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ABSTRACT

This manuscript explores the application of big data analytics
in online structural health monitoring. As smart sensor tech-
nology is making progress and low cost online monitoring
is increasingly possible, large quantities of highly heteroge-
neous data can be acquired during the monitoring, thus ex-
ceeding the capacity of traditional data analytics techniques.
This paper investigates big data techniques to handle the high-
volume data obtained in structural health monitoring. In par-
ticular, we investigate the analysis of infrared thermal images
for structural damage diagnosis. We explore the MapReduce
technique to parallelize the data analytics and efficiently han-
dle the high volume, high velocity and high variety of infor-
mation. In our study, MapReduce is implemented with the
Spark platform, and image processing functions such as uni-
form filter and Sobel filter are wrapped in the mappers. The
methodology is illustrated with concrete slabs, using actual
experimental data with induced damage

1. INTRODUCTION

During the span of a structures service life, conditions such
as wear, overload, environmental degradation, and natural
disasters may accelerate the degradation of the material and
the structure. Structural health monitoring (SHM) is a vital
tool to ensure that the structure is reliable within the design
life, and also to potentially extend the service life beyond the
designed life (Naus, 2009). SHM techniques can be either
data-driven or model-based. In both cases, the data is often
obtained using non-destructive evaluation (NDE) techniques,
which can be divided into active and passive techniques. Ex-
amples of active NDE techniques are electromagnetic test-
ing (ET) (Nagy, 2016) and ultrasonic guided wave testing
(UGWT) (Yan, Royer, & Rose, 2010). Examples of passive
NDE techniques are acoustic emission (Nair & Cai, 2010),
digital image correlation (DIC) (Roux, Rthor, & Hild, 2009),
fiber-optic sensing (FOS) (López-Higuera, Cobo, Incera, &
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Cobo, 2011). Some other NDE techniques can be used in ei-
ther active or passive modes, such as infrared thermography
(IR) (Bagavathiappan, Lahiri, Saravanan, Philip, & Jayaku-
mar, 2013). From the data type point of view, these monitor-
ing techniques acquire either wave signals (ET, UGWT, AE),
or images (DIC, IR). Data acquisition and analysis are crucial
elements in structural health monitoring.

However, due to current trends in monitoring the entire struc-
ture, instead of focusing on only suspicious locations, the
amount of acquired data is growing, which gradually in-
creases the demands pressure on the data acquisition and
analysis techniques. For example, 26 sensor arrays on the
Vincent Thomas Bridge (VTB) in San Pedro, California gen-
erate 3 terabytes (TB) per year (Kallinikidou, Yun, Masri,
Caffrey, & Sheng, 2013); in the health monitoring of wind
turbine blades, over 300 GB acoustic emission data were sam-
pled during 6 months (Anastasopoulos, Lekou, & Mouzakis,
2012); 7 GB of data were sampled per day in the Confeder-
ation Bridge Monitoring Project in Canada (Desjardins, Lon-
dono, Lau, & Khoo, 2006); over 20 GB of data were obtained
during automated railway inspection in the city of Brockton,
MA ((Zhang, Qiu, Shamsabadi, Birken, & Schirner, 2014).
All these applications call for the introduction of big data ana-
lytics into structural health monitoring. (Mahadevan, Adams,
& Kosson, 2012) pointed out the need for big data analytics
in structural health monitoring, as one of the four elements
in prognostics and health monitoring framework of concrete
structures. The big data issue mainly affects two elements in
structural health monitoring: data acquisition and data ana-
lytics. For data acquisition, data synchronization is a criti-
cal problem to solve, especially in a wireless sensor network.
Several studies such as (Araujo et al., 2012), (Gandhi, Chang,
& Trivedi, 2007), and (Yu, 2012) have studied this problem.
This manuscript only focuses on the data analytics issues in
SHM, in the presence of big data.

There are two different directions to pursue in solving the big
data problem. First, when the data is too large to process, in
order to reduce the computational cost, it may sometimes be
desirable to compress the data before processing. Data com-
pressed into feature vectors can help to reduce the dimension
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of data, by exploiting statistical redundancy of the raw data
(Sohn, Farrar, Hunter, & Worden, 2001). Additionally, an-
other kind of reduction can be achieved via reducing the data
size using samples of the data, known as compressive sensing.
One example is the compressive sampling of accelerometer
signals (Bao, Beck, & Li, 2010). While it seems to be a rea-
sonable way to handle the voluminous data, one of the issues
in data compression is the reduced accuracy of the detection,
which sometimes leads to the low quality of the structural
health monitoring, resulting in unreliable decision making.

In contrast to data compression, parallel and distributed com-
puting offer alternatives to reduce the time cost of data ana-
lytics, without causing any precision loss. Parallel computing
is more tightly connected to multi-threading, or how to make
full use of a single CPU; Distributed computing refers to the
notion of divide and conquer, executing subtasks on different
machines and then merging the results. Theoretically, dis-
tributed computing is much more powerful, since more mem-
ory and CPU resources (from the cluster) are available, al-
though the bandwidth among the connected computers can
sometimes become the main limitation. Message Passing In-
terface (MPI) is one of the most popular distributed comput-
ing methods used for a long time, and applications can be
found in structural health monitoring (Kiepert & Loo, 2012),
(Chakraborty et al., 2009). MPI’s goals are high performance,
scalability, and portability. Another conceptually similar ap-
proach in the context of big data is MapReduce. Utilizing
a cluster of nodes, MapReduce performs two essential func-
tions: It parcels out work to various nodes within the cluster,
and it organizes and reduces the results from each node into
a cohesive answer to a query (Dean & Ghemawat, 2008).

Although the main purpose of both MPI and MapReduce is
to improve the efficiency via parallelization, there are sev-
eral differences between them. First, MPI is designed to
handle large amounts of data exchange between computers,
while MapReduce focuses on embarrassingly parallel imple-
mentation (no much information exchange among comput-
ers). Second, MPI is appropriate for iterative algorithms that
are computationally expensive, whereas MapReduce is fit for
the case where the expense is mainly caused by the data itself.
Third, although MPI can also be built to be scalable and fault-
tolerant, it needs much effort to ensure the performance and
reliability of such a system, MapReduce on the other hand,
is created to be easily scalable and fault-tolerant. A detailed
discussion about relations between MPI and MapReduce can
be found in (Chen, Song, Bai, & Lin, 2011).

The main contribution of this paper is to investigate image
processing with the MapReduce technique to handle the big
data challenge in structural health monitoring. The particu-
lar focus in on thermal image processing, and the implemen-
tation of MapReduce for edge detection using the Sobel fil-
ter, in order to detect the damage. The proposed approach is

demonstrated with a concrete slab.

The rest of this paper is organized as follows. Section 2 pro-
vides a background review of the basic concepts related to
SHM and big data analytics. Section 3 develops the big data
analytics approach to structural damage diagnosis, especially
the implementation of MapReduce to edge detection. Sec-
tion 4 implements the proposed approach using an illustrative
example of detecting holes in a concrete slab using infrared
thermography, and discusses the performance of the MapRe-
duce methodology. Section 5 provides concluding remarks.

2. BACKGROUND

2.1. Online Structural Health Monitoring

The purpose of online structural health monitoring is to detect
the damage in the structure, analyze future risk, predict the re-
maining useful life, and guide the maintenance/repair actions
if needed. In the context of pattern recognition (Farrar, Doe-
bling, W., & Nix, 2001), a four-step procedure is described:
(1) Operational evaluation, (2) Data acquisition and cleans-
ing, (3) Feature selection, and (4) Statistical model develop-
ment. Operational evaluation defines what will be monitored
and how the monitoring process will be implemented. Data
acquisition and cleansing will define what data will be sam-
pled and processed, and how the data will be sampled (i.e.,
in what frequency, how long it will be recorded, and how
it will be preprocessed). The feature selection step defines
the features that will be selected and the statistical distribu-
tions of the features. In the statistical model development
step, the model will be developed to detect the damage, pre-
dict remaining useful life, and quantify the uncertainty. In
this paper, only deterministic structural health monitoring is
considered in the context of big data, so step (4) will develop
a deterministic model which will be used only to detect the
damage, without considering any uncertainty sources.

2.2. Image Processing

Digital image is one type of data format acquired and used
in structural health monitoring. Damage is detected, located
and quantified by comparing the image of the damaged struc-
ture against that for the intact structure, using image process-
ing techniques. The general procedure described in (Baxes,
1994), is shown in Figure 1. After obtaining the raw image,
preprocessing techniques (e.g. cropping, baseline removal
and noise reduction) can be applied to prepare for edge de-
tection, which can lead to damage detection. Noise reduction
and edge detection are computationally expensive, and can
benefit from the application of big data techniques.

2.3. MapReduce Framework

MapReduce is a framework designed for processing large
datasets, by utilizing multiple nodes (machines) for the com-
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Figure 1. The image to be processed

putations. It takes key/value pairs as inputs and generates the
other key/value pairs as outputs. A key-value pair (KVP) is
a set of two linked data items: a key, which is a unique iden-
tifier for some item of data, and the value, which is either
the data that is identified or a pointer to the location of that
data. As mentioned earlier, the MapReduce framework can
be split into two steps: Map and Reduce, both of which are
created by the user. Before applying the MapReduce model,
the user will need to write the input as the key/value pair. The
key/value pair (k1, v1) will then be input to the Map function,
which will generate the intermediate key/value pairs (k2, v2).
Then the intermediate key/value pairs are passed to the re-
duce function, which merges together these values to form a
smaller set of values. The process is shown below, which al-
lows us to handle lists that are too large to fit into the memory:

map(k1, v1) − > list(k2, v2)
reduce(k2, list(v2)) − > list(v3)

An example of counting words occurance in documents can
help to understand the MapReduce process (Dean & Ghe-
mawat, 2008). In Pseudocode 1, the Map function emits each
word plus an associated count of accurrences (just ‘1’ in this
example). The Reduce functions sums together all counts
emitted for a particular word.

The usage of MapReduce is very flexible, depends on the
problems to be solved. One typical usage of MapReduce is
shown in the ‘Word Count’ example above, where the inter-
mediate key/value pairs (k2/v2) are the word/counts. Here
k1/v1 refer to the file/contents. Sometimes when the Map
function is used only, intermediate key/value pairs are the ac-
tual results, as we have in our application on image process-
ing.

Pseudocode 1:
Map(String key, String value):

// key: document name
// key: document contents
for each word w in value:

EmitIntermediate(w, “l”);

Reduce(String key, Iterator values):
// key: a word
// key: a list of counts
int resut = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Figure 2. MapReduce execution overview

A cluster of computers (nodes) are used to implement this
framework (Figure 2). One of them is the master node and
the others are slave nodes (workers). MapReduce framework
will split one path of execution into multiple concurrent paths
of execution. Each path is called a fork. In figure 2, it splits
execution onto master node and slave nodes. The way master
node assign Map or Reduce task is controlled by the clus-
ter manager (such as Mesos in Apache Spark (Zaharia et al.,
2012)). First, the input files are parsed and split into smaller
pieces (size 16MB to 64MB). The cluster manager will first
assign Map tasks to all available slave nodes, and assign them
Reduce tasks when any of the Map tasks finished. Notice
that the number of workers assigned with Map tasks and Re-
duce tasks can be different, depends on the number of nodes
available when assigning the tasks. Local write means the
Map works write outputs (intermediate key/value pairs) to
its own hard disk, and remote read means the other work-
ers who were assigned Reduce tasks retrieve the intemediate
key/value pairs remotely.

2.4. Spark

While there are different implementations of MapReduce,
Apache Spark (Zaharia et al., 2012) is the one chosen in this
study. Spark is an open source cluster computing framework,
and API (Application Program Interface) for Java, Scala and
Python are available, which is convenient for non-computer
science programmers. Beside the basic capability of using
the MapReduce methodology, Spark employs Resilient Dis-
tributed Datasets (RDD) that enable efficient data reuse in a
broad range of applications. RDD is a read-only, partitioned
collection of records, which can only be created through de-
terministic operations on either (1) data in stable storage or
(2) other RDDs. An RDD has enough information about how
it was derived from other datasets to compute its partitions
from data in stable storage (Zaharia et al., 2012). Transforma-
tions are the manipulations on the data to be analyzed. There
are two types transformations: coarse-grained transformation
and fine-grained transformation. Coarse-grained transforma-
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tion is applied on the entire dataset (e.g. filtering the whole
datasets), while fine-grained transformation works on a sin-
gle data point (e.g. index of certain data point). Spark applies
coarse-grained transformations (e.g., map, filter and join) to
allow the fault-tolerance feature. Instead of storing the actual
data, the logging of the transformation can ensure that there
is enough information to redo the operation if an RDD is lost.
Due to the adoption of RDD, iterations in the computational
algorithm do not need to repeatedly execute the reading and
writing operations on the file system; this greatly reduces the
computational cost in machine learning (Figure 3).

Figure 3. Use of resilient distributed datasets (RDD) in Spark

3. METHODOLOGY

When numerous images (Gigabytes or Terabytes of data) are
collected in structural health monitoring, the data is big and
a traditional data processing framework (storage, processing
and manipulating) is not feasible; therefore a big data ana-
lytics framework needs to be employed. The methodology
to apply the big data technique in online health monitoring
will be developed in detail in this section. Structural health
monitoring systems have the following elements: structure,
sensors, data acquisition system, data transfer and storage
mechanisms, data processing, and data manipulation. Each
elements relation to big data are discussed below. Large vol-
ume of data can be caused by the size of the structure being
monitored, or by the number of sensors. The structure gives
the scope, and the sensors give the resolution.

3.1. Structure

In SHM, the engineering structure is the target to be mon-
itored and regarding which the decision needs to be made
(whether to use, maintain, repair or retire the structure based
on the diagnosis result). For example, suppose instead of the
piers of the bridge to be monitored, the health of the whole
bridge (deck, load-carrying elements, piers, and foundations)
is able to be evaluated, with the processing ability of big data.
In this case, the resolution is not changing, but the data vol-
ume is greatly enlarged.

3.2. Sensors

As mentioned earlier, another cause of big data in SHM is
resolution. Similar to the monitoring scope, the number of
sensors can be increased with the data processing ability pro-
vided by the big data techniques. With more sensors used
in monitoring, more information will be available for analy-

sis. The sensor configuration will be discussed in the section
below.

3.3. Data Acquisition, Transfer and Storage

In the monitoring process, data will be generated by sensors,
and then interpreted and transferred to the data processing
computer, via data acquisition system (DAQ). The sampling
rate is controlled by the DAQ device, which directly affects
the resolution and data size. After acquired by the DAQ de-
vice, the data is stored in the computer (often a laptop) con-
nected with the DAQ device. The next step is to transfer the
data to the cluster. For the Linux or Mac system, the com-
mand for data uploading is scp. The syntax of scp is:

scp -r /local/path/to/foo user@your.server.example.com:
/cluster/path/to/foo

Here /local/user/path/to/foo means the local folder, while
user@your.server.example.com:/cluster/path/to/foo means
the target folder in the cluster, and -r means recursively copy
the files in the folder. In computer science, ‘foo’ is commonly
used as a placeholder name. When the operating system for
the client computer is Windows, a similar command can be
used after installing WinSCP or PuTTY. The transferring
speed is limited by the devices on both ends, and by the
bandwidth of the connection between the client and cluster.

Normally the MapReduce application is automatically paired
with the corresponding file system, such as Hadoop with
HDFS (Hadoop Distributed File System), Amazon EMR
with Amazon S3, and Windows Azure and WASB (Windows
Azure Storage Blobs). However, the user can also choose a
different file system other than the default paired one, when it
is more applicable to do so. For example, here we use Spark,
paired with GPFS (General Parallel File System). Addition-
ally, the distributed file system will divide the large data file
into blocks (normally 64 MB to 128 MB, and normally the
user is allowed to change the block size in the actual applica-
tion of MapReduce).

3.4. Data Processing

As reviewed previously, there might be different data formats
to be processed in structural health monitoring. Here we con-
sider thermal image processing as an example. The common
procedure for processing digital images is: cropping, base-
line removal, noise cancellation and feature extraction. Each
image is composed by pixels (Figure 12 for example), where
each pixel represents the temperature of the location .

3.4.1. Baseline Removal

Baseline removal subtracts pixel values by the corresponding
pixel from an image of the control group. It happens when
the control group is available. This can enhance signal char-
acteristics for diagnosis.
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Figure 4. The uniform filtering example

3.4.2. Cropping

The cropping is realized by only storing and plotting the cor-
responding part of the target structure we analyze. Compared
with the raw image, the temperature contour of cropped im-
age is zoomed in (Figure 13). Normally since in the obser-
vation procedure, of the locations of the structure and camera
do not change, the cropping pixel range for all the images is
the same.

3.4.3. Noise Cancellation

Uniform filtering is used for the purpose of noise cancella-
tion. The basic idea is to average each pixel by the value
of adjacent pixels. Notice that uniform filtering is different
from simple moving average (SMA), in thatuniform filter is
doing averaging by putting the target point in the center while
SMA is doing biased averaging. Mathematically, the uniform
filtering process is basically a 2D convolution operation. To
illustrate the convolution operation, the 1D convolution oper-
ator formula is defined in Eq. 1, in which f is the uniform
kernel, and g is the image matrix to be operated on. The ker-
nel can be of different sizes, and Figure 4 shows how a kernel
with size 3 × 3 works on a 5 × 5 target matrix. To perform
convolution, first align the center element of the kernel ma-
trix with the the element on the target matrix, and then sum
up the multiplication between all aligned element-pair. For
example, the convolution on the element (1, 1) is 7.67, as is
shown in Figure 4. Move the kernel along x and y axis until
convolution of all elements are carried out. (Jain, Kasturi, &
Schunck, 1995) can be referred for detailed implementation.
After the uniform filtering, the image is smoothed, i.e.,, more
continuous everywhere (Figure 14).

m(f ∗ g)(t) def
==

∫ ∞
−∞

f(τ)g(t− τ)dτ

=

∫ ∞
−∞

f(t− τ)g(τ)dτ

(1)

(a) (b)

Figure 5. The Sobel fileter kernels: (a) kernel for x direction,
and (b) kernel for y direction

Figure 6. Split of Sobel filter kirnel (x direction) into averag-
ing and differencing

3.4.4. Feature Extraction

Sobel filter is used here for the feature extraction, based on
the image obtained after uniform filtering. The other edge de-
tection algorithms such as Canny, Prewitt, Robert, Laplacian
and Laplacian of Gaussian filters were tried and found that
Sobel filtering performed best in our problem. The selection
of algorithm would be problem-dependent and any desired al-
gorithm can be plugged in our big data analytics framework
in the same way as Sobel filtering. The basic idea behind So-
bel filter is similar to the uniform filter, which is also a 2D
convolution operation, where the only difference is the filter
kernel. Similar to the uniform filter, Sobel filter can also be
performed with different sizes. The difference is that for uni-
form filtering, there is only one kernel, which is a nxn matrix
filled with the value 1/n2 . For Sobel filtering, the filters for
x and y directions can be different (Figure 5). Additionally,
the kernel can be split into the product of two 1D kernels,
for averaging and differencing in two directions (Figure 6).
To differentiate the damaged area, gradient ranges in both x
and y directions are needed, and thresholds will be applied to
detect the edges of damages.

3.5. MapReduce Implementation

The basic idea of the application of data processing in
MapReduce is to divide the files into different partitions (each
partition contains multiple files), and then perform the map-
ping and reducing operations separately. To fully use the re-
sources, the number of partitions is always greater than the
number of instances (i.e. cores, of which each node might
contain a multiple). For example, if the number of files to be
analyzed is 100, and the number of cores available is 20, the
number of partitions should be at least 20. Otherwise some
of the cores will be idle.

In structural health monitoring, the data is normally sampled
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as separate files (images or signals). For each image and sig-
nal, a separate processed result is obtained, without combina-
tion (Figure 7). In that case, the Reduce function is omitted,
and only the Map function remains. All the data processing
functions on the assigned files are combined within a single
Map function. The Map function is defined by the user, in
which the reading, processing, and writing functions are all
included, as shown by the pseudocode below:

Pseudocode 2:
Map(x):

function InputData = ReadData(x);
function OutputData = Processing(InputData);
function WriteData(OutputData);
return (x, 0)

SparkContext(appName=”myApp”).parallelize(Filelist,
N).map(mapper).count()

The above pseudocode has two steps. First, a Map function is
defined (mapper), within which all the actual data processing
functions are defined (reading, filtering, writing). The argu-
ment x is the file to be analyzed, which is assigned by the
task manager. As discussed previously, since there is only the
Map function, the input file can be mapped with any value
(here we mapped x to 0). The reason it can be any value
is here we only use the Map function to trigger the paral-
lelization, without caring for the output of the Map function.
A ‘Word Count’ example has been added. The second step,
SparkContext, represents the connection to the cluster, which
is the main class in Spark; parallelize is the method to split
the input files into N partitions; and map is the method to call
the Map function defined in the first step and to pass the input
file to it. The count method is used to count the number of
outputs. The number of outputs is not of interest, since the
result has already been obtained in the Map function. How-
ever, it is needed since the transformations (parallelize, map)
only created the RDD instance, which needs some actions to
execute it.

Figure 7. Schematic description of the MapReduce process

After the cluster finishes all the tasks, the results are stored
in the designated directory defined in the WriteData function.
Then the next step is to retrieve the data files from the clus-
ter to the local computer, since normally it is not convenient
to visualize the data remotely on the cluster. To transfer data
back from the cluster, the user can use the scp command sim-
ilar to the one used for transferring the data to the cluster.

Operations for image processing (cropping, uniform filtering,
and Sobel filtering) need to be applied on all the images, with
all parameters (cropping range, uniform filtering kernel size,
and Sobel filtering gradient cutoff) remaining unchanged. As
defined earlier, the reading, writing and processing functions
are all included within the Map function. There are three sub-
functions: Cropping, UniformFilter and SobelFilter. The pro-
cessing function is defined using the psudocode below:

Several remarks about the processing function are in order.
First, the input data is no longer a key/value pair but is an
actual image (pixel matrix). Second, the sub functions in-
side will be sequentially executed, since the outputs of each
sub function will be fed into the next sub function as inputs.
Third, the sub functions (Cropping, UniformFilter, and So-
belFilter) can be replaced easily with other functions accord-
ing to the actual data processing task.

In summary, the steps for the big data analytics of image pro-
cessing in structural health monitoring are: (1) upload the
acquired data from the local computer to clusters; (2) prepare
the image processing functions, and substitute into the Map
function shown in Pseudocode 2; and (3) run Spark to pro-
cess and retrieve the data files from the cluster back to the
local computer.

4. NUMERICAL EXAMPLE

This example illustrates the basic application of big data an-
alytics in structural health monitoring. The purpose of the
monitoring in this example is to detect holes drilled into a
15.5 × 15.5 × 2 in3 concrete slab (Figure 8) using infrared
thermography imaging. Holes of 1/2 inch, 3/8 inch, and 5/16
inch diameter (all of them 4.45 inch deep) were drilled into
the side of the concrete slab, as shown in Figure 9. The
holes are required to be detected by the monitoring technique
in this example. Since the focus of this paper is the appli-
cation of big data technique to structural diagnosis, we use
the holes only to illustrate this capability. In this case, the
ground truth is known, which facilitates performance eval-
uation of the monitoring technique. In realistic situations,
concrete damage could be of many types (physical, chemical,
and mechanical), due to various causes such as freeze-thaw,
chloride penetration, alkali-silica reaction etc. Temperature,
humidity, and the properties of the concrete constituents (ce-
ment, aggregates, reinforcing steel, water content, and chem-
ical admixtures) play a crucial role in the evolution of various
types of damage. Damage in concrete eventually manifests
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as cracks, delamination, spalling etc., and the edge detection
approach illustrated here could be applied to different situa-
tions.

Figure 8. Thermography camera and the specimen to be mon-
itored

4.1. Experimental Setup

The mechanics of damage detection using infrared thermog-
raphy is based on the differences in heat transfer properties of
different materials. The air in the drilled holes in the structure
has much lower thermal conductivity coefficient than con-
crete, which will lead to a lagging phenomenon, i.e., the heat-
ing and cooling time of the hole are slower than the surround-
ing solid region. The slab is placed on a HEATCON thermal
blanket and uniformly heated from below. The infrared ther-
mography camera can detect the temperature of the surface of
the slab (Figure 8, Figure 9) and store the temperature values
as images via the DAQ system. We also place reflective ma-
terial around the slab, in order to prevent direct heat transfer
from the thermal blanket to the air around the slab; thus the
thermal camera detects the temperature change on the top sur-
face slab mainly caused by the heat transfer from the blanket
through the slab.

4.2. Thermal Loading

Each thermal cycle has a total duration of 70 minutes. The
heating profile is shown in Figure 10. A HEATCON com-
posite system controller was connected to the thermal blan-
ket and used to program a defined thermal cycle that can be
repeated as many times as needed for a test. Two thermocou-
ples were used to measure and monitor the heat applied by
thermal blanket. One thermocouple was placed beneath the
blanket and the other thermocouple was placed between the
thermal blanket and the concrete sample (Figure 11).

For thermographic imaging, a FLIR Infrared (IR) camera is
used to detect the temperature contours on the surface of the
concrete slab. These contours can be analyzed to detect flaws

(a)

(b)

Figure 9. Sketch of the specimen (a) top view (b) side view

or defects inside the slab that cannot be easily detected by
visual inspection. The FLIR IR camera was setup to capture
images of the concrete slab every 1 second.

4.3. Data Acquisition System

The FLIR IR software is an integrated environment that al-
lows the user to configure the sampling rate, resolution, and
storage. Also the software can visualize the current captured
image, and store the images in the designated path in the .tls
format, which is specially used by this software.

4.4. Data Transfer and Storage Mechanism

After the sampling is completed, the data stored in the file
*.tls can be exported in different format, such as .csv, .m,
.txt, .jpeg. In this study, we used .csv to represent each im-
age. For the heat loading period considered, 4231 images
were sampled, and the total size is 19.4 Gb. The *.tls file is
stored in the computer connected with the DAQ system, and
the size is much smaller. The exported .csv files were stored
in a portable drive, through which they were transferred to
the analysis computer client. In order to use MapReduce to
analyze the data, the data was uploaded to the cluster, which
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Figure 10. Thermal loading time history (scaled values)

Figure 11. Thermal blanket and thermo couple

in this case was ACCRE (Advanced Computing Center for
Research and Education) at Vanderbilt University.

4.5. Data Processing

The implementation of various steps in processing the ther-
mal image data are discussed in detail and the results are pre-
sented below.

4.5.1. Baseline Removal

As reviewed previously, the common procedure for process-
ing digital images consists of: cropping, baseline removal,
noise cancellation and feature extraction. In this example, re-
sults can be obtained without control group. Thus there is
no baseline removal needed here. This can save almost half
the cost of data storage. For each image, the resolution is
640× 512 pixels (Figure 12).

4.5.2. Cropping

Figure 12 shows the raw thermography image of the top sur-
face of the slab and reflective material, 2835 seconds after
start of the heating. Notice that the area corresponding to
the slab has much higher temperature compared to the sur-
rounding reflective material. Thus the image needs to be
cropped in order to achieve greater resolution in analyzing
the temperature distribution within the slab. After several tri-
als, the appropriate pixel range for cropping was found to be
[83 : 518, 25 : 460]. The cropped image is shown in Figure

Figure 12. Example of raw image before cropping (t = 2835
s)

Figure 13. Cropped image (t = 2835s)

13.

The image shows boundary effects, where additional heat
may be introduced from the area around the slab, since the
reflective material may not block all of the heat from the ther-
mal blanket, especially since there was a small gap between
the slab and the reflective material. It is also seen that there is
a large area on the upper left quadrant, where the temperature
is low. It may be due to the non-uniformity of the heating
setup (such as lack of contact between slab and blanket), and
heterogeneity of the concrete slab; the feature extraction step
will reveal whether these effects are significant. As explained
in the methodology section, the cropping pixel range for all
the images are the same.

4.5.3. Noise Cancellation

A 22 × 22 kernel uniform filtering is used for noise cancel-
lation, as shown in Figure 14. It can be observed that after
the uniform filtering, the image is smoother. By doing this,
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Figure 14. Image after uniform filtering (t = 2835 s; 22x22
kernel)

the noise in the image is greatly reduced. Note that Figure 14
roughly indicates the three holes in the right hand side. There
is also a large, low temperature area on the left, but this gets
eliminated in the subsequent feature extraction step.

4.5.4. Feature Extraction

Sobel filter is used for the feature extraction, based on the
image obtained after uniform filtering. After applying So-
bel filtering, the image shows the detected holes in the slab
(Figure 15 (a)). The holes are detected by first obtaining the
upper edges (yellow region on the right hand side in Figure
15 (a)) and lower edges (red region on the right hand side in
Figure 15 (a)), and then plot the region between. The thresh-
olds for obtaining upper edges are [−0.050, 0.050] for x and
[0.020, 0.050] for y, and the thresholds for obtaining lower
edges are [−0.050, 0.050] for x and [−0.100, 0.013] for y.
Notice that the thresholds for x for both cases are the same,
this is due to the hole directions being horizontal so that only
the gradient in x direction is enough for the detection. For a
more complicated hole or damage area, gradients in both x
and y are needed for the detection of edges. Also notice that
some noise is found on the left side of the slab, as shown in
15 (a). This is mainly due to the heterogeneity of concrete,
and also uneven heating by the thermal blanket. The compar-
ison of detected region and actual holes is shown in Figure
15 (b), and visual comparison shows good agreement; a more
quantitative comparison is discussed below.

(a)

(b)

Figure 15. Image after Sobel filtering (a) holes detection
based on the upper and lower edges (b) comparison between
detected holes and ground truth; blue: detected holes, green:
ground truth

4.6. Performance Discussion

Now we discuss the hole detection performance for different
sample rates. In order to evaluate the performance quanti-
tatively, a score is defined as the ratio of correctly detected
area to the total detected area. As the sampling rate increases,
the score grows accordingly (Figure 16). The score increases
by almost 40% (i.e., 100%× (0.723− 0.523)/0.523), as the
sampling interval decreases from 2 mins to 1 second. This in-
dicates that by increasing the sample rate, the damage detec-
tion performance can be greatly improved. However, this in-
creases the demand on the data analytics computation, which
is resolved by the MapReduce technique.
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Figure 16. Detection performence vs. sampling rate

Table 1. Time cost of traditional method and MapReduce
method

Method Time (s)
Traditional 1560

MapReduce (20 nodes) 163

Table 2. Configuration of computers used by traditional
method and MapReduce method

Method GPU (GHZ) Memory (GB)
Traditional 3.4 x 8 12

MapReduce (20 nodes) 2.3 5

Table 3. Time cost of individual steps in data processing

Step Time (s)
Data Reading 0.14

Cropping 0.08
Uniform filtering 0.08

Sobel filtering 0.07

Compared with the traditional single machine computation,
the computational expense (time cost) is greatly reduced as
shown in Table 1. Notice that via distributed computation,
the time cost is only 10% of local computation. It can be seen
that as the number of nodes being used increases, the corre-
sponding speedup increases almost linearly, which illustrates
the scalability of MapReduce. Also notice that as the number
of nodes increases, the computational time decays similar to
exponential decay (Figure 17).

Figure 17. Performence vs. Number of nodes (left y-axes:
computation time; right y-axis: speedup)

However, the time spent by the traditional method is 1560 s,
while the MapReduce method on a single node takes as much
as 2971s. This is due to two reasons. First, the operations re-
lated to MapReduce such as data transferring, data splitting,
task managing, and mapping cost additional time. Second,
the CPU and memory of the cluster node is less powerful (in
this example) than the computer client used for local tradi-
tional computation (Table 2). The time cost of individual step
in data processing (for one image) is shown in Table 3. For
this simple case, data reading accounts for a large portion of
the total time. However, for more complicated data process-
ing, actual processing is expected to occupy a much larger
portion.

5. CONCLUSION

This paper developed a framework for applying a big data
technique to online structural health monitoring. The popu-
lar MapReduce approach was applied in the proposed frame-
work, and realized via Apache Spark. Structural damage de-
tection was parallelized via MapReduce, by transforming in-
puts and outputs as key-value pairs. Sobel filter was used for
illustration of the image processing. It can be easily replaced
with other appropriate techniques for different scenarios. Re-
sults show that the processing effort scaled well, in an almost
linear trend. The approach was illustrated for the process-
ing of thermal images obtained for a concrete slab, and the
data volume is less than 20 Gb. For practical structural health
monitoring for the whole structure in the field, the data can
be very large, thus considerably increasing the advantage of
MapReduce in realistic application.

Future research needs to address several extensions. This pa-
per only considered the application of big data techniques to
deterministic structural health monitoring; extension to un-
certainty quantification in diagnosis needs to be considered in
future work. Second, this paper did not consider the complex-
ity problem of parallelization in MapReduce, which can lead
to different parallelization options via splitting the task data-
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wise or functionally. Third, fault-tolerance is an important
issue in big data analytics, which needs to be incorporated in
future work.
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