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ABSTRACT

This paper presents an integrated hidden Markov model (HMM)
approach to undertake fault diagnosis and maintenance plan-
ning for low-speed roller element bearings in a conveyor sys-
tem. The components studied are relatively long-life compo-
nents for which run-to-failure data is not available. Further-
more, the large number of these components in a conveyor
system makes the individual monitoring of each bearing im-
practical. In this paper, HMM is employed to overcome both
these challenges. For fault diagnosis, a number of bearings
varying in age and usage were extracted from the system and
tested to develop a baseline HMM model. This data was then
used to calculate likelihood probabilities, which were sub-
sequently used to determine the health state of an unknown
bearing. For maintenance planning, experimentally deter-
mined thresholds from faulty bearings were used in conjunc-
tion with simulated degradation paths to parametrize a HMM.
This HMM is then used to determine the state duration statis-
tics and subsequently the calculation of residual useful life
(RUL) based on bearing vibration data. The RUL distribution
is then used for maintenance planning by optimizing the ex-
pected cost rate and the results so obtained are compared with
the results obtained from a traditional age based replacement
policy.

1. INTRODUCTION

Health monitoring (diagnosis), remaining life calculation (prog-
nosis) and maintenance planning (establishing inspection or
replacement intervals) of engineering assets are integral to
asset management of critical airport infrastructure such as
conveyors constituting baggage handling systems (BHS). In
practice, these aspects are often decoupled, where fault di-
agnosis is carried out independently using sensor data (e.g.
vibrations), while the latter is undertaken based on reliabil-
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ity principles using life time data of the system or component
of interest. While the literature and the suite of tools avail-
able for diagnostics —especially using vibration data —are
well developed, existing methods for prognosis are applica-
ble only when run-to-failure data (degradation paths) is avail-
able. An integrated CBM framework combining all the three
aspects: diagnosis, prognosis and maintenance planning is
currently lacking for long-life components when such run-to-
failure data are unavailable. Widely employed for speech pro-
cessing (L. Rabiner & Juang, 1986), HMMs offer a versatile
CBM framework to unify diagnosis, prognosis and mainte-
nance planning.

HMM’s flexible probabilistic structure has resulted in consid-
erable research being carried out for machinery fault diagno-
sis using vibration measurements (Ertunc, Loparo, & Ocak,
2001; Bunks, McCarthy, & Al-Ani, 2000; Ocak, Loparo, et
al., 2001; Mehrabi & Kannatey-Asibu Jr, 2002; J. M. Lee,
Kim, Hwang, & Song, 2004; Baruah & Chinnam, 2005; Pu-
rushotham, Narayanan, & Prasad, 2005; Bechhoefer, Bern-
hard, He, & Banerjee, 2006; Nelwamondo, Marwala, & Ma-
hola, 2006; S. Lee, Li, & Ni, 2010). Components such as
bearings and cuting tools (Boutros & Liang, 2011), rolling
element bearings (Ocak & Loparo, 2005; Purushotham et al.,
2005) have been investigated using discrete HMM, and ro-
tor failures using continuous HMM (J. M. Lee et al., 2004).
Recently, the authors of the current study (Sadhu, Prakash,
& Narasimhan, 2016) applied an improved HMM for fault
detection, where raw vibration signals were de-noised using
wavelet transform, demodulated using the Teager Kaiser en-
ergy operator, and the features were selected using a decision
tree. Alshraideh et al. (Alshraideh & Runger, 2014) proposed
a general framework to monitor autocorrelated process data
(time series data) using HMM and control charts. Despite the
volume of literature on the topic of HMMs, a majority of the
work is limited to fault diagnosis.

Fault diagnosis and prognosis for machining processes have
been pursued using HMM (Baruah & Chinnam, 2005). A
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hidden semi Markov model (HSMM, which is a HMM with a
temporal structure) was studied for diagnostics and prognos-
tics of pump failure (Dong & He, 2007). Su et al. (Su & Shen,
2013) proposed a novel multi-hidden semi-Markov model to
identify degradation and to estimate the remaining useful life
of a system, where multiple fused features were used to de-
scribe the degradation process. An algorithm for fault diag-
nosis and RUL estimation using HSMM and HMM for high
speed bearings which are short-lived (fast degradation) was
recently proposed (Peng & Dong, 2011; Medjaher, Tobon-
Mejia, & Zerhouni, 2012). Chen et al. (Chen, Yang, Hu,
& Ge, 2011) introduces a bearing fault diagnostics scheme
for rotating machinery using multi-sensor mixtured hidden
Markov model (MSMHMM). HMM incorporating principal
component analysis (PCA) for feature extraction has been
proposed for bearing fault prognosis (X. Zhang et al., 2005),
where the HMM output (similarity between the current state
and the failure state) was called bearing degradation index,
which was subsequently extrapolated to estimate the time to
reach a predefined failure threshold. In spite of that, the pro-
cedure to arrive at these thresholds for replacement was not
stated. Moreover, these studies do not address the issue of
maintenance planning.

Most studies use log-probabilities or conditional distribution
of the state transition for prognostics purposes. For exam-
ple, some studies utilize decreasing probabilities as a similar-
ity measure (to a healthy bearing) to quantify defect severity
(Ocak, Loparo, & Discenzo, 2007). This approach is premised
on the assumption that probabilities (similarity) calculated
with respect to a healthy HMM model reduce as a bearing de-
teriorates But, this approach does not yield the RUL distribu-
tion. Alternatively, the distribution of time duration for state
change conditioned on the current state is predicted (Baruah
& Chinnam, 2005). However, for long life components, the
time from the current state to the failure state is more impor-
tant. It has been pointed out (Eker & Camci, 2013) that the
duration in any state is a factor that influences the expected fu-
ture time to be spent in that state, which was ignored in many
of the previous works on HMM based prognostics. They pre-
sented a discrete-state prognostic method which uses state du-
ration information for RUL estimation. The issue of optimal
degradation feature selection for RUL prediction of rolling
element bearings was undertaken by zhang et al. (B. Zhang,
Zhang, & Xu, 2016). Recently, Wu et. al. (Wu, Tian, &
Chen, 2013) demonstrated the use of vibration data collected
from bearings to integrate RUL prediction with maintenance
planning. Dawid et al. (Dawid, McMillan, & Revie, 2015)
presents a review of Markov models, hidden Markov models
and partially observable Markov decision processes for main-
tenance optimization.

The main contributions of this paper are the following: (i) a
hybrid approach incorporating multiple degradation paths in
conjunction with experimentally obtained thresholds is devel-

oped, which allows us to address the case of a slow degrad-
ing components where run-to-failure data is unavailable; (ii)
fault diagnosis, prognostics and maintenance planning are in-
tegrated in an unified framework. For fault diagnosis, several
bearings with different usage histories and age are selected
from an airport baggage conveyor in operation (i.e., BHS) and
tested in a laboratory to develop a baseline HMM model. For
maintenance planning, experimentally determined thresholds
from faulty bearings were used in conjunction with simulated
degradation paths to estimate the parameters of the HMM.
This HMM is then used to determine the state duration statis-
tics and hence the calculation of RUL for a given bearing vi-
bration data. This RUL distribution is then used for mainte-
nance planning by optimizing the expected cost rate (ECR)
and the results so obtained are compared with the results ob-
tained from a traditional age based replacement policy.

2. BACKGROUND ON HMM

A HMM is a doubly embedded stochastic process with an un-
derlying stochastic process which is not directly observable
(hidden) and can be observed only through another stochastic
process yielding the sequence of observations (L. R. Rabiner
& Juang, 1993). The theory of HMM is based on a Markov
Chain (MC). To better understand MC, consider a system de-
scribed by a set of N distinct states given by S1, S2, ...SN .
Figure 1 illustrates a Markov process for a system having
three (N = 3) states S1, S2, S3. Let the system undergo a

S1 S2

S3

a11
a12

a21

a32

a23
a31

a13

a22

a33

Figure 1. Markov process, ergodic model

transition from one state to another at regularly spaced dis-
crete times, according to the state probabilities (as shown in
Figure 1). A full probabilistic description of a Markov pro-
cess requires specifying the current state as well as the prede-
cessor states. However, for a discrete-time first order Markov
process, the probabilistic dependence is truncated to just one,
the preceding state. This is also called first order Markov
assumption. With this assumption a Markov process can be
written as:

P [qt = Sj |qt−1 = Si, qt−2 = Sk, .....] = P [qt = Sj |qt−1 = Si]
(1)

where, qt = Sj denotes the state Sj at time t. The transition
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matrix A = {aij}, and initial state probability matrix π =
{πi} are given by:

aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N ; 1 ≤ t ≤ T
πi = P [q0 = Si] i = 1, 2, · · ·N (2)

where, aij is the the probability of transitioning from state Si
to state Sj and πi is the probability of the process in the ith

state at time t = 0). The transition matrix A and the initial
state probability π together parameterize a Markov model.
The probability of observing an observation Ot, given the
model λ (A, π) at a time t, is determined by the joint proba-
bility of past and current observations:

P (Ot|λ) =

t∏
t=1

P [qt = Sj , qt−1 = Si]× P [q0 = Si]

=
∏

aij × πi (3)

In the case of a Markov model, the output of the process is
its state, which corresponds directly to a physical, observable
event. Nonetheless, in many practical applications, including
the case of monitoring bearings using vibration data, an ob-
servation is only an indicator of a hidden state of the system.
For such cases, HMMs are employed. HMM is an extension
of a Markov process and is parameterized by the following
elements:

1. N , the number of states in the model.

2. M , the number of distinct observation symbols per state.
The individual symbols are denoted byV = {v1, v2, · · · vM}.

3. The state-transition probability matrix A, and the initial
state probabilities π, as given by equation (2).

4. The observation symbol probability matrix, B = {bj(k)},
where bj(k) denotes the probability of emitting a symbol
vk when the system is in state Sj is given by:

bj(k) = P [Ot = vk|qt = Sj ] 1 ≤ k ≤M (4)

Generally, HMM parameters N and M are not known a pri-
ori and are selected based on the past knowledge of the degra-
dation process or using clustering algorithms (e.g. K-means
or Gaussian mixture model (GMM)). Given the three sets of
probability measures λ = (A , B , π) and model parame-
ters (N , M ), there are three basic problems namely: eval-
uation problem, estimation of optimal state sequence and,
the re-estimation of model parameters λ. The parameter re-
estimation and optimal state sequence estimation problems
are solved using the Baum-Wech and Viterbi algorithm, re-
spectively (L. R. Rabiner & Juang, 1993).

2.1 Viterbi algorihm

Viterbi algorithm is used to find the optimal hidden state se-
quence associated with a given observation sequence. To find

the best state sequence q = (q1q2 · · · qT ), for the given obser-
vation sequence O = (O1O2 · · ·OT ), we define the quantity
δt(i) as follows:

δt(i) = max
q1,··· ,qt−1

P [q1, q2, · · · , qt−1, qt = i, O1O2 · · ·Ot|λ]

(5)

that is, δt(i) is the best score (highest probability) along a
single path, at time t, which accounts for first t observations
and ends in state i. Hence, by induction:

δt+1(j) = [max
i
δt(i)aij ] · bj(Ot+1) (6)

To retrieve the the state sequence, we keep the track of the ar-
gument that maximized equation (6), for each t and j, which
is using this array ψt(j). A summary of steps followed is
summarized as:

1. Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ N
ψ1(i) = 0. (7)

2. Recursion:

δt(j) = max
1≤i≤N

[δt−1(i)aij ]bj(Ot) 2 ≤ t ≤ T

ψt(j) = argmax
1≤i≤N

[δt−1(i)aij ] 1 ≤ j ≤ T (8)

3. Termination:

P ∗ = max
1≤i≤N

[δT (i)]

q∗T = argmax
1≤i≤N

[δT (i)] (9)

4. Path (state sequence) backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, · · · , 1 (10)

2.2 Baum-Welch algorihm

The Baum-Welch algorithm is used to find the unknown pa-
rameters λ of a HMM. It makes use of the forward-backward
algorithm and is named after Leonard E. Baum and Lloyd R.
Welch. To describe the iterative procedure for parameters re-
estimation, we first define ξt(i, j), the probability of being in
state i at time t, and state j at time t+ 1, given the model and
the observation sequence:

ξt(i, j) = P (qt = i, qt+1 = j|O,λ) (11)

Next, a forward variable αt(i) is defined as:

αt(i) = P (O1O2 · · ·Ot, qt = i|λ) (12)

that is, the probability of the partial observation sequence
O1O2 · · ·Ot (until time t) and state i at time t, given the
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model λ. Similarly, the backward variable βt(i) is given by:

βt(i) = P (Ot+1Ot+2 · · ·OT , qt = i|λ) (13)

that is, the probability of the partial observation sequence
from t + 1 to the end, given state i at time t and model λ.
From the definitions of the forward and backward variables,
ξt(i, j) can be written as:

ξt(i, j) =
P (qt = i, qt+1 = j,O|λ)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(14)

The probability of being in state i at time t i.e., γt(i), given
the entire observation sequence and the model, can be found
by summing over j, resulting in:

γt(i) =

N∑
j=1

ξt(i, j) (15)

If we sum γt(i) over the time index t, we can get the ex-
pected number of times that state i is visited (equivalently,
the expected number of transitions made from state i). Simi-
larly, summation of ξt(i, j) over t (from t = 1 to t = T − 1
) is the expected number of transitions from state i to the
state j. Hence, formulas for re-estimation of HMM parame-
ters λ = (π,A,B) can be given as (L. R. Rabiner & Juang,
1993):

π̄1 =expected frequency (number of time) in state i
at time (t = 1) = γ1(i) (16)

āij =
expected number of transitions from state i to state j

expected number of transitions from state i

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(17)

b̄j(k) =

expected number of times in state j and
observing symbol vk

expected number of times in state j

=

T∑
t=1

s.t.Ot=vk

γt(j)

∑T
t=1 γt(j)

(18)

3. THEORETICAL ASPECTS OF RUL ESTIMATION, MAIN-
TENANCE PLANNING AND DEGRADATION MODELING

3.1. RUL estimation and maintenance planning

Consider a bearing with time to failure T that is put into op-
eration at time t = 0 and still functioning at time t. The prob-
ability that the bearing of age t survives an additional interval

of length x is

R(x|t) = P (T > x+ t|T > t) (19)

=
P (T > x+ t)

P (T > t)
=
R(x+ t)

R(t)
(20)

where, R(x) and R(x|t) are the reliability and conditional
reliability functions, respectively. The mean remaining useful
life of a bearing at age t is given by:

µ(t) =

∫ ∞
0

R(x|t)dx =
1

R(t)

∫ ∞
t

R(x)dx (21)

RUL estimation using HMMs have been undertaken in these
references (Tobon-Mejia, Medjaher, Zerhouni, & Tripot, 2011;
Chinnam & Baruah, 2009; Dong & He, 2007), where the
training data were generated from a single bearing. Alter-
natively, in this paper, HMMs are trained using vibration data
acquired from multiple defective bearings. The key thing to
note here is that the run-to-failure histories for these bearings
are not available; rather, only the acceleration thresholds cor-
responding to what were deemed to be faulty bearings during
the maintenance process are available. Several degradation
paths to these thresholds are simulated (described later). The
signal vibration signals are first converted into symbols (see
section 6) and subsequently used to train an HMM. In the next
step, the estimated parameters (A,B, π) are used to decode
the state (i.e., damage level) sequences and the corresponding
stay durations.

For example, Figure 2 illustrates the decoded state sequences
and the stay durations for a sample bearing, where Dij de-
notes the jthstay durations in state Si ∀ i, j. Such state se-

Figure 2. state sequence and stay durations in different state.

quence decoding can be performed for multiple run-to-failure
bearings. Stay durations in any state can be collected and
since these durations follow a Gaussian distribution, which
has been verified in Section 3.2, one can estimate the mean
and standard deviation for these durations as given below:

µ(Di) =

∑N
j=1Dij

N

σ(Di) =

√∑N
j=1[Dij − µ(Di)]2

N − 1
(22)
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where, Di is the state duration in ith state and N is the total
number of times the ith duration is visited corresponding to
all bearings under consideration. The Gaussian assumption is
verified in Section 3.

Estimation of RUL for a given bearing vibration signal is
based on identification of the current state and critical path to
reach the failure. The vibration signal is converted into sym-
bols and the state sequence is decoded using the estimated
HMM parameters. Here, a new approach for critical path
selection is proposed, which is the most probable route by
which the component reaches failure from the current state.
Amongst various inter-state transitions (from one state to an-
other) along the path, the one with the maximum probability
is selected.

For example, Figure 3 shows the case of bearing with states
S1, S2, S3, S4 and transition probabilities, aij (entries in the
matrix A) as indicated over the arrows. For a bearing oper-
ating in state S1, the critical path is S1 → S2 → S4. Note
that the critical path may or may not be the shortest path. The

Figure 3. Critical path (S1 → S2 → S4)

temporal parameters (see equation (22)) of each state falling
on the critical path are used to estimate the RUL, or failure
time (i.e., current time + RUL), which is given by:

RULmean =

F∑
i=c

µ(Di) (23)

RULupper =

F∑
i=c

[µ(Di) + n.σ(Di)] (24)

RULlower =

F∑
i=c

[µ(Di)− n.σ(Di)] (25)

where, c is the current state, F is the failure state and n is the
confidence interval coefficient.

The method proposed here is different from the one proposed
previously (Tobon-Mejia et al., 2011), where the method for
selecting the critical path was based on minimizing the du-
ration to reach the failure state from the current state. This
means that all the probabilities in the transition matrix are
considered as potential transitions, including reverse transi-
tion of states.

Given the RUL estimate from the prognostics phase, the re-
placement time can be calculated through optimization. One

of the widely used preventive replacement policies is age based
replacement (ABR), which is based on minimizing the oper-
ating cost (Barlow & Hunter, 1960) . A detailed discussion
on ABR can be found in this reference (Jardine & Tsang,
2013). LetCf be the unit cost due to replacement after failure
and Cp the unit cost due to preventive replacement (assume
Cf > Cp). Under this policy, whenever failure occurs, a
replacement action is performed and the time is reset to zero
and then the component runs for a time tp, beyond which pre-
ventive replacement is done. The optimization problem is to
minimize the ECR given by (Jardine & Tsang, 2013):

ECR(tp) =
CpR(tp) + Cf [1−R(tp)]

tpR(tp) +
∫ tp
−∞ tf(t)dt

(26)

where f(t) and R(t) denote probability density function and
the reliability of system, respectively. These parameters are
either known through the life time distribution or can be ob-
tained from the prognostics phase (RUL). For example, us-
ing the estimated RUL distribution parameters µ and σ (us-
ing equation (22) and summing along the critical path), the
expressions for f(t) and R(tp) in equation (26) are given by:

f(t) =
1

σ
√

(2π)
e−

(t−µ)2

2σ2 ;R(tp) =
1

σ
√

(2π)

∫ ∞
tp

e−
(t−µ)2

2σ2 dt

(27)
As discussed in Section 3.2, the stay duration in any state be-
comes normally distributed when multiple bearing signatures
are used to train the HMM (see Figure 5); hence the RUL is
assumed to follow a normal distribution. With equations (26)
and (27), the optimal replacement time is obtained by mini-
mizing ECR(tp), i.e., setting the derivative of equation (26)
equal to zero.

3.2. Degradation modeling

Generally, the evolution of a degradation process is monitored
over the life of the component through measurements (e.g.
vibration), either continuously or periodically. The observed
measurements are correlated with the underlying physical degra-
dation process, which can be modeled appropriately. Gener-
ally speaking, existing degradation models can be classified
into two categories (Lu & Meeker, 1993; Gebraeel, Lawley,
Li, & Ryan, 2005; Van Noortwijk, 2009; Elwany & Gebraeel,
2008) : (i) stochastic process models and (ii) random coef-
ficient models, as shown in Figure 4. This classification is
general and applies to any degrading system including rolling
element bearings. Stochastic processes model the degrada-
tion as a cumulative sum of independent and random incre-
ments over time, while the latter model deterioration as a lin-
ear increase with randomly varying slope (say, Weibull dis-
tributed).

For this study, a random coefficient model is adopted as they
are suitable to model unit-varying uncertainty. In this model,
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Figure 4. (a) Stochastic degradation (Gamma Process) (b)
random coefficient (linear)

a degrading signal is written as:

Xk = h(tk;φ,Θ) + ε(tk) (28)

where Xk is the amplitude of the degradation signal mon-
itored using sensors at equally spaced time intervals, tk =
t · k, k = 0, 1...n. The parameter φ captures the constant
degradation characteristics over the population, Θ models the
unit-varying uncertainty and h is the functional form. The
term ε(tk) is the error due to measurement noise and variabil-
ity in the signal.

For the BHS bearings, an exponential form is adopted. The
choice of an exponential model is justified based on two as-
pects: (i) the rate of degradation, once a spall is formed, in-
creases with time and, (ii) an abrupt change point is often not
found in low-speed components. With an exponential func-
tional form and Brownian error term, the parametric degra-
dation model (see equation (28)) is expressed as (Gebraeel et
al., 2005):

Xk = φ+ θ · e(β·tk+ε(tk)−σ22 ·tk) (29)

where φ is a known constant, θ is a lognormal random vari-
able, i.e. θ′ = ln(θ) is normal with mean µ0 and variance σ2

0 ,
β is a normal random variable, independent of θ with a mean
of µ1 and a variance of σ2

1 , and ε(tk) is the Brownian motion
error with mean 0 and variance σ2tk. The degradation model
in equation (29) can be written in a logarthmic form given by:

ln(Xk − φ) = lnθ +

(
β − σ2

2

)
· tk + ε(tk) (30)

L(t) = θ′ + β′ · tk + ε(tk) (31)

where β′ = β − σ2

2 and follow a normal distribution with
mean µ′1 and variance σ′21 .

Next, we validate the Gaussian distribution for the state du-
rations in the aggregate HMM (HMM trained using multi-
ple degradation signals versus a single degradation path) us-
ing simulations. The following parameters µ0 = 3, σ0 =
1.5, µ′1 = 1, σ′1 = 0.5, and σ = 2 are used in equation (31) to

generate multiple degradation paths. These parameters were
selected based on those degradation paths which yield the
expected design life of a typical bearing. Two HMMs (3-
state) are trained representing a traditional (HMM-1) and an
aggregate HMM (HMM-2). For training HMM-1 and HMM-
2, one and fifteen simulated degradation signals are consid-
ered, respectively. Once the parameters are estimated for the
HMMs, the testing is undertaken using degradation signals
not used for training. State sequences and stay durations of
this signal are decoded with respect to HMM-1 and HMM-2
separately. Stay durations in a particular state (say, state-1)
are collected for each case separately and analyzed. Normal
quantile-quantile (q-q) plots for these stay durations corre-
sponding to HMM-1 and HMM-2 are shown in Figure 5(a)
and Figure 5(b), respectively. Clearly, the stay durations falls
approximately on the straight line for the case of an aggregate
HMM, thus confirming the normality of durations.
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Figure 5. Distribution of stay durations in any state is sensi-
tive to the number of samples used for HMM training. The
normal q-q plot for stay durations of one of the decoded
states, when (a) one and (b) fifteen degradation signals were
used for HMM training.

A key issue in maintenance planning is the setting of thresh-
olds (alarm and failure) based on the amplitude of the degra-
dation signal. The run-to-failure data for individual bearings
were not available, however, bearings which were determined
to be faulty were made available to the authors. Bearings in
their pristine condition were also made available for baseline
comparisons. In order to set the thresholds, vibration data
was collected from each of these bearings in the prototype
conveyor system (details are discussed in Section 5) at the
University of Waterloo. Figure 6 shows the q-q plot for the
vibration amplitude for three healthy and six faulty bearings.
Gaussian distributions were fitted separately to these faulty
bearings and the parameters (µ, σ) were estimated. These
values were further averaged to give a representative mean, µ̄
(m/s2) and standard deviation σ̄ (m/s2) for faulty bearings.
The values, µ̄ ± σ̄, were used as alarm limits for preventive
maintenance and µ̄ ± 2σ̄ as failure limits, which are 8 and
12 m/s2, respectively. At Pearson airport, Toronto, nearly

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Theoretical quantile

Sa
m

pl
e 

qu
an

til
e

-4 -2 0 2 4
-5

0

5

10
(µ =3.6, σ =1.5)

-4 -2 0 2 4
-2

0

2

4

6
(µ =3.1, σ =1.2)

-4 -2 0 2 4
-2

0

2

4

6
(µ =2.8, σ =1.1)

-4 -2 0 2 4
-10

0

10

20
(µ =6.1, σ =3.6)

-4 -2 0 2 4
-10

0

10

20
(µ =4.9, σ =3.3)

-4 -2 0 2 4
-5

0

5

10

15
(µ =4.7, σ =3.0)

-4 -2 0 2 4
-10

0

10

20
(µ =4.4, σ =2.8)

-4 -2 0 2 4
-5

0

5

10
(µ =3.4, σ =2.0)

-4 -2 0 2 4
-10

0

10

20
(µ =3.8, σ =3.3)

Figure 6. q-q plot for three healthy (first row) and six faulty
(second and third row) bearings; experimental acceleration
values are shown on the Y-axis and theoretical quantile on
the X-axis.

10,000 bearings are in operation within the BHS. Histori-
cally, most of the bearing replacements have occurred only
on a subset of conveyor sections (details known from histori-
cal maintenance logs), which means that the total number of
bearings to be monitored is significantly fewer than 10,000.
The sample size of the bearings to be monitored can be cal-
culated based on statistical principles and historical bearing
failure data. Figure 7 shows a plot of monthly and cumula-
tive bearing replacements undertaken in the last ten years at
the airport. The data is negatively skewed (skewness = 1.4)
with a standard deviation of σ = 2.7 years. An approxi-
mate estimate of the sample size, n is given by (Asadoorian
& Kantarelis, 2005):

n =

[
σ × Zα/2

E

]2

(32)

where, E is the margin of error (i.e., maximum difference be-
tween the observed sample mean and the population mean),
σ is the population standard deviation and Zα/2 is the z-value
corresponding to area α/2 in the right tail of the standard nor-
mal distribution. The available statistics are substituted for
population statistics to determine the sample size. Variation
of the sample size with error margin (E) and the confidence
interval (α) are shown in Table 1. For example, for a 99 per-
cent confidence that the sample mean is within 1 year of the
population mean, the sample size n = 50. This number can
be used either to train a baseline HMM for fault diagnosis or
to simulate degradation paths for RUL calculations.

4. OVERALL METHODOLOGY

The proposed method consists of three phases: fault diagno-
sis, RUL calculation and maintenance planning. The health of
a given bearing is determined by calculating the probability of

Table 1. Variation of sample size (n) with error margin (E)
and confidence interval (α)

Error Margin (E) Confidence Interval (α)
(yr.) 90% 95% 99%

0.50 80 112 195
0.75 36 50 85
1.00 20 30 50
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Figure 7. Bearing replacements at Pearson airport (a)
monthly (b) cumulative bearing failures.

measurements belonging to a healthy HMM model (based on
a threshold). If a bearing is determined to be faulty, an imme-
diate maintenance action is triggered. Else, the RUL pdf is es-
timated in the second phase, following which a maintenance
action is planned based on the estimated RUL in the third
phase. Figure 8 shows the algorithm used for fault diagno-
sis. First, the vibration measurements for healthy bearings at
different speeds are collected. Each time series is segmented
into several windows of equal length Lw. The optimum win-
dow length is determined by maximizing the average kurtosis
value K̄, which is given by

K̄ =

∑Nw
i=1Ki
Nw

=

∑Nw
i=1

∑Lw
j=1

(yij−ȳi)4
σ4
iLw

Nw
(33)

where Ki is the kurtosis value of ith window, Nw is the to-
tal number of window, yij is the jth data point in ith win-
dow, ȳi is the mean and σi is the mean and standard de-
viation of ith window, respectively. The characteristics of
the measurements in each window are captured using condi-
tion indicators, namely kurtosis, crest factor, rms value and
mean (Večeř, Kreidl, & Šmı́d, 2005). This means that the
data from each window are represented using a point in a
multi-dimensional space, whose co-ordinates are the condi-
tion indicators. These points are grouped into clusters using
K-means clustering (Duda, Hart, & Stork, 2000) . To train
a HMM, a set of alphabetical {H,T,T,H,H,H,T, · · · }, or nu-
merical {1,2,2,1,1,1,2, · · · } symbols are generated represent-
ing the training sequence. For example, with three clusters,
the measurement sequence at a given speed can be coded as
a training sequence {1,2,1,2,3,2,1,1, · · · }. Several training
sequences are formed by repeating this process at different
speeds for healthy bearings and the baseline HMM param-

7
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Figure 8. Flowchart showing the key steps of proposed method

eters are estimated. The presence of a fault is determined
by setting a threshold calculated using data from multiple
healthy bearings, which is the minimum probability amongst
all the healthy bearings. Testing involved calculating the prob-
ability with respect to baseline HMM and comparing with the
threshold. The main steps in the overall methodology are as
follows:

Fault diagnosis:
1. Collect vibration measurements from healthy bearings at

different speeds.
2. Segment the the signals into multiple windows, evalu-

ate time domain condition indicators (kurtosis and crest
factor) for each window and convert them into discrete
symbol sequence (described later).

3. Use the Baum-Welch method (L. Rabiner & Juang, 1986)
to estimate the baseline HMM model with parameters λ
= (A, B, π).

4. The probability with respect to baseline HMM is eval-
uated and compared with a threshold. This threshold is
the minimum probability amongst a number of healthy
bearings experimentally tested with respect to the base-
line HMM.

Threshold (Th) = min (P (O|λ); ∀ normal O (34)

If the bearing is found to be faulty, immediate replace-

ment is recommended. Else, the RUL is estimated as
discussed next.

RUL estimation and maintenance planning steps:

1. Generate simulated run-to-failure vibration measurements
and convert them into symbol sequences based on exper-
imentally determined thresholds and estimate the HMM
parameters λ = (A, B, π).

2. Given λ = (A, B, π), use Viterbi algorithm (L. Rabiner
& Juang, 1986) to decode the state sequence and to cal-
culate the means and standard deviations for the stay du-
rations.

3. For testing, the trained HMM is used to calculate the
most recent health state and to identify the critical path
from the most recent state to the failure state. The statis-
tics obtained from step 3 are used to calculate the mean
and standard deviation for this shortest path and hence
the RUL distribution.

4. Given the mean and standard deviation of the RUL, the
ECR optimization problem is solved for maintenance plan-
ning.

5. EXPERIMENTAL RESULTS

The BHS consists of conveyor units (straight and turn sec-
tions) connected in series. Each conveyor is made up of a
chassis with two rollers each, one for maintaining the tension

8
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and the other for driving. A gear-motor drives a belt around
the two rollers along with a variable frequency drive to vary
the operational characteristics such as the belt speed, acceler-
ation, stopping time, etc. A prototype conveyor section was
installed at the Structural Engineering Laboratory at the Uni-
versity of Waterloo as shown in Figure 9 and is used for the
work described in this paper. This conveyor consists of one
straight section (length = 3.83m, width = 1.06m and height
= 0.81m) and one turn section (outer curve length = 2.33m
and inner curve length = 1.29m). The bearings that guide
the motion of conveyor belt between these two sections are
shown in Figure 10. Figure 11(a) shows a typical bearing
(Dodge, n.d.) supporting the shaft at the junction of straight
and turn section. The construction of the bearing, number
of balls (nb), pitch diameter (Dp), ball diameter (Db) along
with the characteristic fault frequencies are provided in Ta-
ble 2 for reference. The dynamic and static load capacities
of this bearing (Dodge-SXR-207-1-7/16) are 22 kN and 15.5
kN, respectively. The L10 life for this bearing, which is the
life at which ten percent of the bearings can be expected to
have failed, equals to 60,000 hour. This estimate is the ap-
proximate design life of these bearings. If we assume that
the conveyor is running ten hours per day on average, then
according to L10 the bearing will last for 16.4 years approx-
imately. For the purposes of this study, even though the L10

is not explicitly used, this will be used to check the validity
of the RUL estimates. The allowable equivalent radial load at
250 RPM (typical conveyor speed) is 3 kN.

Figure 9. Conveyor section located at the University of Wa-
terloo and used for experimental studies.

5.1 Data acquisition

The vibration data was acquired using a tri-axial accelerom-
eter (Dytran, Model 3023A, 10 mV/g sensitivity) mounted
on a bearing and the data acquisition system used was man-

Figure 10. Bearings located at the straight and turn sections.

Figure 11. Typical Dodge bearings and its instrumentation
using a triaxial accelerometer.

ufactured by Datatranslation Inc. (Model DT9837A). Figure
11(b), shows the instrumented bearing on the laboratory test
section. Vibration signatures at various locations (3, 6, 9 and
12 o’clock) were collected and analyzed prior to establishing
the final 3 o’clock position as the position which results in
the best features. The sampling frequency was set to 6 kHz
based on the bandwidth of the accelerometer and the features
of interest. A tachometer was also employed to measure the
rotational speed of the shaft. The conveyor section was oper-
ated at speeds ranging from 2.5 - 4.0 Hz, which reflects the
typical operating speeds at the airport. Measurements from
unloaded and loaded (with four standard baggage specimens
weighing 23 Kilograms each) configurations were taken. The
accelerations for the loaded configuration were found to be
higher in magnitude than their unloaded counterparts.

Three healthy and six faulty bearings were instrumented and
identical tests were conducted on the conveyor section. The
faulty bearings were units replaced during the regular mainte-
nance process at airport by the maintenance personnel. Data
on both healthy and faulty bearings were acquired at five shaft
speeds (172, 191, 212 , 223 and 235 rev/min).

Table 2. Bearing details and characteristics fault frequencies

Geometry Frequencies (Hz)

nb Db (in) Dp (in) BPFO BPFI BSF FTF
9 0.44 2.136 3.58×fr 5.42×fr 2.34×fr 0.4×fr

9
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5.2 Analysis and results

Vibration spectra for a healthy and faulty bearing acquired
at a speed of 191 RPM (3.18 Hz) are shown in Figure 12.
For training, features were extracted from three healthy bear-
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Figure 12. Fourier spectra for (a) healthy and (b) faulty bear-
ing at 191 RPM (3.18 Hz).

ings at speeds 172, 191, 212, 223 and 235 rev/min. To select
the optimum window length Lw, the average kurtosis value
K̄ for various window lengths is illustrated in Figure 13. It
can be seen from the figure that Lw = 3700 corresponds to
maximum K̄ and hence selected in this study. The number of
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Figure 13. Selection of optimum window length

observation symbols were determined using a Gaussian mix-
ture model (GMM) (Duda et al., 2000). The features were
first modeled using GMM and the number of independent
components in a GMM constituted the number of observa-
tion symbols. The model order (i.e., number of component)
was determined using Akaike information criterion (AIC) cri-
teria, which is a measure of the relative quality of statistical

models for a given set of data. Mathematically, it is defined
as

AIC = −2 ln(L̂) + 2 k (35)

where L̂ is the maximum value of the likelihood function for
the model and k is the number of parameters in the model.
The AIC penalizes for the addition of parameters, and thus
selects a model that fits well but has a minimum number of
parameters (i.e., simplicity and parsimony). Among the sev-
eral possible models, the one with the lowest AIC value is
selected. Table 3 presents the AIC value for various models,

Table 3. AIC value with number of GMM component

Number of component 1 2 3 4 5 6
AIC value 540 320 210 212 215 216

when different number of GMM components are considered.
Clearly, the three component model is sufficient to represent
the extracted features.

Codebook (reference vector) preparation and symbol assign-
ment to the observations were performed next. Training fea-
ture vectors from a normal bearing were used in conjunction
with K-means clustering to define the three reference vec-
tors (which is the centroid of each cluster) forming the code-
book. This code book along with the training vectors are il-
lustrated in Figure 14(a). Assignment of a particular symbol
to observations was done by comparing observations with the
codebook. For each training vector, the Manhattan distance
(Duda et al., 2000) from each reference vector obtained from
k-means clustering was used, and the observations were as-
signed symbols closest to the reference vector. Figure 14(b)
shows the assigned symbols (symbols are symbol-1, symbol-
2 and symbol-3) for the first hundred observations. For ex-
ample, observation number one is close to centroid-1 and as-
signed symbol-1. Similarly, second and third observations are
assigned symbol-3 and symbol-1 respectively. The X-axis in
Figure 14(a) is not the observation number and an observation
can fall anywhere in the plot.

The next step in the training process involves the estimation
of the HMM model parameters for a healthy bearing. A set
of hundred observation symbols were considered as a ob-
servation sequence. For each speed, two such observation
sequences were constructed. As an illustration, Figure 16
shows observation sequences generated from 172 RPM (first
two rows) and 191 RPM (bottom two rows), respectively. To
generate an observation sequence for a given speed, the fea-
ture vectors are extracted and compared with the codebook
(as prepared in the previous step) and a symbol is assigned.
Note the alternation of symbols in the observation sequence
in Figure 16, which forms the basis for HMM training. Since
measurements for five different speeds were available, the

10



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

0 2 4 6 8 10 12 14 16 18 20

Kurtosis

1.5

2

2.5

3

3.5

4

4.5

C
re
st

fa
ct
or

(a) Codebook preparation

0 10 20 30 40 50 60 70 80 90 100

Observation No.

0

0.5

1

1.5

2

2.5

3

3.5

S
y
m
b
ol

(b) Assignment of observation

Figure 14. (a) Clusters of condition indicators calculated
from vibration measurements for three healthy bearings. The
centroid is the reference vector (or code book) which was
used for (b) assignment of symbols for the training vectors.

training data consisted of ten observation sequences, where
each set contains one hundred observation symbols.

An important issue for HMM training is the number of states,
which characterizes the hidden degradation process. Since
the number of states are a priori unknown, the model was
trained assuming various number of states and the optimum
number of states was determined from these results. For two
and three state HMM, the transition probability A and emis-
sion probability B matrices obtained are given below:
HMM for 2 states:

A =

[
0.87 0.13
0.19 0.81

]
B =

[
0.10 0.54 0.36
0.66 0.12 0.22

]
HMM for 3 states:

A =

 0.77 0.19 0.04
0.07 0.67 0.26
0.18 0.17 0.65

B =

 0.20 0.68 0.12
0.84 0.10 0.06
0.01 0.15 0.84


Entries in the matrix A are the transition probabilities be-
tween different states. For example, for the case of three state
HMM (S1, S2 and S3), the probability of transition from S1

→ S2 is 0.19 and S2 → S3 is 0.04. The maximum probabil-
ity occurs along the diagonal of the matrix, indicating that
the system tends to remains in the same state most of the
time. Even though a backward transition, say S2 → S1 is
not physically possible, the evaluated transition probability
matrix A still contains small non-zero values for backward
probabilities due to noise and numerical issues (Boutros &
Liang, 2011).

Log-probabilities of the training sequences based on two and
three state HMMs are given in Table 4. It can be seen from
that the probability for the three state HMM is higher than
the two state HMM in 90% of the cases tested. This sug-
gests that the given data can be better represented by a three
state HMM. The state transition and emission probabilities
for the three state HMM are pictorially represented in Figure
15. More complex HMMs with several states would likely to

Figure 15. State transition and emission probabilities of dif-
ferent symbols (1,2,3) in a 3-state HMM

capture the underlying deterioration process more efficiently.
An adequate number of states can be sought by training var-
ious HMM models and comparing their likelihoods with re-
spect to the training data. But, for fault detection in the cur-
rent set-up, such complex HMMs are not deemed necessary.
Also, such HMMs will be computationally expensive. Next,
the threshold was decided using the minimum probability ob-
tained for different training sequences for the healthy case in
accordance with equation (34). The minimum log-probability
for the three state HMM is -106.6, and this is set as the thresh-
old.

The testing phase follows the training phase. Features were
extracted and converted into symbols using the codebook.
Similar to the healthy case, ten sets of observation sequences
were prepared for faulty bearings. The probability of these
observations were computed with respect to a normal three
state HMM (i.e., P(O|λ)). Log-probabilities for the test se-
quences are given in Table 4 which shows the resemblance
of the observations with the trained HMM model. A log-
probability value greater than the threshold signifies greater
resemblance to a healthy state. From Table 4 it can be seen
that in nine out of ten cases tested (faulty cases), the log-
probability is less than the threshold value (-106.6) which
confirmed the true state of the bearings used in the experi-
ments.

6. RUL ESTIMATION

Since the run-to-failure data were unavailable, 75 degradation
paths simulating a range of bearing usage paths to failure are
generated using µ0 = 1.5, σ0 = 0.5, µ′1 = 1.2, σ′1 = 0.5,
and σ = 0.4 in equation (31). The simulated signals are
grouped into three categories: (i) early failure - failure less
than 5 years, (ii) middle age failure - failure between 5 to 10
years and (iii) late failure - beyond 10 years, with a probabil-
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Table 4. Log-probability of training and test observation sequences

HMM Log-probabilities of training sequences
2-State -86.2 -89.9 -103.3 -98.1 -105.5 -101.4 -109.7 -78.6 -73.3 -68.2
3-State -78.9 -89.4 -100.1 -92.4 -99.6 -99.5 -106.6 -79.2 -68.4 -69.5

Log-probabilities of test sequences
3-State -120.3 -111.2 -109.1 -115.5 -87.3 -131.4 -112.6 -124.8 -109.4 -111.4
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Figure 16. Observation sequences from two speeds, 172 and
191 RPM, used for training
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Figure 17. (a) Three BHS bearing degradation paths and (b)
corresponding assigned symbols

The acceleration values were converted into symbols {1,2,3},
for accelerations less than 8 m/s2, between 8 m/s2 to 12
m/s2 and greater than 12m/s2, respectively. Figure 17 shows
three representative signals and the corresponding symbols
assigned to them. Subsequently, the HMM parameters are
estimated, followed by decoding the state sequences. The es-
timated time durations for the three states S1, S2, S3 are esti-
mated as: µ(D1) σ(D1)

µ(D2) σ(D2)
µ(D3) σ(D3)

 =

 4.72 0.61
3.01 0.37
2.43 0.28

 yr

which is then used to predict the RUL of a test bearing signal.
For example, a simulated signal (which has a actual life time
of 13.5 years) is used to estimate the RUL at different times.

The x-axis represents the point at which inspection is carried
out (acceleration data used for analysis) and the y-axis repre-
sents the estimated failure time. Figure 18a shows the vari-
ation of the estimated failure time and Figure 18b shows the
error in its estimation with respect to the actual failure time.
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Figure 18. HMM based (a) failure time and (b) estimated
error in the failure time .

It is clear that the precision of the estimated failure time in-
creases as the current time approaches the actual failure time.
Initially, the mean error in predicting the failure time is about
60%, which decreases to 24% after 5 years and to 8% at the
end of 10 years. Hence, as more data becomes available the
overall confidence in the RUL estimates becomes higher and
hence more useful for predictive maintenance.

7. MAINTENANCE PLANNING

The final step is to optimize the maintenance objective (see
equation (26)), given the estimated RUL. To illustrate the tra-
ditional age based replacement, we present a numerical ex-
ample.

Example

Given Cp = $10, Cf = $50, we want to determine the opti-
mal replacement interval of a bearing subjected to age based
replacement strategy. Assume that the failures occur accord-
ing to the normal distribution with a mean (µ ) of 10 weeks
and a standard deviation (σ) of 2 weeks. With this informa-
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tion, equation (26) can be written as

C(tp) =
10×R(tp) + 50× [1−R(tp)]

tp ×R(tp) +
∫ tP
−∞ tf(t)dt

(36)

Since the failure time is normally distributed failure, the inte-
gral

∫ tP
−∞ tf(t)dt can be simplified as follows:∫ tp

−∞
tf(t)dt =

1

σ
√

2π

∫ tp

−∞
t exp

[
−(t− µ)2

2σ2

]
(37)

Applying integration by parts we get∫ tp

−∞
tf(t)dt = −σφ

(
tp − µ
σ

)
+ µΦ

(
tp − µ
σ

)
(38)

where φ(t) and Φ(t) are the ordinate and cumulative distri-
bution functions, respectively at t of the standarized normal
distribution. For various values of tp, the corresponding val-
ues of C(tp) are presented in Figure 19, from which it is seen
that the optimal replacement age is 6.5 weeks and the corre-
sponding cost is $1.8.
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Figure 19. Optimal replacement interval and cost

Now, such calculations is carried out for the simulated bear-
ing acceleration values, where the RUL distribution is ob-
tained from HMM. As discussed previously, the RUL distri-
bution is closer to a normal distribution when multiple bear-
ing signals are used for HMM training. Figure 20(a) shows
the estimated RUL for three bearings aged 3, 5 and 7 years
(say, for the bearing aged 3 years, the RUL follows a normal
distribution N ( 7.2 yr, 1.2 yr)).

This RUL distribution together with equation (26) are used to
frame the maintenance objective function. The preventive re-
placement costCp and the failure replacement costCf are as-
sumed (arbitrarily) to be 500$ and 1000$, respectively. Vari-
ation of expected cost rate with the replacement time (tp) is
illustrated in Figure 20(b), where the optimum replacement
time say, for a 3 yr aged bearing is 3.4 yr. Figure 20 also
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Figure 20. (a) RUL at different time (b) variation of expected
cost rate with replacement time.

shows the RUL distribution and the ECR for bearings aged 5
and 7 years. Clearly, the estimates on the replacement time tp
becomes more reliable with increasing time.

Further, the sensitivity analysis for these cost parameters Cp
and Cf was carried out and the results are graphically pre-
sented in Figure 21. Figure 21(a) shows the variation of ECR
with tp, as a function of theCp, while keepingCf fixed. Sim-
ilarly, the variation of Cf while fixing Cp is shown in Figure
21(b). From the results, it can be seen that the optimal re-
placement time and cost rate are sensitive to Cp and Cf for
the values studied.

0 2 4 6 8 10
tp

150

200

250

300

350

400

450

500

550

600

E
C
R

($
)

(b) ECR(Cp)

0.50k
0.60k
0.75k

0 2 4 6 8 10
tp

150

200

250

300

350

400

450

500

550

600
(b) ECR(Cf)

1.0k
1.5k
2.0k

Figure 21. Sensitivity of ECR w.r.t. (a) Cp (Cf = 1000$)
and (b) Cf (Cp = 500$.)

Finally, for comparison purposes, the cost rate and replace-
ment interval estimated from the HMM approach are com-
pared with the an age based replacement strategy. To per-
form such a comparison we first need to estimate the failure
time distribution f(t) as in equation (26). A set of 75 degra-
dation paths were simulated, using the same parameters as
used in HMM approach. A bearing is considered to be faulty
when it reaches the failure threshold of 12 m/s2 as deter-
mined through laboratory experiments. With the aforemen-
tioned threshold, over a monitoring period of 15 years, 65 out
of 75 bearings were found to have failed, while 10 are cen-
sored. Failure time of these bearings is assumed to be Weibull
distributed and its probability density function f(t) is esti-
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mated, which is subsequently used to estimate the optimum
replacement time using equation (26).

Table 5 shows the comparison of tp and cost rate for these two
polices. Note that the age based replacement policy results in
a fixed replacement policy i.e., gives only one value of tp( i.e.
5.5 yr.) based on life time data. On the other hand, the HMM
based strategy uses the condition data available up-to the most
recent inspection time and updates the replacement time. For
example, in Table 5 the results from the HMM approach at
the end of 3, 5 and 7 years are given. Clearly, at the end of 7
years, the HMM based policy results in a larger replacement
interval and consequently a reduction in the overall cost com-
pared to the traditional age based replacement policy. The
effectiveness of HMM based approach can further be verified
with respect to the designed L10 bearing life, which is 16.4
years as mentioned in section 5. The HMM method predicts
bearing replacement time of 13.6 yr. (= 7 + 6.6), when esti-
mated at the end of 7 yr. which is close to the design L10 life.
Moreover, this prediction will improve further as more data
becomes available.

Table 5. HMM based vs age based replacement

Replacement tp ECR (%)4 tp (%)4ECR
Policy (yr.)

Age based 5.5 233.1 NA NA
HMM based (#) 6.6 (7) 186 (7) +20.0 -20.2

4.9 (5) 212 (5) -10.9 -09.1
3.4 (3) 260 (3) -38.2 +11.9

# Time at which HMM based algorithm is invoked is given in bracket.

8. CONCLUSIONS

It is well known that HMMs are quite useful for bearings
health assessment using indirect vibration measurements. How-
ever, most existing publications only deal with bearing fault
diagnosis, with the exception of very few which deal with
the problem of prognosis. In this paper, an integrated HMM
framework to undertake fault diagnosis, RUL estimation, and
maintenance planning for low-speed rotating components, when
failure data is limited or unavailable, is presented. The pro-
posed fault diagnosis algorithm utilizes multiple bearing vi-
bration signals from several bearings at different operating
conditions for HMM training and supported by techniques
such as GMM, AIC and maximum average kurtosis. Based on
the experimental studies performed over a conveyor section
in the structural engineering laboratory at the University of
Waterloo, it was found that such an approach improves fault
detection accuracy. For RUL estimation, a hybrid approach
in which experimentally determined thresholds in conjunc-
tion with simulated degradation signals is applied to replicate
the field situation and address the limited data case. A novel
concept of critical path, which is the most probable route by

which a system can reach its failure state from the current
state is introduced. It is shown that this approach results in
better HMM based RUL estimates, which increases with the
age of the bearing. Finally, when RUL predictions are in-
tegrated to maintenance planning, the results are consistent
with the design bearing life, especially in the later stages of
operation. Furthermore, the proposed methodology shows
cost savings when compared to traditional age based replace-
ment policy.
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