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ABSTRACT 

This paper presents a system-based method for monitoring a 
human neuromusculoskeletal (NMS) system. It is based on 
autoregressive models with exogenous inputs, which link 
surface electromyographic signals and joint kinematic 
variables in order to detect changes in system dynamics, as 
well as to assess joint level and muscle level contributions 
to those changes. Instantaneous energy and mean frequency 
of time frequency distributions of electromyographic signals 
were used as model inputs, while angular velocities of the 
monitored joints served as outputs. Slow temporal changes 
in the behavior of the entire system or individual joint 
models were tracked by analyzing one-step ahead prediction 
errors of the corresponding models over time. Finally, 
analysis of the recursively updated models, which tracked 
the NMS dynamics over time, was used to characterize 
these changes at the joint and muscular levels. The 
methodology is demonstrated on data recorded from 12 
human subjects completing a repetitive sawing motion until 
voluntary exhaustion. Statistically significant decreasing 
trends in the similarities of the NMS models to those 
observed in the rested state were observed in all subjects. In 
addition, decreased joint response to muscle activity, as well 
as changes in the coordination and motion planning have 
been detected with all subjects, indicating their fatigue. 

1. INTRODUCTION 

Continuous monitoring of human body systems is only in its 
infancy, but with the advent of wearable electronics and 

pervasive communications and computing, it is bound to 
grow significantly in the near future. The majority of 
methods for monitoring the performance of human body 
systems utilize only the outputs from the underlying systems 
to assess its performance. For these symptomatic monitoring 
methods, an anomalous output from a system is 
synonymous with an anomalous system. An underlying 
assumption for this paradigm is that the system inputs are 
stationary, which unfortunately is not true for almost all 
biomedical systems and thus applicability of symptomatic 
monitoring for long-term, continuous monitoring of human 
body systems is dramatically limited. 

Alternatively, one can make use of both the inputs outputs 
of a system to formulate and track dynamic relationships 
between them, leading to the so-called system-based 
monitoring paradigm. Characterization and tracking of 
changes in the relationship between system inputs and 
outputs rather than just changes in its outputs enables one to 
monitor that system for a wide spectrum of inputs, i.e. 
without the requirement for the inputs to be stationary. 
Furthermore, it allows one to determine if changes in the 
system behavior are indeed due to changes in the system 
dynamics, or due to unusual inputs for which a credible 
model of system dynamics is not established. Thus, system 
based monitoring approach carries significant benefits over 
the symptomatic one. 

While system-based performance monitoring remains 
unfeasible for many biomedical systems, the 
neuromusculoskeletal (NMS) system is ripe for this 
paradigm shift because its inputs and outputs are more or 
less measurable and a significant amount of work has 
already been done to relate the two. Namely, joint torques 
arise from muscle contractions, which are induced via 
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electrical signals from the nervous system. Effects of 
electrical stimulations of the muscles are indirectly 
measurable through electromyography (EMG) signals, 
which can therefore be seen as inputs into the NMS system. 
Furthermore, joint torques and motion variables (angular 
positions and velocities) constitute the outputs from the 
NMS system and are also measurable via dynamometers 
and motion capture systems. A system-based monitoring 
scheme for the NMS system could enable continuous 
tracking and characterization of changes in the NMS 
dynamics, without the need to necessarily prescribe motion 
patterns that a subject needs to perform. Such capability 
could facilitate personalizing and customizing of training 
regimens for athletes and patients undergoing rehabilitation 
by prescribing exercises that target the muscles and joints 
with the greatest deficits for a given person, at a given time, 
as assessed via the system model. Furthermore, therapeutic 
exercise regimens for patients with NMS impairments can 
thus be more precisely tailored toward returning the patient 
to nominally healthy NMS dynamics, and to more reliably 
indicate when to stop training or rehabilitation before the 
onset of injury. In other words, system-based monitoring of 
human NMS system performance could facilitate condition-
based health management practices with our NMS systems 
similar to how we today pursue condition-based health 
management of our machines. 

Measurements of EMG signals and relevant kinematic and 
dynamic variables have been used extensively in literature 
to construct dynamic models of various portions of the 
NMS system (thorough reviews of the relevant literature can 
be found in the works by Lee, Glueck, Fiume and Jackson 
(2010) and Viceconti, Testi, Taddei, Martinelli, Clapworthy 
and Jan (2006). Generally, these models were derived using 
first principles or data-driven approaches to estimate the 
relationship between EMG and joint output variables for 
fingers, various parts of the arm, leg joints, as well as spine.  

As illustrated in Figure 1, these models try to conect the 
EMG signals with the corresponding muscle forces, and 
further with joint torque and motion variables. The muscle 
force generation is tackled using various methods for 
processing and transforming EMG signals. Many EMG 
processing approaches seek to emulate the underlying 
physics of neural control and action potential propagation 
(Keynes, Aidley and Huang, 2010). These techniques are 
reviewed by Buchanan, Lloyd, Manal and Besier (2005) and 
include normalization based on the force-length and force-
velocity relations, as well as first order chemical kinetics 
equations. On the other hand, numerous purely data-driven 
EMG processing techniques were used for modeling of 
NMS dynamics, including linear envelope processing 
(Hashemi, Hashtrudi-Zaad, Morin and Mousavi, 2010), low-
pass filtering (Koike and Kawato, 2010), extraction of mean 
or median power frequency from EMG spectra (Xu, Zhang 
and Pang, 2010), or Shannon entropy from EMG 
spectrograms (Arslan, Adli, Akan and Baslo, 2010). 

When it comes to the joint geometry and dynamics, most 
models in the literature handle them via the model structure 
itself. One approach is the path of physics and physiology 
based first principles, as seen in the paper by Buchanan et 
al., (2005). Data driven approaches are the alternative 
approach within which neural networks (Song and Tong, 
2005) and regression-based techniques (Potvin and Brown, 
2004) are the two overwhelmingly dominant structures 
utilized in the literature. 

 
Figure 1. Block Diagram of constituent parts of NMS 

system (Keynes et al., 2010). 

Despite the aforementioned advancements in NMS system 
modeling, most applications do not fully utilize the 
information about the temporal changes in the frequency 
content of EMG signals. On the other hand, temporal 
changes in neuronal excitation frequency are highly 
important for NMS function because the very nature of 
neural communication with muscles can be characterized by 
both amplitude and frequency modulation (Keynes et al., 
2010). Furthermore, monitoring the NMS system 
performance has been approached from a purely 
symptomatic perspective, relying on tracking the behavior 
of either the EMG signatures (Dingwell, Napolitano and 
Chelidze, 2007), or joint kinematic trajectories (Segala, 
Gates, Dingwell and Chelidze, 2011), independently. A 
system-based approach to monitoring the NMS system 
based on dynamic models relating EMG signals with joint 
kinematic variables has not yet been posed.  

This paper seeks to rectify the abovementioned 
shortcomings by using advanced signal processing to extract 
new features from EMG signals, which will then be used to 
build dynamic models that permit tracking and 
characterization of changes in the NMS system. The rest of 
the paper is organized as follows. Section 2 describes the 
signal processing and modeling techniques used to relate the 
EMG signals to joint kinematics. Section 3 details 
experimental data collected from human subjects and 
presents the results of applying the newly proposed system-
based monitoring method on that data. Finally, Section 4 
outlines the contributions of this paper and avenues for 
future work. 

2. METHODS 

The newly proposed NMS monitoring method tracks 
changes in the dynamic relationships between inputs derived 
from EMGs and outputs obtained from joint kinematic 
measurements. The general framework includes: 

athletes and patients undergoing rehabilitation by prescribing exercises that target the

muscles and joints with the greatest deficits for a given person, at a given time, as assessed

via the system model. Furthermore, therapeutic exercise regimens for patients with NMS

impairments can thus be more precisely tailored toward returning the patient to a nominally

healthy set of joint dynamics. In addition, such input-output dynamics based approaches

to detection and characterization of NMS changes could more reliably indicate when to

stop training or rehabilitation before the onset of injury.

Measurements of EMG signals and kinematic dynamic variables of the NMS system

have been used extensively in literature to construct dynamic models of various portions

of the NMS system (thorough reviews of the relevant literature can be found in [1, 2]).

Generally, these models have been derived using both first principles and data-driven (black

box) approaches to estimate the relationship between EMG and joint output variables for

fingers, various parts of the arm, various joints of the legs, and even for the spine.

Regardless of model structure or focus, there are three problems these models tackle,

as illustrated in the dashed box of Figure 1 [3]. These problems are:

• How does neuronal excitation of muscles, as measured by EMG, relate to muscle force

generation?

• How do muscle forces interact with the joint geometries to produce joint torques?

• How does torque, applied to a joint, a↵ect joint motion?
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Figure 1: Block diagram of constituent parts of NMS models [3]

The muscle force generation is tackled using various methods for processing and trans-

forming EMG signals. Many EMG processing approaches seek to emulate the underlying

physics of neural control and action potential propagation [3]. Examples of such techniques
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• Modeling joint kinematic variables as a function of EMG 
signatures; 

• Tracking of statistical characteristics of modeling errors 
over time to capture degradation (changes) in the NMS 
system behavior; 

• Monitoring of changes in the NMS model parameters 
over time, enabling assessments of changes in the effects 
of individual muscles on the NMS system dynamics; 

2.1. Modeling Considerations 

The daunting task of establishing a model between EMG 
measurements and joint kinematics necessitates overcoming 
of two pervasive challenges. Firstly, EMG is a noisy signal, 
which, at best, is a measure of the collective nerve and 
muscle depolarization underneath the electrodes. This 
difficulty has given rise to many attempts to use advanced 
signal processing techniques to extract useful and 
informative features from the EMG signals. The second 
difficulty is that even with perfect neural command 
information, the NMS system is inherently a complex, 
nonlinear system with multiple inputs and outputs (MIMO) 
(Keynes et al., 2010). Hence, our explorations of system 
based monitoring of the NMS system needed to cope with 
challenges of EMG noise and complexity, model structure 
and parameter estimation. 

2.1.1. EMG Processing and Feature Extraction 

Neuronal communications within the body are characterized 
by the frequency, amplitude, and phase of the neuron action 
potential train. More specifically, muscle force amplitude, 
as a function of motor neuron activation, is characterized by 
the so-called “twitch response” (Keynes et al., 2010). This 
results in an increase in mean muscle force with increasing 
neuronal activation frequency in isometric contraction. The 
twitch response also results in a nonlinear, low-pass filter 
response between the neuronal activation and muscle force 
generation (Itoh, Atayaki, Mita, Watanabe and Nonaka, 
2013). Furthermore, isometric muscle activation, and hence 
muscle force production via the Hill-type model, has been 
shown to be a piecewise linear and logarithmic function of 
neuronal excitation (Manal, 2003). Given these reasons, it is 
pertinent for any model connecting surface EMG (sEMG) 
signals with joint kinematics to incorporate information on 
the temporal behavior of both the amplitude and the 
frequency of the sEMG signal. 
Consequently, a joint time-frequency signal representation 
of sEMG signals was pursued. More specifically, we 
utilized Cohen's class of time-frequency distributions (TFD) 
to gain concurrent insight into how sEMG signal energy 
varies in both time and frequency (Cohen, 1995). The TFD, 
𝐶 𝑡,𝜔  of a signal, 𝑠 𝑡  is calculated as 
 
 

 

𝐶 𝑡,𝜔 =
1
4𝜋!

∙ 

𝑠∗ 𝑢 −
𝜏
2
𝑠 𝑢 +

𝜏
2
𝜙 𝜃, 𝜏 𝑒!! !(!!!)!!" 𝑑𝜏𝑑𝑢𝑑𝜃

!

!!

 
(1) 

where 𝑠∗ 𝑡  denotes the complex conjugate of 𝑠 𝑡  and 
𝜙 𝜃, 𝜏  is the TFD kernel. This signal processing approach 
was adopted because it does not suffer from time-domain 
and frequency domain resolution tradeoffs, as do the more 
traditional wavelets-based and spectrogram-based time-
frequency signal representations. In addition, developments 
in late 1980s and 1990s led to time-frequency kernels that 
yield distribution with superior mathematical properties of 
strong time and frequency support, upholding of time and 
frequency marginals, as well as conditional expectations 
calculated based on those TFDs evaluating to the 
instantaneous frequency and group delay of the signal1 
(Jeong and Williams, 1992; Cohen, 1995). 
In this paper, we utilized the binomial kernel (Jeong and 
Williams, 1992), which is a signal independent member of 
the so-called reduced interference distribution family of 
kernels. The signal independent nature of this kernel enables 
a faster calculation of TFDs compared to signal dependent 
kernels, while delivering the aforementioned desirable 
mathematical properties, along with signal filtering based on 
the suppression of time-frequency cross-terms. Because of 
those favorable mathematical properties, the binomial kernel 
based TFD could subsequently be used to effectively extract 
time-dependent signatures that are indicative of the 
instantaneous amplitude and frequency of the sEMG signal. 
Specifically, once the binomial TFD 𝐶 𝜔|𝑡  of a sEMG 
signal is calculated, for each moment in time 𝑡 , the 
corresponding instantaneous energy, 𝑓!|𝑡 , and 
instantaneous frequency, 𝑓!|𝑡 , of the signal could be 
calculated as follows 

𝑓!|𝑡 = 𝐶 𝜔|𝑡 𝑑𝜔!
!!         (1) 

𝑓!|𝑡 = 𝑓𝐶 𝜔|𝑡 𝑑𝜔!
!!          (2) 

where 

𝐶 𝜔|𝑡 = ! !,!
! !,! !"!

!
      (3) 

denotes the conditional distribution of signal’s energy at 
time 𝑡. Inspecting Eqs. (1)-(3) reveals that the instantaneous 
energy and frequency of the signal are expressed as 
conditional expectations, obtained using the binomial TFD 
as a two-dimensional probability density function of the 
signal energy in time and frequency2. 

                                                             
1 Please note that it is possible to show that well-known spectrograms are 
also a member of Cohen’s class of TFDs, with its kernel being the so-called 
ambiguity function of the window used to produce that spectrogram 
(Cohen, 1995). Nevertheless, spectrograms only have some of the 
aforementioned desirable mathematical properties. 
2 Once again, this is possible because binomial kernel TFDs have the 
properties of strong time and frequency support, time and frequency 
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These signatures were pursued because decreases in 
instantaneous frequencies (Allison and Fujiwara, 2002), and 
increases in instantaneous intensities of sEMG signals 
(Disselhorst-Klug, Schmitz-Rode and Rau, 2009), are 
considered as classic indicators of muscle fatigue in the 
literature. Consequently, time series of instantaneous 
energies and frequencies, extracted from each of the 
relevant sEMG signals were used as the inputs for the 
dynamic model predicting the joint kinematics. The model 
form and calculation of its parameters are discussed next. 

2.1.2. Vectorial ARX Modeling of the NMS System 

Several portions of the NMS system can be viewed as serial 
chain manipulators, as illustrated in Figure 2 (Asfour, 
Berns, Schilling and Dillman, 1999). Following Artemidis 
and Kyirakopoulos, (2009), representing a human limb as a 
serial chain manipulator permits the formation of equations 
of motion as 

𝜃 = 𝐃!! 𝜃 −𝐂 𝜃, 𝜃 𝜃 − 𝑔 𝜃 + 𝜏!"#$%&        (4) 

where: 

• 𝜃 is the vector of joint angles; 
• 𝐃 𝜃  is the inertia matrix; 

• 𝐂 𝜃, 𝜃  describes centrifugal and Coriolis effects; 

• 𝑔 𝜃  arises from the potential energy of the robot; 
• 𝜏!"#$%& is the vector of torques exerted by the muscles; 
In order to approach the system-based monitoring problem 
from an analytically tractable perspective, in this paper we 
assume a linear, discrete form to approximate Eq. (4). 
Furthermore, in order to approximate the effects of the 
twitch response, the joint torque, 𝜏!"#$%& , caused by 
muscular contraction will be modeled as a linear dynamic 
transformation of EMG features, 𝑓!|𝑡  and 𝑓!|𝑡 , yielding 
the model in the form of a vectorial autoregressive model 
with exogenous inputs (vARX) 

𝜃 𝑘 = 𝛂𝜃 𝑘 − 1 + 𝛃𝜃 𝑘 − 1 + 

+ 𝛾! 𝑓!| 𝑘 − 𝜏!!" ! + 𝛿! 𝑓!| 𝑘 − 𝜏!!" !
!
!!! + 𝜀[𝑘]      

(5) 
where: 

• k denotes the sample index of the relevant signal, meaning 

that 𝜃 𝑘 = 𝜃(𝑘𝑇), 𝜃 𝑘 = 𝜃(𝑘𝑇) and so on, where 
T denotes the sampling interval. 

• 𝛂 is a matrix of autoregressive coefficients relating joint 
velocities to one another; 

• 𝛃 is a matrix of exogenous coefficients describing the 
effect of joint angles on the joint velocities; 

                                                                                                       
marginals, as well as relevant conditional expectations evaluating to the 
instantaneous frequency and group delay of the signal. 

• 𝛄 = 𝛾!, . . , 𝛾!  is the matrix of exogenous coefficients 
describing the effect of sEMG instantaneous energies on 
joint velocity; 

• 𝛅 = 𝛿!, . . , 𝛿!  is the matrix of exogenous coefficients 
describing the effect of sEMG instantaneous frequencies 
on joint velocity; 

• 𝜏!" = 𝜏!, . . , 𝜏!  is a vector of electromechanical delays 
(EMDs), describing the delays from neural and muscle 
activation picked up by EMG electrodes, to the start of 
muscle force generation for all the G muscles. Existence 
of these delays is well documented in the literature 
(Corcos, Gotlieb, Latash, Almeida and Agarwal, 1992) 

• 𝑓!| 𝑡 ! is the instantaneous energy for the gth muscle; 
• 𝑓!| 𝑡 ! is the instantaneous frequency for the gth muscle; 
• 𝜀 𝑘  is the vector of noise terms due to linearization errors 

and un-modeled effects; 
The authors are aware that linearity of model (5) is a strong 
and restrictive assumption, but, as will be shown in Section 
3, analytical tractability of (5) led to some interesting 
insights enabled by the ability to efficiently adapt the model 
to the changes in the NMS system that occurred as the 
subject exercises progressed. 

2.1.3. Estimation of Electromechanical Delay 

Muscles are constructed of varying proportions of fast and 
slow twitch muscles and the EMD is positively correlated to 
the proportion of slow twitch fibers in the muscle. 
Therefore, the value of the EMD must be determined for 
each muscle independently, which was accomplished in this 
paper using a genetic algorithm (GA). 
The GA minimized the Akaike information criterion (AIC) 
for the MIMO model (5), as proposed by Hurvich and Tsai 
(1991). Each candidate solution of the GA was represented 
by a chromosome whose ith element corresponds to the ith 
muscle EMD, as illustrated in Figure 3. Following Corcos et 
al. (1992), the chromosome elements are constrained to 
represent EMD times between 10ms and 100ms. For a given 
vector of EMDs, the remaining model parameters were 
obtained by linear least squares estimation, allowing one to 
assess the fitness of the corresponding model via its AIC. 
 

 
Figure 2. Example of the human arm expressed as a serial 

chain manipulator (Asfour et al., 1999).

where:
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✓ is the column vector of joint angles
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⇣
~

✓
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• g(~✓) arises from the potential energy of the robot
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Figure 2: Example of the human arm expressed as a serial chain manipulator [14]

In order to approach the system-based diagnostics problem from an analytically tractable

perspective, in this paper we assume a linear, discrete form to approximate (4), yielding

the model of the form

~x [t] = A~x [t� 1] +B~⌧

muscle

~x [t] =
h
~̇

✓

T [t] ~

✓

T [t]
i
T

(5)

Furthermore, in order to approximate the e↵ects of the twitch response, the joint torque,

~⌧

muscle

, caused by muscular contraction will be modeled as a linear dynamic transformation

of the features, < f

0|t > and < f

1|t >, yielding the model in the form of a vectorial AR

model with exogenous inputs (vARX)
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Figure 3. Illustration of the 𝒌 − 𝟏 𝒔𝒕 (left) and the 𝒌𝒕𝒉 generation (right) of the GA, where the 𝒊𝒕𝒉 chromosome element 
represents the delay for the 𝒊𝒕𝒉 muscle. 

 

The GA population size was set to 216 with a 1% elite 
carryover from each generation to the next. The remaining 
99% of each population was produced by crossover and 
mutation in even measures and implemented as proposed by 
Deep, Singh, Kansal and Mohan (2009). To inspire diverse 
solutions, the GA was run in 10 parallel sessions and a 20% 
migration of the best solutions from each session occurred 
every 5 generations. All GA parameters in this paper were 
selected ad hoc, after a few trial and error sessions, though 
one can find focused studies on systematic selection of GA 
parameters that maximize the resulting convergence speed 
and exploratory capabilities (De Jong, 1975; Bäck, 1995). 

2.2. Model Based Characterization of NMS Performance 
Degradation 

For each subject, a vARX model was trained on a data set 
believed to be representative of his/her least degraded state. 
This model will be referred to as the fresh model and this 
data set will be called the fresh data set. Once the fresh 
model is identified, the distribution of one-step ahead 
prediction errors it makes on the fresh data set is modeled 
using a Gaussian Mixture Model (GMM). The GMM form 
is used because of its universal approximation properties 
and the ability to efficiently update its parameters as new 
data become available (Lindsay, 1995). The distribution of 
errors made by the fresh model on the fresh data set will be 
referred to as the fresh error distribution. 
As the newly measured data are presented to the model and 
new one-step prediction errors become available, the GMM 
of modeling errors is continuously updated via re-estimation 
of its parameters using the most recently observed errors. 
This yields the distribution, which we will refer to as the 
updated error distribution. 
If the dynamic relationship between the inputs and outputs 
of the monitored system is unchanged, the updated 
distribution of modeling errors should be very similar to the 

fresh distribution. However, the updated distribution will 
move and change shape as the NMS system dynamics 
change due to e.g. fatigue or injury, causing the 
aforementioned overlap between distributions to be smaller 
than that observed during degradation-free operation. 
Matusita's overlap coefficient between the fresh 
distribution, 𝑝! 𝑥 , and the updated distribution, 𝑝! 𝑥 , of 
modeling residuals. defined as 

𝐺𝐹𝐼 =  𝑝! 𝑥 𝑝! 𝑥 d𝑥 

was used to measure and track the similarity between the 
two distributions over time (Matusita, 1955). This metric, 
referred to in the rest of the paper as the Global Freshness 
Index (GFI), varies between 0 and 1, with values near 1 
indicating high similarity between the most recent behavior 
dynamics and that observed on the fresh data set. 
Conversely, GFI values near 0 indicate little similarity 
between the most recent behavior dynamics and the 
behavior observed in the fresh data set. 
Let us now note that both the fresh and updated error 
distributions are multivariate probability density 
distributions, with each dimension corresponding to one 
step prediction errors of an individual joint velocity. 
Therefore, the marginals of these multivariate distributions 
contain information about errors corresponding to the 
models of each individual joint velocity in Eq. (5). 
Consequently, Matusita's overlaps can be evaluated on the 
marginals of the fresh and updated error distributions, 
yielding individual Joint Freshness Indices (JFI), as 
illustrated in Figure 4. In this manner, JFIs can be used to 
assess relative contributions of each individual joint to the 
degraded behavior of the NMS system. 
Next, let us gain further understanding of changes in the 
NMS system dynamics via characterization of changes in 
the influences of relevant muscles on the NMS dynamics. 

 

2.1.3 Estimation of Electromechanical Delay

Muscles are constructed of varying proportions of fast and slow twitch muscles and the

EMD is positively correlated to the proportion of slow twitch fibers in the muscle. As

such, the value of the EMD must be chosen for each muscle independently. In this work,

independent muscle EMD optimization was accomplished using a genetic algorithm (GA).

The GA minimized the Akaike information criteria (AIC) [15] for the multiple input, mul-

tiple output (MIMO) system in Equation (2.1.2), which is expressed as natural log of the

determinant of the covariance matrix of one-step ahead prediction errors of the model [16].

Each candidate solution of the GA was represented by a chromosome whose ith element

corresponds to the ith muscle EMD, as illustrated in Figure 3. The chromosome elements

are constrained to represent EMD times between 10ms and 100ms, which is motivated by

findings reported in the literature [17]. For a given vector of EMDs, the remaining model

parameters were obtained by linear least squares estimation, allowing one to assess the

fitness of the corresponding model via its AIC [16].

calculate

Figure 3: Illustration of the (k-1)st (left) and the kth generation of the GA, where the ith

chromosome element represents the delay for the ith muscle

The GA population size was set in an ad hoc way to 216 with a 1% elite carryover

from each generation to the next. The remaining 99% of each population was produced

by crossover and mutation in even measures, and implemented as in Deep et al. [18].2 To

inspire diverse solutions, the GA was run in 10 parallel sessions and a 20% migration of the

best solutions from each session occurred every 5 generations. All GA parameters in this

2See the appendix for a more detailed description of the crossover and mutation methodology employed
in this paper.

10



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

6 

 
Figure 4. Flow chart of model based monitoring and joint-level characterization of NMS system degradation. 

2.3. Characterizing Changes in NMS Performance at the 
Joint Dynamics and Muscle Levels 

As new EMG features and joint velocities are observed, the 
linear vARX model (5) that relates them can be efficiently 
updated to track changes in the underlying dynamics. In this 
paper, the parameter matrices 𝛄 , 𝛃  and 𝛂  of the updated 
model are adapted using a recursive least squares algorithm 
with a forgetting factor, thus describing the dynamics of the 
most recent NMS system behavior3. 
At any time moment, the similarity of dynamic responses 
from an input to an output between the fresh model and the 
updated model was assessed by comparing the frequency 
responses of the relevant transfer functions emanating from 
the MIMO model (5). Using forward Euler integration 
(Atkinson, 1989), Eq. (5) is cast into state space form 

𝜃
𝜃

𝑘 + 1 =  𝐀 𝜃
𝜃

𝑘 + 𝐁 𝑢
𝑣

𝑘 + 0
𝜀
[𝑘] 

𝑦 𝑡 =  𝐂 𝜃
𝜃

𝑘  

𝐀 =  𝐈 𝑇𝐈
𝛃 𝛂  

𝐁 =  𝟎
𝛄 𝛅   

𝐂 =  𝟎 𝐈  
where: 
• 𝐈 is the identity matrix 
• 𝟎 is a zero matrix 
• 𝑢 is the vector of muscle instantaneous energies, 𝑓!|𝑡 , 

delayed by their respective EMDs; 
• 𝑣  is the vector of muscle instantaneous frequencies, 

𝑓!|𝑡 , delayed by their respective EMDs; 

                                                             
3 Please note that EMDs were not adapted, which enabled such a tractable 
model adaptation. 

• 𝜃
𝜃

𝑘 =
𝜃 𝑘

𝜃 𝑘
 is the state vector at sample k 

Following Franklin, Powel and Emami-Naeini (2006), the 
corresponding matrix of transfer functions, 𝐇 𝑧 , can now 
be calculated as 

 𝐇 𝑧 =  𝐂 𝑧𝐈 − 𝐀 !!𝐁 (2) 

For the element 𝐇!,!
! 𝑧  in the 𝑖!! row and the 𝑘!! column 

of the transfer matrix 𝐇 ! 𝑧  of the fresh model, 𝐇!,!
! 𝑒!"  

would correspond to the frequency response of the fresh 
model between input 𝑘  and output 𝑖 , where 𝜔 ∈ 0. .𝜔!  
and 𝜔! is the Nyquist frequency. Similarly, for the element 
𝐇!,!

! 𝑧  in the 𝑖!! row and 𝑘!! column of the transfer matrix 
𝐇 𝒖 𝑧  of the updated model, 𝐇!,!

! 𝑒!"  would correspond 
to the frequency response of the updated model between 
input 𝑘 and output 𝑖. A measure of similarity, 𝐷!! , between 
the two models relating input k and output i can be 
expressed as 

𝐷!,! =
!
!!

!"# 𝐇!,!
! !!" , 𝐇!,!

! !!" !!

!"# 𝐇!,!
! !!" , 𝐇!,!

! !!" !!
d𝜔!!

!          (6) 

where 𝑐  is the smallest value evaluated in the interval 
0. .𝜔!  for either function. This metric also ranges from 0 

to 1, with 1 suggesting very similar dynamic interactions 
between the designated input and output for the two models, 
and 0 suggesting otherwise. Consequently, since inputs into 
the model (5) are features extracted from sEMG signatures 
of the relevant muscles, overlaps from Eq. (6) depict how 
influences from various muscles on the corresponding 
dynamics change over time, as illustrated in Figure 5. 

3. RESULTS 

The newly proposed methodology for monitoring of the 
NMS system was applied to track fatigue induced changes 
in the behavior of the NMS system of 12 human subjects. 

Fresh
Model

Fresh
Model

Feature
Extraction
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Muscle fatigue was used as a proof of concept because it is 
extensively studied and can be easily induced without 
damaging subjects. Conceptually, it can be seen as the 
inability for muscles to provide the required or expected 
force and, as such, corresponds to a degraded functioning of 
the NMS system. Therefore, tracking and characterizing 
fatigue via monitoring the NMS system seemed to be a 
plausible way to demonstrate the newly introduced methods. 
While the precise definitions of fatigue are still debated 
(Westerblad, Allen and Lännergren, 2002), many 
reproducible NMS phenomena are associated with fatigue. 
Within the context of the proposed NMS modeling strategy, 
fatigue has been found to: 
• Decrease sEMG frequencies due to active motor units 

firing more slowly and synchronously (Allison and 
Fujiwara, 2002); 

• Occasionally increase sEMG amplitudes because of 
synchronous firing of active motor units (Allison and 
Fujiwara, 2002); 

• Change muscle coordination (Corcos, Jiang, Wilding 
and Gottlieb, 2002); 

• Change repetitive motion trajectories (Côté, Mathieu, 
Levin, and Feldman, 2002); 

• Occasionally change local joint stability, which could 
arise from decreased proprioception (Myers, 
Guskiewicz, Schneider and Prentice, 1999), decreased 
kinesthesia (Pederson, Helstrom, Djupsjobacka and 
Johansson, 1999), increased reaction time (Edward, 
Bradford and Huston, 1996), and increased central 
nervous system processing time (van Duinen, Renken, 
Maurits and Zijdewind, 2007); 

Each of the aforementioned physiological effects of fatigue 
will have an effect on the parameters in (5), leading to a 
natural validation of the techniques introduced in this paper. 

 

 
Figure 5. Flow chart of using model-based characterization of NMS degradation at the muscle level. 

3.1. Data Description 

The data used to demonstrate the new methodology was 
collected from 12 subjects in a study reported by Gates and 
Dingwell (2008). For the sake of completeness, the data 
collection procedure will be briefly described below, though 
more details can be found in (Gates and Dingwell, 2008). 
As illustrated in Figure 6, subjects were strapped into a high 
back chair with a five-point harness to reduce trunk motion. 
The subjects then performed a repetitive sawing motion at 
approximately 1 Hz, as directed by a metronome, moving 
their hand in an anterior-posterior direction, while gripping 
a handle attached to a weighted sled. The sled was weighted 
to 15% of the subject's average maximum voluntary 
contraction force and each subject exercised until his/her 
voluntary exhaustion. During those exercises, relevant 
muscle EMGs and joint kinematic variables were sampled 
synchronously, as illustrated in Figure 7. 

Before presenting the results, let us mention that in the 
proceeding sections, the statistical significance of trends in 
the EMG features, overlap coefficients GFI and JFI, and the 
muscle-joint overlap coefficients D introduced by (6), was 
assessed via a T test of the linear slope fits, at the 95% 
confidence level (Montgomery, Runger and Hubele, 2011). 

3.2. Feature Extraction 

Figure 8 depicts the sEMG features, 𝑓!|𝑡  and 𝑓!|𝑡  for 
one of the subjects in the study. Independent analysis of 
these features over time was conducted since literature 
indicates that they could be seen as indicators of fatigue in 
the sEMG signals (Allison and Fujiwara, 2002). Namely, 
decreasing instantaneous frequencies, 𝑓!|𝑡 , are considered 
to be a classic fatigue indicator in sEMG signals. We noted 
statistically negative linear trends in instantaneous 
frequencies in at least one muscle EMG for each of the 
subjects considered in this study. More specifically, 

Fresh
Model

Model
Compare

Feature
Extraction



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

8 

statistically significant negative trends in the instantaneous 
frequency of the sEMG signals over time were present in 
75% of the subjects for MT, PD, LD, AD, T and FCR, while 
sEMGs from B, PM, and ECRL muscles showed this trend 
in 58% of the subjects. 
Increasing instantaneous intensities 𝑓!|𝑡  in sEMG signals 
happen to be a less widely accepted fatigue indicator 
(Disselhorst-Klug, Schmitz-Rode and Rau, 2009). 
Nonetheless, we still noted that statistically significant 
positive linear trends in 𝑓!|𝑡  over time occurred in at least 
one muscle for each subject. Specifically, statistically 
significant positive trends in the instantaneous energy of the 
sEMG signals were present in 67% of subjects for B, 50% 
of subjects for FCR, 42% of subjects for T and ECRL, 25% 
of the subjects for MT, PD, PM, and AD, and 17% of 
subjects for LD. 
 

 
Figure 6. Seated subject executing sawing motion. White 

circles represent kinematic markers used to track the 
subject’s motion via motion analysis system. 

 
 

	

Figure 7. Joint kinematic variables (black) and muscles (blue) for which measurements were acquired, superimposed on the 
anatomy of the human arm (adapted from Wu, van der Helm, Veeger, Maksous, Van Roy, Anglin, Nagels, Karduna, 

McQuade, Wang, Werner and Bucholtz, 2005). Joint kinematic data was collected at 60Hz using an 8 camera, Vicon-612 
motion analysis system from Oxford Metrics in Oxford, UK. Synchronously, sEMG data was captured at 1,080 Hz using 

Delsys system from Delsys, Inc. in Boston, MA.
 
One should note that the discussion above is purely based 
on the analysis of the inputs into the system and is thus 
symptomatic rather than system based in its nature. Let us 
now elaborate on what was found as we built and analyzed 
dynamic models relating the aforementioned sEMG features 
to the relevant NMS kinematic variables. 
 

3.3. Model Based Characterization of NMS Performance 
Degradation 

Figure 9 depicts the GFIs for the same subject considered in 
Figure 8. It clearly shows negative trend of this subject's 
GFIs over time. Actually, statistically significant decreasing 
trends in the GFIs over time were established for all 12 
subjects. The median drop in GFIs over all subjects was 
39%, ranging between 15% and 64%. 

1 Abbreviated notation is used throughout the rest of the document. The notation is as follows. GHPE: GH 
plane of elevation, GHNE: GH negative elevation, GHAR: GH axial rotation, EF: elbow exion, EP: elbow 
pronation, WF: wrist exion, WUD: wrist ulnar deviation, MT: middle trapezius, PD: posterior deltoid, LD: 
lateral deltoid, AD: anterior deltoid, PM: pectoralis major, B: biceps, T: triceps, FCR: exor carpi radialis, 
ECR: extensor carpi radialis. 
 
 
Angle Abbreviation 
Glenohumeral plane of elevation GHPE 
Glenohumeral negative elevation GHNE 
Glenohumeral axial rotation GHAR 
Elbow flexion EF 
Elbow pronation EP 
Wrist ulnar deviation WUD 
  

Muscle Abbreviation 
Middle trapezius MT 
Posterior deltoid PD 
Lateral deltoid LD 
Anterior deltoid AD 
Pectoralis major PM 
Biceps B 
Triceps T 
Flexor carpi radialis FCR 
Extensor carpi radialis ECR 
 
!
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Figure 10 shows the behavior of joint level overlap 
coefficients JFI over time for the same subject considered in 
Figures 8-9, with red lines indicating situations when 
statistically significant negative trends were noted. Overall, 
it was observed that negative trends in JFIs for GHPE, 
GHAR, EP, and WUD were statistically significant for all 
subjects. In addition, negative JFI trends for GHNE and WF 
were significant for all but one subject, while negative 
trends for the JFIs of EF were significant for all but three 
subjects. These prevalent downward trends are 
commensurate with the slow fatigue dynamics noted by 
Dingwell et al., (2007) and Segala et al. (2011). 

Besides trends in GFIs and JFIs, highly localized drops, like 
those occurring in Figures 9-10 at 135s, 246s, 314s, and 
especially 440s, were present at some point in time in each 
subject's GFIs and JFIs. They arise for two reasons. First, it 
is known that motion capture systems are imperfect and 
there are moments when it lost track of a marker. Many of 
these artifacts were filtered via cubic spline interpolant, 
minimizing the distances between markers in a cluster and a 
discrete wavelet filtering technique (Huzurbazar, Statistics 
and Doundation, 2013). However, it was obvious to the 
authors that the algorithms did not capture all artifact 
instances for all subjects. E.g., a typical example of this type 
of an event caused the drop at 246s in Figures 9 and 10. 

 
Figure 8. The left column of plots in this figure shows 𝒇𝟎|𝒕  features, while The right column of plots shows 𝒇𝟏|𝒕  features. 
In both columns, significant negative trends at the 95% level indicated with a bold red line. Please note that gray patches on 

the left side of each plot denote the fresh data. For each subject, the values of 𝒇𝟎|𝒕  of any given muscle were scaled to range 
from 0 to 1 within the fresh data and these scaling factors were then applied to the rest of the data from that muscle. As for 

the values of 𝒇𝟏|𝒕 , they were scaled by the Nyquist frequency over the entire dataset. 
 

 
 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

10 

 
Figure 9. GFI over time for a selected subject. The red line 
represents a statistically significant negative trend at the 
95% confidence interval. 

Secondly, every subject, at least at some point in time 
displayed unusual muscular firing patterns during which for 

a period of time, one or more muscles attained instantaneous 
energies of up to two orders of magnitude greater than those 
seen in the fresh data. Since the model is trained only on the 
EMG signatures in the fresh data, such unusual input 
patterns occasionally led to the model briefly losing 
accuracy, which caused the overlap indices to temporarily 
drop. In fact, 1/3 of subjects experienced instantaneous 
energies from 3 to 5 times those observed in the fresh data, 
another third of subjects experienced instantaneous energies 
an order of magnitude greater than what was seen in the 
fresh data and the remainder experienced two orders of 
magnitude greater instantaneous energies than those seen in 
the fresh data. A typical example of this type of an event is 
responsible for the drops at 440s in Figures 9 and 10, during 
which unusual patterns of muscular activity in the MT, B, 
FCR, LD, AD, T, and ECRL where observed, as visible in 
Figure 8. Nevertheless, despite these localized drops and 
recoveries, the general downward trend of overlap indices 
persists for all subjects. 

 

 
Figure 10. Individual JFI versus time for an example subject. The red lines represent statistically significant negative trends.



 
Figure 11. Overlap of transfer functions between EMG inputs to GHAR joint velocity for the fresh model and updated model. 

Gray patches represent fresh data. Transfer function overlaps for the < 𝒇𝟎|𝒕 > inputs are in the left column of plots, while 
transfer function overlaps for the < 𝒇𝟏|𝒕 > inputs are in the right column of plots.

Now, let us discuss the results of characterizing the 
degradation of the NMS system, using transfer function 
overlap coefficients D introduced by Equation (6). The 
reader should be reminded that these coefficients evaluate 
how influences of signatures from each individual muscle 
on each individual joint velocity changed over time. For the 
same subject that was considered in Figures 8-10, Figure 11 
shows the coefficients D for the EMG inputs to the GHAR 
angular velocity, with red lines indicating statistically 
significant negative linear trends in those coefficients over 
time. It is obvious that all indices in Figure 11 show 
significant decreasing trends, illustrating a continuous 
change in the influences of the corresponding muscle 
features to GHAR velocity. Over all subjects, sEMG 
features, and joints, 96% of the transfer function overlap 
coefficients D exhibited statistically negative trends. 
Moreover, the muscles MT, AD, and LD had negative 
trends for all joint velocities, over all subjects. 
An especially interesting observation was that the length of 
time to the moment when subjects gave up further exercise 
seems to correlated with the behavior of the transfer 
function overlap coefficients D. Specifically, the 7 subjects 
who were able to exercise for the shortest duration of time 

showed negative linear trends in coefficients D for all 
muscles and all joints. All of the muscle signature/joint pairs 
that did not show negative trends were restricted to the 5 
subjects who exercised the longest. Furthermore, the two 
longest performing subjects did the exercise two times 
longer than the next longest performing subject, and 
exhibited more than 82% of the muscle signature/joint 
combinations that did not show decreasing trends in the 
transfer function overlaps (one of those two was a 
triathlete). These results seem to indicate that our system-
based approach is confirming that the two subjects who 
exercised the longest had more endurance and fatigued to a 
lesser degree. 

4. CONCLUSIONS AND FUTURE WORK 

This paper presents a system-based methodology for 
monitoring of NMS system performance. It uses a set of 
signatures extracted from the TFDs of sEMG signals and 
builds a dynamic model that relates these signatures to joint 
velocities. NMS system monitoring was then realized via 
statistical analysis of modeling errors and model parameters, 
as they change over time. 
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The new monitoring approach was used to track and 
characterize fatigue-induced changes in the NMS system via 
an experiment involving 12 subjects performing a repetitive 
sawing motion until voluntary exhaustion. Error analysis of 
these models led to detection of statistically significant 
trends in the NMS system models for all subjects. 
Furthermore, the proposed system detected statistically 
significant trends in the distributions of modeling errors 
yielded by models of 96.5% of the 84 angular joint 
velocities considered in this study (7 joint velocities for 
each of the 12 subjects). In addition, a statistically 
significant monotonous change in the effects of muscle 
activity on the joint motion was evident in 100% of 
subjects, with statistically significant linear decreasing 
trends detected in 96% of the overlaps of transfer functions 
between EMG signatures and joint velocities, over all 
subjects. Finally, it was observed that the subjects who 
performed the exercise the longest showed the least 
degradation in terms of changes in the dynamic 
relationships between the muscle signatures and joint 
velocities. 
The ability of the newly proposed monitoring methodology 
to track and characterize changes in the NMS system can 
eventually become useful in personalizing and customizing 
training regimens. E.g., for athletes, muscles that fatigue 
most quickly can be identified and training regimens can be 
built to address these deficits. Similarly, therapeutic exercise 
regimens for patients with NMS impairments or patients 
undergoing rehabilitation can be tailored toward returning 
the patient to a nominally healthy set of joint dynamics. 
Furthermore, the detection and characterization of fatigue 
can be used as an indication to stop training or rehabilitation 
before the onset of injury. 
Several avenues for future research are apparent. First, and 
most importantly, the linear dynamics assumption should be 
lifted and a nonlinear NMS model appropriate for its 
monitoring should be pursued. Furthermore, there are 
possibilities for better utilization of the information 
contained in the EMG TFDs, such as the use of higher order 
instantaneous frequency statistics or entropies of the TFDs. 
In addition, fatigue is known to increase muscle EMD 
(Zhou, Carey and Snow, 1998) and it would be 
advantageous to design a method to track these changes 
within the dynamic NMS models developed in this work. 
Finally, the capabilities of the newly introduced technique 
should be further explored on data corresponding to less 
constrained motions, such as walking or running. 
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