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ABSTRACT 
1Early detection of a growing crack is one of the concerns in 
structural integrity and can be used to predict the remaining 
useful life of a structure. Acoustic Emission (AE) is a non-
destructive testing method with potential applications for 
locating and monitoring fatigue cracks. A novel AE signal 
analysis approach is proposed in this paper to detect crack 
initiation and assess small crack growth behavior. A 
probabilistic AE-based model for small fatigue cracks was 
developed and the uncertainties of the model were 
estimated. The outcome of this research can be used to 
evaluate the integrity of structures and assess structural 
health by estimating the probability density function of the 
length of detected cracks. This paper discusses the 
methodology used, experimental approach, results obtained 
and predictive models developed. 

1. INTRODUCTION 

In materials engineering, fatigue cracking occurs when a 
material is subjected to cyclic loading. Structures such as 
bridges and airframes can be subjected to wide ranges of 
loading conditions during their operations. Extreme repeated 
loads may cause initiation of cracks and crack growth 
during the life of a structure.  

A rich array of recent research in the literature deals with 
the probabilistic approaches that combine Nondestructive 
Evaluation (NDE) methods for detecting materials damage, 
especially for evaluating fatigue failures. Most of these use 
information from detection methods other than the AE-
related NDE methods. Important recent NDE studies 
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include Chiachio, et al. (2014), Chiachio, et al. (2015) and 
Sankararaman and Mahadevan (2015) to name a few.  

Several researchers have also focused on the study of small 
crack growth behavior and different small-crack test 
methods (Mc Dowell, 1997; Forth et al., 2005; Shyam et al., 
2005; Kunkler et al., 2008); but no AE-based model for 
small crack growth have been offered. However, most of the 
success in correlating AE activities with crack growth has 
involved the latter stages of crack growth (Talebzadeh & 
Robert, 2003; Rabiei & Modarress, 2013; Keshtgar & 
Modarres, 2013). 

Some studies have been carried out to combine fracture 
toughness experiments with AE techniques in order to 
detect the damage initiation. Marquez and Olivares (1987) 
utilized an AE recording system to determine crack 
initiation and propagation at a thermally sprayed coating 
interface of nickel-chrome alloy with substrate of AISI 1045 
steel. This study initiated an idea of relating abnormal 
behavior of AE signals to crack related events. However, it 
Chaswal et al., 2005 showed that AE amplitude is about an 
order of magnitude lower in Region I than in Region II due 
to lower ΔK values. They investigated how low amplitude 
bursts in a short duration of time in region I correspond to 
micro-cleavage in thermally aged steel plates. Some recent 
studies hypothesized that a sudden and significant increase 
in AE events corresponds to damage initiation (Rahman et 
al., 2009; Elforjani & Mba, 2009). Rahman, et al. (2009) 
offered that significant increase in hit count data might 
correspond to incipient damage due to wear in rolling 
elements during their contacts. Further, Mba (2009) 
presented result of their experimental investigation for 
detecting natural crack in slow speed shafts. 
 
More recent studies (e.g., Han et al., 2014; Čapek et al., 
2014; Vanniamparambil et al.,2015; and Mazal et al., 2015) 
report that much of the AE activity is recorded in the initial 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

stages of damage accumulation compared to the later stages, 
and attribute this to material inclusions that crack in the 
early degradation periods. These studies hypothesize crack 
propagation rate based on the AE signals, but do not directly 
correlate them to crack initiation, nor do they consider 
associated crack detection probability and crack sizing 
errors using the detected AE features.  
 
Despite a number of studies related to AE-based detection 
of fatigue damage in the literature, there has been no 
generalized approach for detection and sizing of crack 
initiation. Also, AE-based probabilistic prediction method 
for small crack initiation and growth is absent in the 
literature. 

 In this paper a new methodology of statistical AE data 
analysis for detecting crack initiation and developing a 
probabilistic AE model of small crack growth is introduced. 
The developed model can be used for detection of crack 
initiation as well as assessment of small crack growth 
behavior. This method can be used to assess the reliability 
of structures and evaluate health by estimating the 
probability of structure failure at a specified number of 
cycles, including associated uncertainties. 

1.1. The Basic Theory of AE 

Acoustic Emission is defined as a transient elastic wave 
generated by the rapid release of energy within a material 
and an AE signal is the electrical signal produced by a 
sensor in response to this wave (Chaswal et al., 2005; 
Rahman et al., 2009). An example of a typical AE 
waveform and its features is shown in Figure 1.  In addition 
to recording the number of acoustic events and correlating 
this number to the level of damage (Eberhardt et al., 2005), 
it is also possible to record certain features of the AE 
waveforms. Some features are defined with respect to the 
specified threshold limit. These waveform features (AE 
events) include but not limited to the ones listed below 
(Beattie, 1983; Berkovits and Fang, 1995): 

 Counts: Also known as “ring down count” is defined as 
the number of times that the AE signal amplitude exceeds 
a predefined subjective threshold value.  

 Amplitude: The AE amplitude is the largest voltage 
peak in the waveform signal.  

 Energy: AE energy is the measured area under the 
rectified signal envelope.  

 

Figure 1. Typical AE signal and its characteristics 
(Kappatos & Dermatas 2007) 

1.2. Fatigue crack initiation and small crack 

There is no universally accepted definition for fatigue-
induced “small crack” and “crack initiation”. Most experts 
consider cracks less than 1mm in length as small (Larsen & 
Allison, 1992; Anderson, 1995). Fatigue crack initiation is a 
subjective notion as well. Some consider crack initiation as 
corresponding with a fatigue phenomenon and some 
associate it with an arbitrarily specified crack length. For 
example, the U.S. Navy defines the presence of a crack of 
250 µm in length, as the point where crack initiation occurs 
(Iyyer et al., 2007; Papazian et al., 2009). Furthermore, 
others consider a crack length ranging from a size of grain 
diameter to about 100 µm as crack initiation length 
depending on material and scale of interest. However, 
ranges of values have been used for identification of crack 
initiation in different materials within the literature (e.g., 51 
µm for carbon steel, 120 µm for BS250A53 steel and 1 mm 
for En7A steel (Bhattacharya & Ellingwood, 1998) and up 
to 500 µm for aluminum (Pearson, 1975)). 

In this paper, a subjective fatigue crack initiation length 
was used for Al7075-T6. This selection was primarily made 
based on the limitations in the crack size measurement 
method (i.e., optical microscopy) used in this study rather 
than a specific fatigue phenomenon. As such this study uses 
a subjective crack length of 50 µm as the point of crack 
initiation. It is determined, however, that this crack initiation 
length is about a quarter of the average grain diameter for 
Al7075. It has been shown that approximately a 1-mm3 of 
the above-mentioned material contains 700 grains (Papazian 
et al., 2009). Assuming spherical geometry of grains, the 
volume of each grain is about 1.43×10-3 mm3 and the 
diameter of each grain can be estimated as 0.140 mm (140 
µm). Moreover, the applied optical crack measurement 
method carries some limitations for sizing of smaller cracks. 
More details on the methodology and its limitation are 
discussed in Sections 3.3.1 and 3.3. 
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2. EXPERIMENTAL SET UP  

To study the relationship between small crack length and the 
resulting AE signal, a group of standard experiments was 
performed under a controlled loading condition.  

2.1.  Specimen 

Since in this research the observation of small crack length 
was done through optical microscopy, a series of standard 
flat dog-bone test specimens with the capability of being 
used for small crack monitoring were developed based on 
the ASTM standard (Morton et al., 1973).  The samples 
made of 7075-T6 Aluminum alloy. Figure 2 is a schematic 
and geometric specification of the standard flat dog-bone 
specimen used in this research. 

 

Figure 2. Drawing of flat dogbone samples (all dimensions 
in mm) 

2.2. Optical microscopy  

Fatigue cracks were monitored by direct measurement using 
an optical microscope on the front surface of the samples. 
The optical measurement system is comprised of several 
components: a high magnification optical microscope, a 
video camera attached to the microscope that records the 
crack growth path for the duration of the fatigue test, a dual 
arm fiber optic illuminator, a high resolution monitor, an 
image processing software with the time-lapse photography 
capability, and a micro-meter scale to calibrate the 
photographs taken. Figure 3 shows the optical microscopy 
test set up used for the small crack experiment.  

3. FATIGUE TESTING 

In the experimental set up described above, eight fatigue 
specimens were tested at different loading conditions using 
both AE and optical microscopy measurement. Table 1 lists 
details of loading parameters for the tests performed. 
 

 

Figure 3. Test set up 

 
 

 

Table 1. Details of loading parameters for all experiments 

 
Acoustic Emission signals may be generated from a number 
of possible sources including background noise, micro-crack 
generation, or plastic deformation. In order to reduce 
uncertainties and determine the AE signals corresponding to 
crack growth, applying noise reduction techniques on the 
captured data is required. Noise reduction approaches are 
discussed in the following section. 

3.1. Noise reduction 

Various de-noising techniques have been proposed to filter 
AE signals due to crack growth (Morton et al., 1973; 
Peasron, 1975; ASTM, 2012). In the first step, the recorded 
AE data was filtered using the DiSP-4 source location 
software. Also, a dummy specimen was tested to 
determine the detection threshold below which operational 
background noise exist. This threshold allows for filtering 
the background noise and better capturing of crack-related 
signals. 

 
It has also been observed that AE events occurring during 

the loading portion of a cycle are related to crack growth 
(Peasron, 1975; Wang et al., 1992; Robert & Talebzadeh, 

Test 
Reference

Loading Frequency 
(Hz)

Loading Ratio 
(R )

Force (min-max)
 KN

T1 3 0.1 0.8-8

T2 3 0.08 0.6-8

T3 3 0.1 0.8-8

T4 2 0.5 6.5-13

T5 3 0.1 0.8-8

T6 2 0.3 3-10

T7 2 0.5 6.5-13

T8 2 0.3 3-10
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2003). Therefore, the AE data taken during the loading 
portion of each cycle were used for data analysis. In 
addition, majority of researchers have assumed that only 
events occurring close to the maximum or peak load are 
associated directly with crack growth (Peasron, 1975; 
Georgiou, 2006; ASTM, 2012). So, the filtered AE events 
were separated for different percentages of the applied load 
range and it was determined that the AE events occurring 
within the top 20% of peak load shows the closest 
correlation with crack lengths (Rabiei & Modarress, 2013).  

3.2. Crack Measurement 

The optical microscopy system with time-lapse photography 
was used for monitoring crack growth. The lengths of 
pictured cracks were measured using the Java-based image-
processing software. Crack measurement was started before 
50 µm and continued until the crack length larger than 250 
µm was observed. At this length the crack exceeds the U.S. 
Navy definition of crack initiation (Papazian et al., 2009) 
and the crack measurement was terminated.  

3.3.  Experimental Uncertainties and Errors 

Crack measurement data may be uncertain in nature due to 
detection uncertainties and measurement errors associated 
with the optical measurement and sizing process. Estimation 
of crack lengths and consequently AE-model prediction can 
be affected by these uncertainties. In this section, 
experimental crack length measurement error is discussed 
and later used to quantify the uncertainty and validity of the 
developed AE model. 

3.3.1.  Probability of detection (POD) 

Probability of detection expresses the probability of 
detecting a crack of a given length and is a common metric 
to assess the capability of a detection technique.  A crack of 
a given length might be optically detected only at certain 
percentage of the time (out of the total number of tests) 
depending on factors such as sample subsurface cracks, 
specimen vibration, cyclic loadings, optical focus and 
human error. The POD for various crack lengths was 
calculated based on the hit-or-miss concept (Georgiou, 
2006) as the ratio of the number of successful detections of 
a particular crack length over the total number of tests. POD 
increases with crack length and eventually attains a 
maximum value of unity at which all the cracks will be 
detectable. For this reason, the POD was estimated by a 
logistic function for this data to obtain a continuous POD 
curve. The cumulative distribution function of the log-
logistic distribution is: 

 

,݉,ሺܽܨ  ሻݏ ൌ
exp

ߨ
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൤
log ܽ െ ݉

ݏ ൨

1 ൅ exp
ߨ
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൤
log ܽ െ ݉

ݏ ൨
 (1) 

 
where m and s are the parameters of the distribution and a 

denotes the crack length.  The point estimates of the 
parameters of the logistic distribution are m≈27 µm and s≈9 
µm. 

3.3.2. Crack length measurement error 

Due to measurement errors, the experimental results are 
uncertain and do not exactly represent true values. The 
precision and accuracy of optical measurement tools, as well 
as the sizing techniques used to analyze and process the 
captured pictures of crack growth, contribute to 
measurement errors. This experimental measurement error 
is quantified by cross-validating the measurement results 
with known true crack lengths. To obtain a good estimation 
of the true crack lengths, a microscopy technique was used. 
When cracked, the specimen was removed from the MTS 
machine and was transferred to the optiphot microscope in 
Modern Engineering Material Instructional Lab (MEMIL) at 
the University of Maryland. This fixed stage microscope is 
capable of microflex photomicrography with a HFX camera. 
Using this setting, the final crack length at which the test 
was stopped was evaluated. An image processing tool was 
used to capture very high quality pictures of the crack at the 
various magnification levels. At each level of magnification, 
calibration was done by using a scaled ruler. The length of 
crack was measured later using the captured photographs. 
The measurements from this optiphot microscope were 
considered as the true crack lengths and were compared 
later with the measured crack lengths during online 
monitoring of the test. 

 
Measurement error can then be expressed as a function of 

measured crack length. To do so, a multiplicative error 
model was used for estimation of measurement error. Based 
on this methodology, experimentally measured crack 
lengths are considered to be estimations and representation 
of the true crack length, given some error as it is shown in 
Eq. (2): 

 
ܽ௧,௜
ܽ௘,௜

ൌ ௘,௜ܨ ; ,ሺܾ௘ܰܮ~௘ܨ		  ௘ሻ (2)ݏ

 where at,i is the true value of crack length, ae,i  indicates the 
experimental measurement results and Fe is the 
multiplicative error (both random and systematic) of 
experimental measurement with respect to true value. The 
lognormal distribution representing the uncertainty of the 
multiplicative error has parameters be which is the mean of 
experimental measurement error, as well as se which is the 
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standard deviation of the experimental measurement error 
and both estimated using a Bayesian framework. For the 
details of the implemented Bayesian framework refer to 
section 4.2. The summary statistics for the marginal 
posterior pdf of parameters be and se as well as the 
distribution of Fe are presented in Table 2.  
 
  Experimental measurement error bounds can be 
determined from the 2.5 and 97.5 percentile of the 
multiplicative error of Fe. The resulting upper bound was 
calculated as 23% while the lower bound is -14%. These 
results are presented graphically in Figure 4. It can be 
noticed that there is a very slight positive systematic error 
(bias) from the true value (because the mean Fe estimate 
slightly exceeds unity). 

 

Para-
meter 

Mean 
Standard 
Deviation 

2.5% Median 97.5% 

be 0.027 0.02678 -0.025 0.0267 0.080 

se 0.0818 0.0232 0.0506 0.0774 0.138 

Fe 1.031 0.09282 0.8584 1.026 1.236 

Table 2. Estimated parameters of measurement error 

 
 

Figure 4. Experimental measurement error 
 

The estimated parameters of the multiplicative 
measurement error model listed in Table 2 were used as the 
prior knowledge of the crack length measurement error in 
the Bayesian framework provided for the probabilistic 
model validation approach. The implemented approach 
considers both uncertainties in the POD and measurement 
errors while providing a framework for updating the 
probability distribution of the model parameters when new 
data becomes available. 

3.4.  Acoustic Emission results 

3.4.1. Acoustic Emission Counts 

After post processing of the recorded AE signals, the 
number of cumulative counts was calculated and plotted 
versus loading cycles. Results show that cumulative AE 
counts have considerable correlation with the measured 
crack lengths. A linear model can be developed based on 
this relation as shown in Figure 5. 
 

 

Figure 5. Correlation of Cumulative counts and crack length 

 

3.4.2.  Acoustic Emission Intensity 

In order to provide a more effective AE measure of damage, 
a new approach was developed which employs multiple 
features of the AE signal and provides a measure for 
strength of signals. The main idea is that larger cracks 
produce stronger AE signals and not only the total number 
of counts, but also with the amplitude level of the AE 
signal, can quantify this strength. Therefore, estimation of 
small crack length can be implemented by simultaneous 
evaluation of these AE features. Based on this idea, a 
multiplicative correction factor was applied on the acquired 
counts using the observed amplitude of the signal. This 
correction factor was defined by the ratio of amplitude over 
the average or benchmark amplitude of signals. 

 
A new AE index called AE-Intensity was proposed to 

combine AE counts and amplitude for more effective 
monitoring of damage state. AE-Intensity is a measure of 
signal strength and it was shown to have a better correlation 
with crack lengths. The intensity of AE signals is defined by 
Eq. (3): 

 
0
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)()(:_

A

tA
tCtIIntensityAE   (3) 
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where C(t) is the cumulative counts at a specific time t, 
A(t) indicates the amplitude of the signal and A0 is the 
amplitude threshold. 

 
The linear correlation between crack lengths and AE-
Intensity is shown in Figure 6. It can be seen that applying 
the amplitude correction factor to AE count considerably 
reduces the data scatter in comparison with cumulative 
counts. Based on the observed relationship, a linear model 
was proposed which uses AE-intensity as an independent 
variable and the crack length as dependent variable. The 
proposed model is introduced in the following section. 

 

Figure 6. Correlation between intensity and crack length 
 

4. PROBABILISTIC MODEL DEVELOPMENT 

The results of the analyzed experimental data were used to 
develop a probabilistic linear model for the estimation of the 
small crack length as the dependent variable while AE 
intensity is considered to be the independent variable. 

4.1. Modeling 

According to the observed correlation between AE intensity 
and crack length, a linear relationship was proposed in the 
following form: 

 ܽሺܰሻ ൌ α ∙ ሺܰሻܫ ൅  (4) ߚ

where a(N) indicates the true length of the small crack 
after N loading cycles, I(N) is the calculated AE intensity at 
cycle N, α and β are the unknown model parameters. In this 
analysis, true crack lengths were used to evaluate the 
parameters of the proposed model.  

After the first steps of analyzing the experimental data, 
results were used to estimate the unknown parameters in the 
proposed model (Eq. (4)) using least square regression 
analysis. Results are shown in Figure 7. 

 

Figure 7. Model Parameters estimation (validation data set) 

4.2. Model validation and error estimation  

In order to validate the developed AE model, model 
predictions of small crack length were compared against the 
validation experimental data set. For a given value of AE 
Intensity, a prediction of crack length was estimated based 
on the developed AE-based model.  The prediction results 
are then compared against the true crack lengths obtained by 
five validation experiments. 

 
Model validation approach was originally developed by 

Ontivero, Cartillier and Modarres (2010) to account for 
uncertainties in fire model simulation predictions. In this 
Bayesian methodology, both model prediction and 
experimental results are considered to be estimations and 
representation of the true values, given some error as it is 
shown in Eqs. (2) and (5). The multiplicative error of 
experimental measurement with respect to the true value 
was introduced by Eq. (2) and the multiplicative error of 
model prediction with respect to true value is shown in Eq. 
(5): 

 
ܽ௧,௜
ܽ௠,௜

ൌ ௠,௜ܨ ; ,ሺܾ௠ܰܮ~௠ܨ  ௠ሻ (5)ݏ

 where at,i is the true value, am,i  is the model prediction and 
Fm is the multiplicative (fractional) error of the model 
prediction, with respect to the true value. Parameter bm is the 
mean (multiplicative) error of the model and sm is the 
standard deviation of the error. Accordingly, the 
multiplicative error of the measurement with respect to the 
model prediction could be defined by Eq. (6): 

 
ܽ௘,௜
ܽ௠,௜

ൌ
௠,௜ܨ

௘,௜ܨ
ൌ  ௧,௜ (6)ܨ

where Ft, is the multiplicative error of the model vs. 
measurement. Since both ܨ௠,௜  and ܨ௘,௜	 distributions are 
lognormal, the distribution of ܨ௧,௜ would also be lognormal 
with mean and standard deviation of ሺܾ௠ െ ܾ௘ሻ  and 
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ඥݏ௠ଶ ൅  ௘ଶ, respectively. The Bayesian methodology used inݏ
this paper quantifies the uncertainties associated with the 
POD and crack length measurement error into the 
calculations. The Bayesian approach mathematically 
combines prior knowledge of crack length with uncertain 
experimental data and considers the systematic and random 
measurement errors and associated uncertainties, to estimate 
the posterior distribution of crack length. For more 
information about this approach and the concept of 
Bayesian uncertainty analysis see the paper by Ontiveros, et 
al. (2010). In this approach, the combined effect of the 
evidence used: POD data, measurement errors, and 
measured crack lengths were captured by a likelihood 
function. Considering Eqs. (2) and (5). The likelihood of the 
observed data using combined POD, measurement errors, 
measured and model-estimated crack is: 
 
 

ܮ ൬
௔೐,೔
௔೘,೔

, ܾ௘, ,௘ฬܾ௠ݏ ,݉,௠ݏ ൰ݏ ൌ

∏ ൮ቀܱܲܦ൫ܽ௘,௜ห݉, ൯ቁቌݏ
ଵ

√ଶగ൬
ೌ೐,೔
ೌ೘,೔

൰ට௦೘
మ ା௦೐

మ
ቍ ∗௡

௜ୀଵ

expቌ
ି൤୪୬൬

ೌ೐,೔
ೌ೘,೔

൰ିሺ௕೘ି௕೐ሻ൨
మ

ଶ൫௦೘
మ ା௦೐

మ൯
ቍ൲ܮ ൬

௔೐,೔
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, ܾ௘, ,௘ฬܾ௠ݏ ,݉,௠ݏ ൰ݏ ൌ

∏ ൮ቀܱܲܦ൫ܽ௘,௜ห݉, ൯ቁቌݏ
ଵ

√ଶగ൬
ೌ೐,೔
ೌ೘,೔

൰ට௦೘
మ ା௦೐

మ
ቍ ∗௡

௜ୀଵ

expቌ
ି൤୪୬൬

ೌ೐,೔
ೌ೘,೔

൰ିሺ௕೘ି௕೐ሻ൨
మ

ଶ൫௦೘
మ ା௦೐

మ൯
ቍ൲																																									(7) 

 

where, the POD function is assumed to follow a log-logistic 
form based on Eq. (1). The parameters be which is the mean 
of experimental measurement error, as well as se which is the 
standard deviation of the experimental measurement error 
were previously estimated as discussed in Section 3.3.The 
summary statistics for the marginal posterior pdf of 
parameters bm and sm as well as the distribution of Fm are 
presented in Table 3. 
	

Para-
meter 

Mean 
Standard 
deviation 

2.5% Median 97.5% 

bm -0.057 0.029 -0.115 -0.057 0.0002 

sm 0.217 0.023 0.176 0.216 0.267 

Fm 0.968 0.218 0.609 0.944 1.465 

Table 3. Multiplicative error statistic summary 
 

Model uncertainty bounds for the crack length estimation 
can be determined from the 2.5 and 97.5 percentiles of the 
multiplicative error of Fm. The resulting upper bound was 
calculated as 46% while the lower bound is -39%. These 
results are presented graphically in Figure 8. It can be 
noticed that there is a very slight systematic errors (bias) 
from the true value in the results showing that the model 
slightly overestimates the true length of the crack.  
 

Figure 8. Comparison of AE model prediction and 
experimental results. 
 
 Assuming am is the model prediction of crack length, the 
true crack length model prediction then can be estimated by 
multiplying the distribution of am by Fm:   

 ܽ௧ ൌ .௠ܨ ܽ௠ (9) 

which can be estimated by a lognormal distribution as Eq. 
(10). 

 ܽ௧~ܰܮሺ݈݊ሺܽ௠ሻ ൅ ܾ௠	,  ௠ሻ (10)ݏ

 The model prediction results were modified using the 
resulted bias distribution. Figure 9 illustrates the model 
prediction uncertainty bounds as well as the modified 
prediction results. As it can be seen, the developed model 
slightly over predicts the crack lengths. It can be seen from 
the differences between the mean values of model 
prediction and the true values in Figure 9. This over 
prediction result results in a slightly conservative model 
which can be used to predict a critical crack before it 
happens. 
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Figure 9. Model Prediction with multiplicative error 
  

The results show that the developed AE-model 
reasonably estimates the true crack length. There is a small 
bias in prediction that can be accounted for with the 
inclusion of the model error factor, Fm, which allows for an 
estimation of the true crack lengths. The resulting model can 
be used to appropriately estimate the true crack length 
distribution, without a bias.  

5. CONCLUSION 

A novel methodology for in-situ monitoring of small 
fatigue crack initiation and growth using AE signal 
processing technique was introduced.  Investigation of the 
uniform cyclic loading tests on Al7075-T6 specimens 
indicated that initiation of cracks smaller than the grain size 
could be identified using statistical analysis of the resulting 
AE signals. Several standard fatigue tests were performed 
using flat dog-bone specimens.  

 
 Acoustic Emission data acquisition was used in 

conjunction with optical microscopy for online monitoring 
of crack length. The data captured was used to establish a 
correlation between certain AE signal features and the 
measured crack length. Also a probabilistic model of fatigue 
crack length distribution based on a combination of AE 
signal characteristics including probability of crack 
detection and measurement error was developed.  

 
 The proposed model was validated and proved to be 

effective for detection of crack initiation as well as 
prediction of small crack growth in early stages of 
propagation. Development of the proposed AE monitoring 
technique reported in this paper facilitates early detection of 
fatigue crack, allows for the prognostics and life predictions 
of the structure. It should be noted that the implementation 
of the developed model is limited to Al7075-T6 specimens 
with the specific geometry highlighted in Figure 2. The 
variability of the results with respect to different materials 
and different geometries should be reviewed in the future 

works. More suggestions for potential future work are 
highlighted below: 

 
 The experimental data used in this research were 

obtained through standard fatigue tests with constant 
amplitude loadings. It’s recommended to implement a 
set of experiments to review the effect of random 
amplitude loading profile on the developed AE model.  

 The scope of this research does not include addressing 
challenges of implementing the developed model for 
different materials and different geometries. It would be 
desirable to obtain data for samples made of different 
geometries and materials and study the applicability of 
the proposed AE model for some commonly used 
structures.  

 In this research the location of crack initiation was 
assumed to be known since the standard specimen was 
used for experiments. However, there are some 
techniques suggested in the literature to locate the crack 
using multiple AE sensors. For instance, one of the 
proposed methods is triangulation which can be used to 
spot the location of AE source. This method can be 
applied as an extension of the current work to further 
enhance the capability of the proposed model for 
potential industrial applications. 
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