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ABSTRACT

This paper presents an approach for data-driven modeling
of hidden, stationary temporal dynamics in sequential images
or videos using deep learning and Bayesian non-parametric
techniques. In particular, a deep Convolutional Neural Net-
work (CNN) is used to extract spatial features in an unsuper-
vised fashion from individual images and then, a Gaussian
process is used to model the temporal dynamics of the spa-
tial features extracted by the deep CNN. By decomposing the
spatial and temporal components and utilizing the strengths
of deep learning and Gaussian processes for the respective
sub-problems, we are able to construct a model that is able
to capture complex spatio-temporal phenomena while using
relatively small number of free parameters. The proposed ap-
proach is tested on high-speed grey-scale video data obtained
of combustion flames in a swirl-stabilized combustor, where
certain protocols are used to induce instability in combustion
process. The proposed approach is then used to detect and
predict the transition of the combustion process from stable
to unstable regime. It is demonstrated that the proposed ap-
proach is able to detect unstable flame conditions using very
few frames from high-speed video. This is useful as early
detection of unstable combustion can lead to better control
strategies to mitigate instability. Results from the proposed
approach are compared and contrasted with several baselines
and recent work in this area. The performance of the pro-
posed approach is found to be significantly better in terms of
detection accuracy, model complexity and lead-time to detec-
tion.
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1. MOTIVATION AND INTRODUCTION

Deep learning allows computational models that are com-
posed of multiple processing layers to learn representations
of data with multiple levels of abstractions (LeCun, Ben-
gio, & Hinton, 2015; Bengio, Courville, & Vincent, 2013;
Hinton & Salakhutdinov, 2006). Deep learning methods are
representation-learning techniques obtained by composition
of non-linear modules or layers that each transform the rep-
resentation at the previous level into a higher and slightly
more abstract level in a hierarchical manner. The main idea
is that by cascading a large number of such transformations,
very complex functions can be learned in a data-driven man-
ner. Convolutional deep neural nets (Krizhevsky, Sutskever,
& Hinton, 2012; Lee, Grosse, Ranganath, & Ng, 2009) are
designed to process data that come in the form of multiple ar-
rays, for example images. In this technique, a discrete spatial
convolution filter is used for detecting highly correlated dis-
tinctive motifs across an image. The same process can be ex-
tended to find temporal features by using a convolution filter
over time, and using a stack of images as input. However, this
will lead to an increase in the number of the hyperparameters
used to train such a spatio-temporal convolutional network.
Instead, we propose a framework, where a convolutional net-
work is used to extract features from images and a Bayesian
nonparametric model like the Gaussian process (Rasmussen
& Williams, 2006) is used to model the temporal dynamics of
the features; the objective is to reduce the number of param-
eters used to train such a network while modeling the spatio-
temporal dynamics in an image sequence or videos. The pro-
posed algorithm is used to detect stable and unstable com-
bustion flame dynamics in a swirl-stabilized combustor. An-
other motivation is that adding a Gaussian process-based filter
might allow to reduce over-fitting of the deep CNN to some
extent as it allows to relate to the causal dynamics present in
the data in a much lower dimensional space.
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Combustion instability is a highly nonlinear coupled ther-
moacoustic phenomenon that results in self-sustained oscil-
lations in a combustor. These oscillations may result in se-
vere structural degradation in gas turbine engines. Some
good surveys on the current understanding of the mecha-
nisms for combustion instability phenomena can be found
in (O’Connor, Acharya, & Lieuwen, 2015; Sé et al., 2003;
Candel, Durox, Schuller, Bourgouin, & Moeck, 2014; Huang
& Yang, 2009; Moeck, Bourgouin, Durox, Schuller, & Can-
del, 2012). The current state-of-the-art techniques rely heav-
ily on model-based approaches for analysis of the process.
The current technical literature lacks rigorous statistical anal-
ysis of the combustion instability phenomenon so that the pre-
dictive power of the data has been largely overlooked.

Active combustion instability control (ACIC) with fuel mod-
ulation has proven to be an effective approach for reducing
pressure oscillations in combustors (Banaszuk, Mehta, Jacob-
son, & Khibnik, 2006; Banaszuk, Mehta, & Hagen, 2007).
Based on the work available in literature, one can conclude
that the performance of ACIC is primarily limited by large
delays in the feedback loop and limited actuator bandwidth
(Banaszuk et al., 2006, 2007). Model-based approaches for
active control are infeasible as complexity of the models and
uncertain measurements make real-time estimates difficult.
On the other hand, use of machine learning techniques for
information extraction remain unexplored for this problem.
From the perspective of active control of the unstable phe-
nomena, it is necessary to accurately detect and, desirably,
predict the future states of the combustion process. The goal
of this paper is to present a statistical model for the instability
phenomenon during combustion which could be used to de-
sign a statistical filter to accurately predict the system states.
This can potentially alleviate the problems with delay in the
ACIC feedback loop and thus possibly improve the perfor-
mance.

Some recent work on statistical analysis of combustion insta-
bility using pressure time-series data could be found in (Jha,
Virani, & Ray, 2016; Virani, Jha, & Ray, 2016). The work
presented in (Jha et al., 2016) shows the change in the un-
derlying Markov model for pressure data as the system ap-
proaches the unstable regime resulting in self-sustained os-
cillations of the flame. Some other popular methods for de-
tection of coherent structures include proper orthogonal de-
composition (POD) (Berkooz, Holmes, & Lumley, 1993) and
dynamic mode decomposition (DMD) (Schmid, 2010), which
use tools of spectral theory to derive spatial coherent structure
modes. Specifically, DMD has been used to estimate growth
rates and frequencies from experimental data and also for sta-
bility analysis of experimental data. Recently, some analyses
were also presented using deep learning for detection of com-
bustion instabilities (Sarkar, Lore, Sarkar, Ramanan, et al.,
2015; Sarkar, Jha, Lore, Sarkar, & Ray, 2016). More recently
the work done in (Sarkar, Lore, & Sarkar, 2015) presents a

neuro-symbolic approach where the output a deep convolu-
tional network are analyzed by a Markov modeling module
to construct an anomaly measure. However, as we demon-
strate later, the advantages of using a deep neural network is
unclear. Another analysis is presented in (Hauser, Li, Li, &
Ray, 2016) using various image analysis techniques like his-
togram of oriented gradients (HOG) and Wavelets; however,
the final decision is made by making a Markov model out of
the features and thus requires long sequences to arrive at a
decision. Moreover, perfect separability between stable and
unstable classes is not achieved.

This paper presents further insights into the combustion in-
stability phenomena from a data-driven perspective (Darema,
2005) and presents a framework which allows temporal learn-
ing in video data in a lower dimensional subspace of features
produced by a deep learning module. We show that flames
have different spatial structures at unstable behavior when
compared to stable behavior and with an appropriate archi-
tecture of neural network, we can perfectly capture the asso-
ciated distinguishing features.

Contributions: This paper presents a framework for mod-
eling of spatio-temporal dynamics in sequential images us-
ing deep learning and Gaussian processes. We use the pro-
posed algorithm to present a statistical analysis of the com-
plex combustion instability phenomena and show that we are
able to capture the change in the model as the system moves
from a stable regime to an unstable regime. We show that the
deep CNN is able to achieve fairly good classification perfor-
mance; however the use of a Gaussian process filter to model
temporality of extracted features results in perfect detection
with very low false alarm rates and much shorter lead time
to detection. The advantage of the proposed method is that
it can be used for making early predictions of the transition
from a stable regime to quasi-periodic unstable oscillations in
combustion system.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we will very briefly describe the convolutional
neural nets and Gaussian processes. Interested readers are
referred to (Lee et al., 2009; Rasmussen & Williams, 2006;
Bengio et al., 2013) for an in-depth discussion on these topics.
After the brief review, we will state the problem considered
in this paper. The idea to use Gaussian processes to model the
features obtained from deep CNN is to be able to add memory
to the estimation filter without going to the architecture of a
recurrent neural network.

2.1. Convolutional Neural Networks

In this section, we briefly introduce the deep convolutional
neural networks (CNN) for the completeness of the paper
and motivation for use in this work. Deep convolutional neu-
ral networks have a long history (Le Cun Y. et al., 1990) but
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Figure 1. This figure shows the deep convolutional neural
network used with two convolutional layers and two hidden
layers. The number of kernels and number of units in the
hidden layer could be varied to study the affect of size of
hyperparameter set on the results. The convolution layers are
denoted by Ci and the pooling layers are denoted by Si. Each
rectangular image is a feature map.

they caught the attention of vision community when they sur-
passed the state-of-the-art algorithms for image recognition
problem by large margins (Krizhevsky et al., 2012). Since
then, it has been very widely used for almost all software ap-
plications for recognition in images and videos. These net-
works are widely used to process data that come in form of
multiple arrays, for example a color image composed of 2D
arrays containing pixel intensities. In practice, the deep con-
volutional networks have shown to outperform most of the
other hand-tuned feature extraction algorithms and thus, have
become very popular for learning with image data. This is
also the motivation for the use of CNN in this work. The
general architecture of a deep convolutional neural network
is shown in Figure 1 and is structured as a series of stages. In
general, the first few stages (left) contain a lot of local infor-
mation which is aggregated as we go deeper (right) in the net-
work. The first few stages are composed of two types of lay-
ers: convolutional and pooling layers (shown as Ci and Si re-
spectively in Figure 1). Units in a convolutional layer are or-
ganized in feature maps, within which each unit is connected
to local patches in the feature maps of the layer through a set
of weights called filter banks (or kernels). The result of this
local weighted sum is then passed through a non-linearity.
Mathematically, the filtering operation performed by a fea-
ture map (or kernel) is equivalent to discrete convolution (and
hence the name). The motivation for use of discrete convolu-
tion is to be able to find local correlated, distinctive patches
(or motifs) in the images.

Contrary to the convolution layer, the role of the pooling layer
is to merge semantically similar features into one. A typical
pooling unit computes the maximum of a local patch of units
in one feature map (or in a few feature maps). Neighboring
pooling units take input from patches that are shifted by more
than one row or column, thereby reducing the dimension
of the representation and creating invariance to small shifts

and distortions. This also helps with the overfitting prob-
lem by reducing the dimension of the representation. Two
or three layers of convolution, non-linearity and max-pooling
are stacked, followed by the fully connected layers. The net-
work is then trained using backpropagation using stochastic
gradient descent and it allows to train the weights of the filter
banks (kernels).

2.2. Gaussian Processes

In this section, we very briefly explain the Gaussian process
model which is used to model the features extracted by CNN.

Definition 2.1 (Gaussian Processes) A Gaussian process
is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

A Gaussian process (GP) is completely specified by its mean
function and covariance function. We define the mean func-
tion m(x) and covariance function k(x,x′) of a real process
f(x) as follows.

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

and the Gaussian process is written as follows.

f(x) ∼ GP(m(x), k(x,x′)) (1)

A Gaussian process is defined as a collection of random vari-
ables such that the if the GP specifies (x1, x2) ∼ N (µ,Σ),
then it must also specify x1 ∼ N (µ1,Σ11) where Σ11 is the
relevant submatrix of Σ. Some of the common choice for GP
covariance function are rational quadratic (RQ), squared ex-
ponential (SE) and Matérn covariance functions. Some of the
functional forms of the covariance function and the associ-
ated free parameters are listed in Table 1. The inference prob-
lem associated with GP is to infer the related hyperparame-
ters (or the free parameters). The associated hyperparame-
ters with a GP are the parameters corresponding to the mean
and covariance function for the GP. The inference methods
compute an approximate posterior, an approximate negative
log marginal likelihood and its partial derivatives w.r.t. the
hyperparameters, given the choice of mean, covariance and
likelihood functions. Some of the common inference meth-
ods are expectation propagation, Laplace’s approximation
and Kullback-Leibler divergence minimisation (Rasmussen
& Williams, 2006).

2.3. Problem Statement

Consider a sequence of images, {Xt}t∈N, Xt ∈ Rd×d,
d ∈ N, where Xt represents observations from a dynamical
system with finite memory s.t. Xt = f(Xt−1, . . . ,Xt−m)
. Then, the statistical learning task is to find a representation
of the dynamical system f in a lower dimensional subspace
such that X̃t = g(X̃t−1, . . . , X̃t−p), where X̃t = ϕ(Xt),
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Table 1. Some examples of covariance functions used for
Gaussian Process. The first and second are Squared Exponen-
tial (SE) and the third function is a rational quadratic (RQ).

Mathematical form Free Parameters
σ2 exp(−(x− x′)TΛ−2(x− x′)/2) {λ1, . . . , λD, σ}
σ2 exp(−(x− x′)T (x− x′)/2`2) {`, σ}

σ2(1 + 1
2α (x− x′)TΛ−2(x− x′))−α {λ1, . . . , λD, σ, α}

X̃t ∈ Rk×k, k << d. It should be noted that the feature ex-
traction transformation (ϕ) may not retain the original system
memory (i.e., m 6= p). The idea of the underlying problem is
also shown as a schematic in Figure 2. In the proposed prob-
lem, the deep neural network could be just used as a feature
extractor and we allow the decisions to be made by model-
ing the features using a Gaussian process. The motivation for
using such a composite approach is twofold. Firstly, it can
help relate to the causal dynamics of the underlying physical
system, and second, it can possibly help with the overfitting
of the neural network. However, we mainly consider the first
part in this paper.

3. COMBUSTION EXPERIMENT DETAILS

The experimental apparatus consists of a swirl combustion
chamber where the inlet conditions can be varied to achieve
combustion in stable and unstable modes. In these experi-
ments the inlet conditions are controlled via a combination
of premixing condition of air and fuel, fuel-flow rate (FFR)
and inlet Reynolds number (Re), each combination defining
a test protocol. Reynolds number is a dimensionless quantity
and is defined as the ratio of inertial and viscous forces in a
flow; typically high Reynold number flows are turbulent and
vice-versa. More information on the experimental apparatus
is provided in the Appendix.

In one test protocol, two inlet Reynolds numbers (Re) were
chosen – = 7, 971 and = 15, 942 for a fixed fuel flow rate of
0.495 g/s, where the lower Re lead to stable combustion be-
havior and higher Re exhibited unstable behavior. In another
other protocol, the inlet Re is held constant at 10, 628 for two
different fuel flow rates (FFR). The details of the protocols
along with their ground truths (e.g., stable, relatively stable
and unstable) are presented in Table 2.

Apart from this, an intermediate stage is also tested to capture
the transition between stable and unstable combustion. This
is done by (1) increasing the air flow rate (AFR) while keep-
ing the FFR constant, and, (2) by decreasing the fuel flow rate
while keeping AFR constant so that the system state is varied
from stable to unstable. The transition protocols are listed in
Table 3. (It is noted that we only consider the protocol (2) in
this paper, i.e., instability is induced by decreasing the fuel
flow rate). All units in liters per minute

Table 2. Experiment set 1: Protocols with respective ground
truth conditions for data collection. 3 s of greyscale image
sequence at 3 kHz.

Premixing FFR (g/s) Re Ground truth

Partial
0.495 7,971 Stable
0.495 15,942 Unstable
0.308 10,628 Unstable
0.660 10,628 Stable

Full

0.495 7,971 Stable
0.495 15,942 Unstable
0.308 10,628 Unstable
0.660 10,628 Stable

Table 3. Experiment set 2: Protocols to produce transition
from stable to unstable combustion

AFR FFR (g/s) Ground truthstart end start end
500 500 40 30 Stable→Unstable
600 600 50 35 Stable→Unstable

The swirl combustor has an Inlet Optical Access Module
(IOAM) which is used to collect High-speed images of the
combustion process at a resolution of 1024× 1024 and a fre-
quency of 3kHz. Data was collected for a period of 3 sec-
onds yielding a sequence of 9000 images for every operating
condition. In total 72000 images are generated from the ex-
periment with 36, 000 images each for the stable and unstable
class that are analysed using the baselines and the proposed
method. Since the flame is limited mainly along the horizon-
tal axis, the images are cropped along the vertical dimension
to remove background. The resolution is then scaled down
to get a final image size of 51 × 128, that is analyzed in this
paper.

In Figure 3a, we show sequence of images at different time
instants to show the changes in the spatial structure of flames
at stable condition. Figure 3b presents sequences of images
of dimension 392 × 1000 pixels for unstable (Re = 15, 942,
FFR= 0.495 g s−1 and full premixing) state. The flame inlet
is on the right side of each image and the flame flows down-
stream to the left. Figure 3b shows formation of mushroom-
shaped vortex at t = 0, 0.001s and the shedding of that to-
wards downstream from t = 0.002 s to t = 0.004 s. If looked
carefully, one can observe the temporal changes in the flames
during unstable combustion; it shows the periodic blowing off
of images at times (e.g., t = 0.001 s). This is sometimes stud-
ied as appearance of coherent structures which can be loosely
defined as organized spatial features which repeatedly appear
and undergo a characteristic temporal life cycle. The tem-
poral life cycle can be associated to the limit cycle that the
system gets locked on to during an unstable condition which
can occur at a lot of operating conditions.
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Figure 2. Concept of the proposed modeling scheme using the deep convolution net and Gaussian processes which is used to
model the hidden dynamics in the sequential image data.

(a) Image of flames during stable operation

t = 0 s t = 0.001 s t = 0.002 s t = 0.003 s t = 0.004 s

(b) Image of flames during unstable operation shows the periodic blowing out of flame during the unstable oscillations.

Figure 3. High-speed image data from stable and unstable regimes of combustion. Spatial and temporal changes in the flame
structure during the unstable process are visible. The flame enters on the right end and moves towards the left.

4. RESULTS AND DISCUSSION

We will first show that the unstable pressure fluctuations oc-
cur when the system gets locked onto a quasi-periodic, limit
cyclic behavior due to the synergy between heat release rate
fluctuations and the acoustic properties of the combustor. In
classical combustion literature, these limit cycles are associ-
ated with phase lag between heat release rate frequency and
velocity (also known as Rayleigh’s criterion). It is in general
difficult to quantify this phase lag from image data, we are
able to capture this cyclic behavior by finding the approxi-
mate change in the flame images. In Figure 4, we show the
lumped changes in the video data as the combustion moves
from stable to unstable. The Euclidean distance between the
images are calculated from an initial reference image at time
point k by computing the 2-norm of the image residual with
respect to the reference. In Figure 4a, we show the approxi-
mate empirical density of the Euclidean norm for the sequen-
tial image data during the two regime. As we can see, there is
a change in the empirical density from approximately a uni-
modal Gaussian to multi-modal. In Figure 4b, we show the
time-series of the residual norm which shows a near-periodic
behavior (limit cycle) during the unstable regime. The auto-
correlation of the image residuals during unstable regime is
also shown in Figure 5 which shows a periodic behavior with
a frequency ∼ 26 showing the limit-cycle behavior during

unstable combustion. For the results presented here in Fig-
ures 4 and 5, the initial reference image is k = 1, but it can
be seen from the time-series and the autocorrelation plots that
the cyclic pattern is independent of k upto a phase shift. The
reference image can also be a mean image calculated using a
number of initial images without changing the results. From
Figure 4, it is clear that these patterns can be used to classify
or detect the two regimes; however, as we have lumped a lot
of information from images on to a single dimension – the
2-norm of the residual from reference image, we would need
a longer sequence of data to detect and classify.

At this point, we would like to point out that the analysis pre-
sented in (Sarkar, Lore, Sarkar, Ramanan, et al., 2015; Sarkar,
Lore, & Sarkar, 2015; Hauser et al., 2016) using symbolic
analysis of deep learning features and HOG features could
potentially be done using the Euclidean norm between the
images. Using this intuition, our first baseline consists of
learning a Gaussian Process on the norm of residual of im-
ages from a reference image (we choose k = 1 for reference
image). The residual norm is first normalized by removing
the bias and dividing by the variance (so that the GP is not
sensitive to flame luminosity but rather the temporal nature
of data). An isotropic squared exponential function is used
as the covariance function for the GP which is given by the
following equation.
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(a) Change in the approximate empirical density of the Euclidean dis-
tance between the images
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(b) Change in the Euclidean distance between images with time shows
the limit cycle during the unstable regime

Figure 4. Change in image data as the combustion process moves from stable to unstable. From the approximate empirical
density and the limit cycle shown in sequence of the Euclidean norm between the images, change from minor fluctuations to a
quasi-periodic behavior is visible
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Figure 5. Autocorrelation of the image residuals (4b) during
the unstable regime of combustion indicating the limit cycle
and its frequency (∼ 26)

k(x, x′) = σ2 exp

(
−1

2`2
(x− x′)T (x− x′)

)
(2)

The corresponding free parameters to be inferred for the GP
are just two – σ and ` associated with the covariance func-
tion and they are inferred using the expectation propaga-
tion (Rasmussen & Williams, 2006). The likelihood func-
tion is modeled as the error function and thus, there are no
free parameters associated with the likelihood function. We
train two GP models for stable and unstable cases. These
two trained GP models are used to calculate the likelihoods
P (x|y) for the unstable (y = 1) and stable (y = 0) classes
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Figure 6. Performance of Gaussian Process on the residual of
the sequential images. With sufficient memory, we are able
to achieve perfect performance (M = 40); with reduction in
memory, we see a reduction in performance.

and use a Naive Bayes classifier to learn the optimal threshold
using the training data set. The results of the binary classifi-
cation (on the test set) are shown as receiver operating curve
(ROC) in figure 6. We see that the GP can model the limit cy-
cle perfectly with enough memory; with reduction in mem-
ory, the performance degrades. If looked closely, the per-
formance degrades when the memory is lower than the limit
cyclic behavior of the image residuals (the frequency of the
limit cycle could be seen from the the image residuals and
their autocorrelation in Figures 4 and 5). This shows that a
Gaussian process efficiently models the temporal structure in
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the image residuals. This performance is better than other
published results in literature in (Sarkar, Lore, Sarkar, Ra-
manan, et al., 2015; Sarkar, Lore, & Sarkar, 2015; Hauser
et al., 2016); the work in these papers ignores the fact that
the combustion process locks on to a limit cycle and that it is
this intrinsic dynamics driving the patterns in the time-series
data. For example, in (Sarkar, Lore, & Sarkar, 2015) the au-
thors use windows of length 1500 to estimate a measure for
anomaly detection. Moreover, in (Hauser et al., 2016), the
algorithm can’t achieve perfect performance.

Even though we need much shorter memory than recently re-
ported results, the disadvantage of this approach is that we
need a relatively longer sequence of images to accumulate
enough information to come to a conclusion. This happens as
we are only looking at lumped changes in the images and any
spatial difference between the images at stable and unstable
regimes is ignored. This motivates the use of a deep CNN, as
with a deep enough network and large data-set we might be
able to extract relevant spatial features by treating the data as
iid and learning a deep CNN to get separability between the
classes based on just single frames. Therefore, for extracting
spatial features, even though the governing physical dynam-
ics has a finite memory, we assume a memory-less system.

The labeled data is divided into train, validation and test data
such that out of the total images, half or 36, 000 are used as
training set, 14, 400 are used as validation set and the remain-
ing 21, 600 are used as test data. An equal proportion of stable
and unstable classes is kept in all the three sets. These images
are then used to train the deep CNN. The architecture of CNN
is the similar to that shown in Figure 1 with two convolution
layers and two pooling layers. The number of kernels (or fea-
ture maps) are varied to study the effect of size of parameter
set on the performance of the network. Also the number of
units are varied to do a study of the effect of the width of the
network for the particular problem. The CNN is terminated
using early stopping to allow some regularization in the net-
work. The first convolutional layer has 10 kernels (N1 = 10)
and the second convolutional layer has 30 (N2 = 30) ker-
nels. The pooling layers perform a 2 × 2 max-pooling. The
second convolutional layer is followed by a fully-connected
layer with 80 units and another fully connected layer with 10
units. This is followed by an output layer which uses logistic
regression for classification. A learning rate of 0.002 is used
to train the CNN.

We are able to achieve fairly good classification performance
with the deep CNN without considering the temporal dy-
namics in the image sequences. We get a test error rate of
4.68% and it took about 11.45 min to train this network (on an
Nvidia geforce Titan X Graphics processing unit). This sug-
gests that a sufficient spatial differences exist between single
frames of combustion flames at the stable and unstable condi-
tion and the proposed deep network was able to extract those

discriminating features from the images. We use the trained
models to detect the onset of instability in transient data sets
from experiment set 2 that was collected as the system grad-
ually moved from stable to unstable condition (Table 3). This
is done by training a Naive Bayes classifier where the likeli-
hood of stable and unstable class are computed using the deep
CNN and are used to calculate the likelihood ratio. As we can
see in Figure 7, the trained model detects the change as the
combustion system gradually moves from stable to unstable
behavior. It is noted that in both cases, the experiments were
done where the system was stable initially and gradually be-
comes completely unstable; however the exact ground truth
for this transition is not known ( as the process is very fast).
However, the flame images before and after the transition de-
tected by the CNN model suggests that the onset of unstable
behavior. To see this more clearly, we show some sequen-
tial images for Figure 7a before and after the transition in the
likelihood ratio for the CNN model; the changes in the flame
images can be seen in Figure 8. The images under the col-
umn Before in Figure 8 correspond to the point denoted by a
red square in figure 7a and the images under the column Af-
ter correspond to the point shown by an orange diamond in
Figure 7a. Similar changes are also observed for Figure 7b
and thus they are not shown here. The images under the After
column can be seen to break near the flame entrance (on left)
indicting the onset of periodic blow-off (unstable behavior).
Thus, we conclude based on the results of these two exper-
iments that the CNN model is useful for early detection of
the phase transition from stable to unstable. Another point to
be noted is that the experiments were done at different condi-
tions than the experiments done to train the CNN model; this
indicates that CNN model is quite general and that are com-
mon features in spatial structure of flames, even at different
operating conditions.

We propose a spatio-temporal filter where a Gaussian process
model is used to model the temporal dynamics of the fea-
tures extracted using the deep CNN. We demonstrated earlier
that the process has a definite temporal behavior with a finite
memory. Therefore, modeling the temporal behavior is very
desirable and the hope is to improve both detection perfor-
mance and lead time to detection by explicitly modeling the
temporal dynamics. To do this, we train a multi-dimensional
Gaussian process using the output of the 2nd fully connected
layer of the deep CNN with 10 units. A 10-dimensional
squared exponential covariance function with automatic rele-
vance detection determination (ARD) is chosen as the covari-
ance function of the GP. The covariance function is parame-
terized as follows.

k(x, x′) = σ2 exp

(
− (x− x′)TΛ−2(x− x′)/2

)
(3)

where the matrix Λ is a diagonal matrix of dimension equal to
the dimension of the input space and σ2 is the signal variance.
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(a) Time series of likelihood ratio for transient Data Case-1 in Table 3
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(b) Time series of likelihood ratio for transient Data Case-2 in Table 3

Figure 7. Performance of the trained deep learning algorithm on transient data

Before After

Figure 8. In this figure, we show typical snapshots of flames
just before and after the switching detected by the CNN like-
lihood ratios for Figure 7a (similar changes are observed for
figure 7b). The flame enters on the left side and moves to-
wards the right in every image. If seen closely, one can see
the flame breaks near the entrance which is due to the periodic
behavior that occurs during unstable regime.

The likelihood function has the shape of a error-function (or
cumulative Gaussian), which doesn’t have any hyperparame-
ters. Thus the total number of free parameters that need to be
inferred from data are the hyperparemeters of the covariance
function (i.e., the matrix Λ of size equal to the dimansion of
the input space and the signal variance) which are inferred
using the Laplace approximation or the expectation propaga-
tion (Rasmussen & Williams, 2006). During numerical ex-
periments it was found that the Laplace approximation was
much faster as compared to the expectation approximation
and thus, the results are presented using the Laplace approxi-
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Figure 9. Performance of the trained deep learning algorithm
and the Gaussian process on the deep learning features.

mation.

Similar to previous models, a Naive Bayes classifier is trained
for the CNN-GP model using the training data set the ROC
curve is calculated for the test set. For comparitive evaluation,
al results are shown in figure 9. As can be seen, for M= 10,
the GP trained on outputs of CNN gets a very small False Pos-
itive Rate of 0.7% when the true positive rate is 99.7%. Thus,
we achieve near perfect classification with a temporal history
of 10 frames as compared to 40 frames using GP alone on
the image residuals or 300 frames in (Sarkar, Lore, & Sarkar,
2015). With the data being collected at 3 kHz, this leads to
a perfect detection time of 3.3 ms. This is a big improve-
ment over the earlier result in (Sarkar, Lore, & Sarkar, 2015),
where the a detection was made every 100 ms. Using only

8
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Table 4. Size of convolution filters

Image Size Filter 1 Filter 2 Final Image Size
51× 128 15, 17 12, 13 3× 22

Table 5. Results of classification performance for baseline
and proposed models. AUC= Area under curve (higher is
better); FPR@99.7 is False positive rate at 99.7% detection
rate (lower is better)

Model Memory (M) AUC FPR@99.7
GP 20 0.9830 48.15%
GP 25 0.9918 19.15%
GP 30 0.9966 4.85%
GP 40 1.0000 0.00%

CNN 0 0.9750 5.28%
CNN-GP 5 0.9912 1.18%
CNN-GP 10 0.9987 0.67%

5 frames or in 1.7 ms, the proposed approach is able detect
the unstable regime with an accuracy of 99.7% and a false
positive rate of 1.18%

Furthermore, the trained models are used to test the perfor-
mance on the transient data using a memory of 5 frames. Dur-
ing test on the transient data, a window of length 5 is used for
decision and every time a new frame is obtained, it replaces
the last frame in the window (thus, there is 80% overlap). The
likelihood ratios for the trained models are calculated using
this sliding window. The results are shown in Figure 10 for
the two transient conditions. The results are similar to those
obtained by CNN model; however, it is noticed that it is more
stable for case-1.

The current results of time for detection are comparable to
the time scale of the combustion process (which is on the or-
der of ms). The results of all the numerical experiments and
different models trained are listed in Table 5. It is thus con-
cluded that the proposed technique achieves very reliable and
fast detection of combustion instabilities.

5. CONCLUSIONS AND FUTURE WORK

Combustion instability still remains a puzzle for researchers
and the current state-of-the-art techniques heavily rely on
physics-based models. The current analysis presented a data-
driven spatio-temporal analysis of combustion flames using
deep neural networks and Gaussian processes using high-
speed images of flames during lean pre-mixed combustion.
The present analysis presented several results on modeling of
combustion process during stable and unstable phenomena.

In this paper, we presented a framework for learning hidden,
stationary dynamics in video data using deep convolutional
networks and Gaussian processes. The main idea was to re-
duce the size of the parameter set of a spatio-temporal convo-
lutional network by using a Gaussian process to capture the

temporal sequence of the features extracted by the deep CNN
module. This study presented a rigorous machine learning-
based approach to model combustion instability and suggests
that statistical learning techniques could help understand and
model the complex physical phenomenon to achieve accu-
rate, real-time decisions. The proposed framework was used
to model the behavior of lean-premixed flames in a swirl sta-
bilized combustor as the combustion process moves from sta-
ble to unstable through a sharp transient phase. The CNN
alone was able to achieve fairly good classification perfor-
mance; however, based on the current results it is concluded
that adding Gaussian process allows the filter to be more gen-
eralizable as compared to the CNN alone. Based on the nu-
merical experiments done in this paper, it is also concluded
that making a filter with appropriate depth (in the neural net-
work) and memory (in the GP) allows to have generalizable
data-driven models for the process which possibly can make
correct predictions even with changes in lots of associated
variables in the process (e.g. mixing-length, fuel-air ratio,
combustor geometry).

Using the proposed method with other sensor modalities like
pressure to make a data-driven, multi-sensor, hybrid model
for combustion instability is a possible topic for future re-
search. Some problems like making predictions on changes
in system state and relating to the criterion like Rayleigh’s is
also suggested as a topic of future research. Also, it seems
that for systems with structured dynamics (e.g., engineering
systems), using a Bayesian model-based filter will help add
reasoning for better understanding of the process; however,
a more through analysis is required to understand the bene-
fits of such a hierarchical reasoning. While the results in this
paper are encouraging, further investigations using data from
multiple operating conditions are required to make a model
which also makes predictions on statistical margins of stabil-
ity for the process.
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Figure 10. Performance of the composite deep learning and Gaussian process algorithm on transient data
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APPENDIX

Experimental apparatus

The experimental apparatus is a swirl-stabilized combustor
with a swirler of diameter 30 mm with 60◦ vane angles (i.e.,
geometric swirl number of 1.28). Air is fed into the com-
bustor through a settling chamber of diameter 280 mm with
a sudden contraction leading to a square cross section of side
60 mm, providing an acoustically open condition with area
ratio of 17. A mesh and honeycomb structure at the imme-
diate downstream of the contraction assures uniform flow to
the swirler. The combustor, shown in figure 11 consists of
a 200 mm long inlet section, an inlet optical access module
(IOAM) of length 100 mm, a primary combustion chamber
of length 370 mm, and secondary duct of the same length.
The overall length of the constant area ducts was chosen to
be 1340 mm. The fuel injection tube is coaxial to a mix-
ing tube which has the same diameter as that of the swirler.
The bypass air that does not enter the mixing tube passes
through slots on the swirl plate. The slots on the fuel in-
jection tube are drilled at designated distance upstream of
the swirler, which dictates the extent of premixing between
fuel and air. The larger this distance, more homogeneous the
air-fuel mixture is. Two upstream distances of 90 mm and
120 mm were chosen for fuel injections during the experi-
ments, where the former of the two denotes partial premixing
and the later provides full premixing. The hi-speed images
were collected through IOAM at 3 kHz using Photron High
speed star with a spatial resolution of 1024 × 1024 pixels.
Synchronized pressure data was acquired using piezoelectric
transducers (PCB make) with resolution 225 mV kPa−1 at a
location downstream of the IOAM. The data acquisition was
triggered simultaneously using NI card and taken for a dura-
tion of 3 s yielding in a sequence of 9, 000 images for every
operating condition. More details of the combustor could be
found in (Sarkar, Lore, & Sarkar, 2015).
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