

( 1) ( 1) 1

(

1 1
Δ ( 1) ( 1)

2 2

1
( 1), ( 1) ( 1), ( 1)

2

1
1

2

1) ( 1) . )
1

8
. ( 3

T T

i i i i

i i

i i i i i i

i

T T

i i i i

i

T

T

i i

i

V e e k k

x k u k x

k k

k k k

k u k

k

e ek k A

  
 

 


   




  

  

 

 





 





 



 

Now substitute �̂�𝑖(𝑘) from (6), in Δ𝑉2 

 

 

2Δ 1 ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

. 1 ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

( 1) ( 1).

T

i i i i i

T
T T

i i i i i i i i

T

i i i i i

T T

i i i i i i i i

T

i i

V tr I k k k

I k k k e k

I k k k

I k k k e k

k k

    

      

    

      

 

     


      


     


      


  

 

 

By applying the Cauchy-Schwarz inequality we get 



  

2

2

2
2

2

Δ 3 ( 1) ( 1) ( 1) ( 1)

( 1) ( 1)

1 ( 1) ( 1) ( 1) ( 1)

(

( 1) ( 1

1) ( 1)

)

T T

i i i i i

T T

i i i i i i

T T

i i i i i i

T

i i

V tr e k k k e k

I k k

I k k k k

k k

k k

  

     

     

 



    

   

      





 




 

2
2

2
2

2

2 ( 1) ( 1)

6 ( 1) ( 1) ( 1) ( 1)

3 ( 1) ( 1) ( 1) ( 1)

3 ( 1) ( 1)

3 ( 1) ( 1) ( 1) ( 1). ( .

( 1 )

4)

) ( 1

T

i i

T T

i i i i i i

T T

i i i i i i

T T

i i i i i i

T T

i i i i i

tr k k

I k k k k

I k k k k

tr I k k

e k e k

k

k k A

k

 

     

     

     

  

  

     

     

   

    

 

 

 

By combining Δ𝑉1 and Δ𝑉2  from (A.3) and (A.4) we get 

   

   



max max

max

max

max

1 2

2

2 2

2

2

2

Δ Δ Δ

1 1
( 1) ( 1)

2 2

1
( 1), ( 1) ( 1), ( 1)

2

1
1

2

1

8

2 ( 1) ( 1)

6 ( 1

( 1) ( 1)

( 1) ( 1) 1

( 1) ( 1)

T T

i i i i

i i

i i i i i i

i

T T

i i i i

i

T

i i

i

T

i i

i

T

i i

V V V

e e k k

x k u k x k u k

k

e e

tr

k k

k k k

k

k

I

k

k

k

  
 

 


   




 

  

 

  

    

 



  



  

 












 

2
2

2
2

2

) ( 1) ( 1) ( 1)

3 ( 1) ( 1) ( 1) ( 1)

3 ( 1) ( 1) ( 1) ( 1)

3 ( 1) ( 1) ( 1) ( 1).

T T

i i i

T T

i i i i i i

T T

i i i i i i

T T

i i i i i

k k k

I k k k k

tr I k k k k

e k e k k k

  

     

     

  

  

     

     

    

Taking the Frobenius norm (Golub & Loan, 1996), and using 

the result of assumptions 1 and 2, we get 

   

   

      

   

max max

max

max max

2
2 22 2

2 2

2 22

2 2
2

2 2

2 2

1
Δ ( ) 1 3 1

8 2

1
6 1 1 2

2

3 1 1 1

3 1 1 .
2 2

max

M M

i i i i

i i

T

i i i i

T

i i i i i

i i T

i i i i i

i i

V e k e k

I k k

I k k k

I k k


 

 

   

    

 
    

 

     


     


    

     

Therefore 





 

max max

max

ma

ma

x

x

2
22 2

2 2

22
2

2 2
2

22 2

2

1
( 3 ) ( 1)
8 2

6 ( 1) ( 1) 2

3 ( 1) ( 1) ( 1)

3 .

.

( )
2

5

1 .5

max

M M

i i i

i i

T

i i i i

T

i i i i i

i i

i ii

i

i

V e k

I k k

I k k

A

k


 

 

   

   





 
 



     

    

    

  


 

In order to prove the uniform ultimate boundedness of 𝑒𝑖 
and 𝜃𝑖, the following conditions must be satisfied 

max

2
2 2

2

1 4
3 0,

8 maxi i

i


 




   

2
23 6 2.5 0.T T

i i i i i i i iI I           

The first condition is satisfied if 𝜆 and 𝛼𝑖  are selected such 

that |𝜆| < 0.5 and 𝛼𝑖 < √(1 − 4𝜆2)/24𝜙𝑖𝑚𝑎𝑥
4  . The second 

condition is equivalent to 0.6 < 𝛾𝑖‖𝐼 − 𝛼𝑖𝜙𝑖𝜙𝑖
𝑇‖ < 1.4 and 

since 𝛾𝑖 ≤ 𝛾𝑖‖𝐼 − 𝛼𝑖𝜙𝑖𝜙𝑖
𝑇‖ ≤ 𝛾𝑖(1 + 𝛼𝑖𝜙𝑖𝑚𝑎𝑥

2 )   always 
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holds, the second condition is satisfied if 𝛾𝑖 is selected such 

that 0.6 < 𝛾𝑖 <
1.4

1+𝛼𝑖𝜙𝑖𝑚𝑎𝑥
2  .  

Based on the above discussion, when the user-defined 

parameters are selected as stated in theorem 1, the first 

difference of the Lyapunov function will be less than zero, if 

at least one of the following conditions is satisfied 

1 2/ / ,i iD C ore D C     (A.6) 

where  

 
max

max

max max

2

2 2 2 2

1

2
2

2
2 2 2 2 22

(1 4 ) / 8 3

3 6 2.5,

( ) / 2 3 .

,

1

max

M M

i i i

T T

i i i i i i i

i i

i

i i i i i

C

D

C

I I

   

  



  

    

  

  

 

  

 

 

Therefore, with the appropriate choice of design 

parameters, the local FD residual, 𝑒𝑖(𝑘), and the parameter 

estimation error �̃�𝑖(𝑘), will be uniformly ultimately bounded 

with the bounds given in (A.6). 
 

Proof of Theorem 2: Consider the output of local OLAD 

in subsystem i 

          

        

        

          

ˆ 1 , ,

1 , ,

1 , ,

( ) 1 , , .

ˆT

i i i i i i

T

i i i i i

T

i i i i i

T

i i i i i i i

k k x k x k u k

k x k x k u k

k x k x k u k

k k k x k x k u k

  

 

 

   

 

 

 

   

 

By taking Frobenius norm and using Assumptions 1, 3, and 4 

as well as the result of theorem 1, we get 

 
max

max 2

ˆ ( ( ), ( )) ( ) ( )

/ . ( .7)
M M

i i i i i

i i i

k g x k u k k k

g D C A

   

 

  

  

 

Therefore, if the detection threshold is selected as in (8), 

then no fault is detected as long as the system is working 

under healthy operating conditions. 

To find the detectability condition, the output of OLAD in 

the faulty subsystem is utilized 

 

max

max 2

ˆ ( ( ), ( )) ( ( ), ( ))

( ) ( )

( ( ), ( )) / .
M M

i d i i d i d i d i d

i d i d

i i d i d i i i

k h x k u k g x k u k

k k

h x k u k g D C



  

 

 

 

   

 

Therefore, if there exist a time instant 𝑘𝑑  at which the 

following condition is satisfied 

max 2( ( ), ( )) / ,
M Mi i d i d i i i ih x k u k g D C        (A.8) 

or equivalently  

( ( ), ( )) 2 ,i i d i d i ih x k u k q   

then the fault will be detected in the faulty subsystem. 
 

Proof of Theorem 3: Consider the observer dynamics in 

(4) rewritten as 

    1ˆ ( 1) ,ˆ
i i ix k x k bs k                   (A.9) 

where b=1 and 𝑠𝑖  , defined in (15), acts as the input to the 

linear system of (A.9). By assuming that the fault is detected 

at time kd, the response to this set of linear state space 

equations at time 𝑘𝑓 > 𝑘𝑑 is given by 

    
1

1 1

1

1 ( .ˆ )ˆ
f

f f

k
k k k l

i f i i

l k

x k x k bs l 


   

 

        (A.10) 

If we assume that 𝑠𝑖(𝑙) = 𝑠𝑖(𝑘 − 1)  for 𝑘 − 1 ≤ 𝑙 ≤ 𝑘𝑓 

(which is reasonable, since the fault is assumed to be incipient 

type), we will have 

      
1

1 1

1

ˆ ˆ 1
f

f f

k
k k k l

i f i i

l k

x k x k bs l 


   

 

     

    
1

1
ˆ

1
1 1 .

1

f

f

k k
k k

i ix k bs k





 
  

   


 

Now suppose that 𝑘𝑓𝑖,𝑗
 is the time when the jth state of 

subsystem i, reaches its failure threshold, i.e. �̂�𝑖,𝑗 (𝑘𝑓𝑖,𝑗) =

�̅�𝑖,𝑗𝑀.  

   
,

,

1
1

, , ,

1
1

1
ˆ 1

fi j

fi j

M

k k
k k

i j i j i jx x k s k





 
  

   


 

 

      ,

, ,

, ,
ˆ

(1 ) 1

1 1 1

M

fi j

i j i j

k k

i j i j

x s k

x k s k



 


   

    
 

 

     
,, ,

, ,

(1 ) 1

1 1 1
.

ˆ

fi jM
k ki j i j

i j i j

x s k

x k s k




  

  
 

   
 

Therefore, the time to failure for the jth state of the ith 

subsystem can be estimated by 

 

     ,

, ,

,

, ,

(1 ) 1
log .

1 ˆ 1 1

M

i j

i j i j

i j f

i j i j

x s k
TTF k k

x k s k




  

  
  

   
 

 

 

 


