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ABSTRACT 

This paper presents a unified data-driven prognostic 

framework that combines failure time data, static parameter 

data and dynamic time-series data. The framework employs 

proportional hazards model and a soft dynamic multiple fault 

diagnosis algorithm for inferring the degraded state 

trajectories of components and to estimate their remaining 

useful life times. The framework takes into account the cross-

subsystem fault propagation, a case prevalent in any 

networked and embedded system. The key idea is to use Cox 

proportional hazards model to estimate the survival functions 

of error codes and symptoms (probabilistic test 

outcomes/prognostic indicators) from failure time data and 

static parameter data, and use them to infer the survival 

functions of components via soft dynamic multiple fault 

diagnosis algorithm. The average remaining useful life and 

its higher-order central moments (e.g., variance, skewness, 

kurtosis) can be estimated from these component survival 

functions. The framework is demonstrated on datasets 

derived from two automotive systems, namely hybrid electric 

vehicle regenerative braking system, and an electronic 

throttle control subsystem simulator. Although the proposed 

framework is validated on automotive systems, it has the 

potential to be applicable to a wide variety of systems, 

ranging from aerospace systems to buildings to power grids. 

1. INTRODUCTION 

Conventional maintenance strategies, such as reactive and 
preventive maintenance, are inadequate in fulfilling the needs 
of high-availability in complex automotive systems. What is 
needed is a continuous monitoring and early warning 
capability that detects, isolates and estimates component 
degradations (fault diagnosis and prognosis) over time and 
thus minimizing downtime and operational costs via 
condition-based maintenance. Failure prognosis, an add-on 
capability to diagnosis, involves forecasting system 
degradation and time-to-failure (remaining useful life) based 
on “state awareness” gained from monitored data, for 
example, parameters collected from various sensors, such as 
vehicle speed, individual wheel speeds, yaw rate, master 
brake cylinder pressure, and so on. 

The existing time-series based approaches to prognostic 

health management are component-centric and do not make 

use of widely available data in archived databases of vehicle 

equipment, such as historical usage patterns, error codes (i.e., 

codes that are recorded by onboard software units in case of 

a fault or malfunction of the component), observed failure 

modes, repair and inspection intervals, environmental 

factors, skill levels of personnel, and status parameters 
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collected periodically or at the onset of error codes. Examples 

of status parameters include operating parameter identifier 

data collected periodically or when an error code is recorded. 

Consequently, the time-series based prognostic health 

management approaches are both incomplete and inaccurate 

for coupled systems with cross-subsystem fault propagation. 

In coupled systems, the cross-subsystem fault propagation 

comes from the fact that when multiple components are 

interacting with each other, a fault in one component would 

propagate to other components, i.e., degradation in one 

component affects the other and new faults emerge as a result 

of interactions among multiple components. For example, 

interactions with a degraded battery would eventually 

damage the starter. Therefore, individual component-based 

prognostic algorithms are inadequate and a system-level 

prognostic algorithm taking into account the fault 

propagation effects due to coupling/interactions among the 

components is needed.          

On the other hand, the classical survival theory-based 

approaches and reliability-based methods (Jardine & Tsang, 

2005; Murthy, Xie, & Jiang, 2004) use only failure time data 

to estimate time to failure distribution. These methods rely on 

Weibull and other nonlinear regression models to infer time-

to-failure, and these estimates are used to optimize the time-

to-maintain or time-to-repair/replace. These techniques do 

not consider actual condition of a specific component and 

therefore result in large variability in the time-to-failure 

estimates. Evidently, the two disparate methodologies, viz., 

prognostic health management techniques based on dynamic 

time series data and survival theory-based techniques using 

archived data, need to be reconciled and unified under a 

common modeling framework that can work with all of the 

three types of data (see Fig. 1) listed below:  

(a) archived failure data (Type I data): age (or a surrogate 
function such as the mileage or operational time) of the 
vehicle at the time of failure, i.e., age when an error code or 
symptom is observed, or a component is replaced;  

(b) static environmental and status parameter data (Type II 
data); and  

(c) dynamic data (Type III data): time-series data and 
periodic status data. 

In this paper, an integrated approach that seamlessly 

combines all three types of data to infer the component 

degradations and to estimate their remaining useful life 

(RUL) times is presented. The framework employs two key 

techniques: (i) Cox proportional hazards model (Cox PHM) 

(Klabfleisch & Prentice, 2002), and (ii) soft dynamic multiple 

fault diagnosis (soft DMFD) inference algorithm (Singh, 

Kodali, & Pattipati, 2009). The Cox PHM computes the 

survival functions of tests (or error codes), whereas the soft 

DMFD algorithm is used to infer failing components in 

coupled systems. The soft DMFD algorithm determines the 

most likely evolution of component states that best explains 

the observed soft test failure outcomes (i.e., complementary  

 

Figure 1. Categories of Data Available for Prognostics 

test survival probabilities). Here, a soft Viterbi algorithm is 

employed to decode the most likely probabilistic evolution of 

the fault sequence. The prognostic framework is discussed in 

detail in the subsequent sections and the capabilities of the 

framework is illustrated on two datasets: (i) a dataset derived 

from an automotive electronic throttle control (ETC) system 

simulator with failure time data, static parameter data, and 

simulated test outcomes; and (ii) a dataset derived from an 

automotive regenerative braking system (RBS) with failure 

time data, and static as well as dynamic parameter data 

obtained from simulation-based fault injection experiments 

conducted in MATLAB®/Simulink®. The proposed 

framework is modular, leading to a flexible and evolvable 

software architecture for prognostic health management. 

The paper is organized as follows. An overview of the 

existing prognostic methods is discussed in Section 2 and 

Section 3 presents the proposed prognostic framework to 

estimate the component degradations. A brief discussion on 

the soft DMFD inference algorithm is presented in Section 4 

and the experimental results from two automotive 

applications are discussed in Section 5. Finally, section 6 

concludes the paper with a summary. 

2. PREVIOUS WORK 

Prognosis is a salient component of condition-based 

maintenance (CBM) of systems. The Prognostic methods can 

be broadly classified into the following two approaches: 

model-based and data-driven (Chiang, Russel, & Braatz, 

2001). These methods are discussed in detail in the following 

subsections. 

2.1. Model-based methods 

The model-based methods are applicable to systems where 

accurate mathematical models of the system and an adequate 

number of sensors to observe the state of the system are 

available. The model-based methods are also termed the 
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physics-based or physics-of-failure-based models in the 

literature. The model-based methods employ statistical 

estimation techniques to track residuals generated using 

observers (e.g., Kalman filters, reduced-order unknown input 

observers, interacting multiple models, particle filters) and 

parity relations (dynamic consistency checks among 

measured variables) in order to provide an estimate of the 

accumulated damage and assess the remaining life (Luo, 

Namburu, Pattipati, Qiao, Kawamoto, & Chigusa, 2003).  

Several methods have been proposed based on damage 

accumulation models. Ray and Tangirala (1996) presented a 

nonlinear stochastic model of fatigue crack dynamics for 

damage rate computation in mechanical structures. Adams 

(2002) proposed to model damage accumulation in a 

structural dynamic system as first/second order nonlinear 

differential equations. Serrao, Onori, Rizzoni, and 

Guezennec (2009) proposed a damage accumulation model 

for automotive batteries by taking into account the 

deterioration of physical or functional parameters, for 

instance, battery state-of-charge, operating temperature, as 

well as load profile and its impact on the battery aging 

process. Chelidze, Cusumano, and Chatterjee (2002) 

modeled degradation as a “slow-time” process, which is 

coupled with a “fast-time” observable subsystem. Luo et al. 

(2003) developed a prognostic process based on data 

collected from model-based simulations under normal and 

degraded conditions; interacting multiple models were used 

to track the hidden damage. Daigle, Matthew, and Goebel 

(2011), Celaya, Saxena, and Goebel (2012), and Byington, 

Watson, Edwards, and Stoelting (2004) are some examples 

for degradation modeling and physics-based approaches.  

The main advantage of a model-based approach is its ability 

to incorporate a physical understanding of the degradation 

process into the process monitoring scheme. However, it is 

difficult to apply the model-based approach to large-scale 

systems because it requires detailed analytical models in 

order to be effective. 

2.2. Data-driven methods 

The data-driven approaches to prognostics are derived 

directly from routinely monitored system operating data (e.g., 

vibration and acoustic signals, temperature, pressure, 

currents, voltages). The data-driven approaches are based on 

statistical and pattern classification techniques, ranging from 

multivariate statistical methods, linear and quadratic 

discriminants, partial least squares and canonical variate 

analysis, support vector machine and relevance vector 

machine regression, Gaussian processes, graphical models 

(Bayesian networks, hidden Markov models) to black-box 

methods based on neural networks (e.g., multi-layer 

perceptrons, probabilistic neural networks, learning vector 

quantization), self-organizing feature maps, signal analysis 

(filters, auto-regressive models etc), and fuzzy rule-based 

systems. 

Depending on the type of information used, the prognostic 

techniques may also be categorized into three types: (i) time-

to-failure data-based, (ii) stressor-based, and (iii) 

degradation-based. Time-to-failure data-based methods use 

failure time data to estimate the lifetime of a component (e.g., 

Weibull analysis). Stressor-based methods consider the 

operating conditions, such as temperature, humidity, 

vibrations, load, input current and voltage. Degradation-

based methods estimate and track the degradation parameters 

and predict when the total degradation (damage) exceeds a 

predefined threshold of functional failure. These degradation 

parameters are directly measured from the system or via a 

fusion of multiple parameters (Coble, 2010). 

A survey of data-driven prognostics is provided by 

Schwabacher (2005). Si, Wang, Hu, and Zhou (2011) 

presented a detailed review of the statistical data-driven 

approaches. Gorjian, Ma, Mittinty, Yarlagadda, and Sun 

(2009a; 2009b) discussed the existing state-of-the-art 

literature based on covariate-based models, and the 

commonly used degradation models in reliability analysis. 

Wang and Vachtsevanos (1999) employed a dynamic 

wavelet neural network trained on vibration signals of 

defective bearings with varying crack depth and width to 

predict the crack evolution and to estimate their remaining 

useful life times. Gebraeel and Lawley (2008) discussed a 

feedforward neural network based method for predicting the 

remaining useful life of ball bearings. Swanson (2001) 

proposed to use a Kalman filter to track the dynamics of mode 

frequency of vibration signals in a tensioned steel band. 

Garga, Mcclintic, Campbell, Yang, and Lebold (2000) 

presented a signal analysis approach for prognostics of an 

industrial gearbox. The main features used include the root 

mean square value, kurtosis and wavelet magnitude of 

vibration data. Cox and Oakes (1984) developed proportional 

hazard models that merge both failure time data and stress 

data (vibration signals) to estimate the remaining useful life. 

Kumar, Torres, Chan, and Pecht (2008) described a hybrid 

prognostic framework utilizing both data-driven and physics-

of-failure models to estimate the remaining useful life in 

electronic systems.  The monitored parameters included fan 

speed, temperature and percentage of CPU utilization.  

Most of the prognostic approaches in the literature consider 

one or two categories of data delineated in Fig. 1. For 

instance, the reliability-based methods use historical failure 

times (Type I data) to generate life time models. These 

methods can only provide an average estimate for component 

degradations based on historical failure time data. It is 

evident that a prognostic algorithm built solely on the 

historical data cannot provide an accurate estimate for 

component degradations because typically, components 

operating in a harsh environment will fail more quickly than 

those operating in a mild environment. Hence, a prognostic 

algorithm should consider operating parameter data and   



International Journal of Prognostics and Health Management, ISSN 2153-2648, 2016 009 

 
Figure 2. Cox PHM-based Approach to Prognosis of Coupled Systems

condition monitoring data (periodic or time-series data) along 

with the historical data to provide an accurate estimate for 

component degradations so that an appropriate predictive 

maintenance action can be taken on an as-needed basis. Coble 

(2010) compared the performance of prognostic models 

based on reliability data and condition monitoring data and 

demonstrated that reliability data alone does not result in 

satisfactory results for prognostics. Pecht, Das, and 

Ramakrishnan (2002), Lall, Pecht, and Harkim (1997), and 

Vichare, Rodgers, Eveloy and Pecht (2004) are few other 

examples where it is emphasized that methods based on Type 

I data are insufficient for prognostics – these methods tend to 

either underestimate or overestimate the remaining useful 

life. Therefore, it is vital to take into consideration the current 

operating status of the components (i.e., Type III data) as well 

as the historical data (Type I and II data) to estimate 

component degradations with good degree of accuracy. 

In the literature, there are many methods developed 

exclusively for prognostics of a single component. The 

methods usually employ feature data collected over a period 

of time until the component fails to develop a prognostic 

model. More significantly, they are component-centric and 

they primarily focus on predicting the remaining useful life 

of one particular component in isolation. The approach 

presented in this paper overcomes these two fundamental 

limitations by developing a prognostic framework that is 

capable of tracking degradations of multiple interacting 

components in a system. Also, the framework has the ability 

to incorporate data generated via a model-based approach, or 

a sensor monitoring approach or both. 

The novel contributions of this paper are: (i) a unified 

framework combining failure time data, static parameter data 

and dynamic parameter data, (ii) Cox proportional hazards 

model to estimate the survival functions of error codes (tests) 

using failure time data and static parameter data, (iii) 

estimating multiple component degradations that are coupled 

via observations (test outcomes) using a novel inference 

algorithm, and (iv) simulation results on degradation 

estimation of multiple components in electronic throttle 

control (ETC) subsystem simulator, and regenerative braking 

system in  hybrid electric vehicles. Since coupled systems are 

common in aircraft, automobiles, power systems, nuclear 

energy systems, and indeed any networked embedded cyber-

physical system, the proposed prognostic framework is 

readily applicable to these systems. 

3. PROGNOSTIC FRAMEWORK 

As shown in Fig. 2, the proposed prognostic framework 

consists of two phases: an offline training and validation 

(“model learning”) phase, and an online testing 

(“deployment”) phase. 

3.1. Training and Validation Phases (offline module)  

The training phase consists of two steps (see Fig. 2). In Step 

1, Type I and Type II data are used to compute static data-

modulated survival functions for components, error codes, 

symptoms and any observable test outcomes via Cox 

proportional hazards model. Here, mutual information 

algorithm (Duda, Hart, & Stork (2000); Bishop (1997)) is 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

5 

employed to select minimum number of Type II static 

parameter data for the Cox proportional hazards model.  

The Cox PHM assumes a hazard function of the form (Jardine 

& Tsang, 2005; Murthy et al., 2004): 
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where i denotes a component, diagnostic error code, 

symptom or any failure event of interest, z is a vector of 

covariates (Type II static data such as freeze frame data), a is 

a vector of regression parameters, and ϕ0(t) is the failure rate 

without any covariates (i.e., z = 0), i.e., it is the baseline 

hazard function. The baseline hazard function can be from 

any of the standard failure time distributions (e.g., 

exponential, Weibull, normal, log normal, Gamma, etc.) or it 

can be nonparametric.  The baseline hazard function and the 

regression parameters are estimated via the maximum 

likelihood method (Klein, and Moeschberger, 2003). 

The survival functions of components, Ri(t,z) and the 

associated failure time density functions, fi(t,z) can be 
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In Step 2, the survival functions corresponding to an event of 

interest i are grouped via clustering techniques, such as k-

means, learning vector quantization (LVQ), Gaussian 

mixture models (GMM), or hierarchical clustering (Duda et 

al, 2000; Bishop, 1997). These clusters represent different 

usage profiles of the components, depending on the usage 

conditions, environmental factors, etc.  

Also, the probabilistic dependencies between the error codes 

(and other observables i.e., symptoms), and the component 

failure modes are evaluated using maximum likelihood 

estimation procedure. This dependency matrix captures the 

relationships between failure modes and error codes (or 

symptoms) and thus can be either binary (hard (0 or 1)) or 

probabilistic (soft).  The probabilistic dependencies are in the 

form of a matrix of likelihoods of observing an error code or 

other observables given a failure mode and is given by, 

   
( , )

ˆˆ ( | )
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where oj is the error code j, nij is the number of times oj is 

associated with failure mode i (FMi) and ni is the total number 

of observed cases with FMi.  In order to avoid the problem 

with ML estimates, viz., the possibility of having a zero 

probability because of an unseen combination of (oj, FMi) in 

the training data (the so-called “black swan” problem), 

Laplacian smoothing (Metzler, Lavrenko, & Croft, 2004) is 

used as follows: 
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( ) | |
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
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where |FM| is the number of system failure modes.  

Another way to generate the fault-test dependency matrix is 

via a model-based approach. The model-based methods 

employ residuals as features, where the residuals are the 

deviations of actual sensor measurements from the expected 

ones. The residuals can be generated, for instance, based on 

parameter estimation, observers, parity relations, or via 

simulation-based fault injection experiments (Ciccarella, 

Dalla Mora, & Germani, 1993; Bar-Shalom, Li, & 

Kirubarajan, 2001; Gertler, 1997). The residuals thus 

generated are used to devise tests and to extract fault-test 

relationships. Statistical hypothesis testing techniques (e.g., 

change detection techniques (Basseville & Beneveniste 

1986), such as the generalized likelihood ratio test, 

cumulative sum test, sequential probability ratio test, etc.) can 

be used to define thresholds to detect the presence of faults. 

The tests that can detect a fault are represented as “1” in the 

corresponding row of the D-matrix; thus, each row 

corresponds to a “signature” for the fault associated with the 

row. Refer to (Singh, Holland, & Bandyopadhyay, 2010), and 

(Kodali, Ponizovskaya-Devine, Robinson, Luchinsky, 

Bajwa, Khasin, Perotti, & Brown, 2015) for various methods 

of generating dependency matrices.  

3.2. Testing (Deployment) Phase (online module)  

In the testing phase, when new feature data y(t) (Type III 

dynamic data) is obtained via online data acquisition systems, 

the survival probabilities of error codes (see Eq. (5)) are 

estimated using the Cox PHM model as well as the baseline 

hazard functions obtained from the offline module (from 

Type I and Type II data).  
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Here j refers to error codes (tests, symptoms). These soft error 

code outcomes are used to infer the failing components via 

the soft DMFD based on the D-matrix. The soft DMFD 

determines the evolution of fault states (complementary 

survival functions) given the soft error code outcomes at the 

observed time t. A brief explanation of the soft DMFD 

algorithm is presented in Section 4. 
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Once the component survival functions are obtained, the first 

and second order moments of time-to-failure T of each 

component can be computed from the survival functions 

Ri(t,z)  via Eqs. (6) and (7), respectively (Ma & Krings, 2008). 

0
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Alternately, the remaining useful life (RUL) of a component 

at any time t can be computed from the survival function by 

defining a threshold on the survival probability. 

Mathematically, it is written as, 

 
0

( ) ( , )arg min
i i

RUL t R t z


              (8) 

where ε0 denotes the threshold for a functional failure. 

4. SOFT DYNAMIC MULTIPLE FAULT DIAGNOSIS 

The soft dynamic multiple fault diagnosis (DMFD) is a 

factorial HMM-based inference algorithm to determine the 

evolution of component fault states based on the observed 

soft evidence on the test states. Formally, the soft DMFD 

problem is represented as { , , , , , , }SDMFD S O D P A   where 

1{ }mS s s  is a finite set of components (failure sources) 

associated with the system. The state of component si is 

denoted by xi, where ( ) 1ix k   if si is faulty; and ( ) 0ix k 

otherwise. At epoch k, the status of all components at epoch 

k is denoted by
1 2

( ) [ ( ) ( ) ( )].
m

x k x k x k x k    Similarly, 

1 2
{ }

n
       represent a finite set of available tests where 

γj(k)=1 implies that the test γj is in a failed state at time epoch 

k; and γj(k)=0 otherwise. Here, {0 1, , }    k K is the set 

of discretized observation epochs. The observations 

1 2{ }   nO o o o  constitute the soft evidence on the test 

states. For each component state, e.g., for component si at 

epoch k, A (Pai (k), Pvi (k)) denotes the set of fault 

appearance probability and fault disappearance probability 

defined as Pr( ( ) 1| ( 1) 0)  i ix k x k and 

Pr( ( ) 0 | ( 1) 1),i ix k x k    respectively. Also, P (Pdij , 

Pfij) represent probability of detection and probability of 

false alarm associated with test outcome j and fault class i.  

The inference problem can be formulated as one of finding 

the maximum a posteriori (MAP) configuration: 

ˆ arg max Pr( (0))
K

K K K

X

X X O x                   (9) 

where
1[ ( )] K K

kX x k , 
1[ ( )] ,K K

kO o k K=total number of 

epochs and 1 2( ) [ ( ), ( ),.., ( )] no k o k o k o k . 

The solution is a primal-dual optimization framework that 

employs Lagrangian relaxation method for decomposing the 

original soft DMFD problem into parallel decoupled 

subproblems, one for each fault.  Each subproblem 

corresponds to finding the optimal fault-state sequence, 

which is solved using a soft Viterbi decoding algorithm. The 

subproblems are coordinated by updating the Lagrange 

multipliers using a subgradient method.  

The inputs to the algorithm are test outcomes o(k) at each 

sampling time k, their reliabilities, and a fault diagnostic 

matrix (D-matrix) that captures the relationships between 

failure sources and tests (see Eq. 4). The test outcomes could 

be statistical test decisions derived from sensor data. These 

test outcomes, together with the fault-dependency matrix, are 

processed through a primal-dual optimization method that 

exploits temporal correlations of test outcomes over time for 

inference. A detailed description of soft DMFD algorithms 

can be found in our previous work (Sankavaram, Kodali, 

Pattipati, Wang, Azam, & Singh (2011)). 

5. EXPERIMENTAL RESULTS 

The prognostic framework is applied to datasets derived from 

two automotive systems, namely, electronic throttle control 

(ETC) subsystem simulator, and regenerative braking system 

(RBS). The experimental results are briefly discussed in the 

following subsections. 

5.1. Application to Electronic Throttle Control System 

In the first application, the prognostic approach is applied to 

a dataset derived from an automotive ETC subsystem 

simulator. The function of an ETC subsystem is to determine 

the necessary throttle opening using sensors (such as the 

accelerator pedal position, the engine RPM, and the vehicle 

speed) and drive the actuator to obtain the required throttle 

position via a closed-loop control algorithm in the engine 

control module (ECM). The ECM also monitors the health of 

the engine subsystem by processing parameter identifier data 

(PIDs) collected from various sensors and generates 

diagnostic trouble codes (DTCs or error codes) when a failure 

occurs in any component. Refer to Appendix for a detailed 

description of DTCs and repair codes (RCs) in an ETC 

subsystem. 

The dataset derived from the ETC simulator consisted of 11 

error codes (DTCs), 479 status parameters (PIDs) collected 

at the time of DTC firing, accelerated age of the vehicle and 

the repair/replacement actions (i.e., repair codes (RCs)) 

performed on the system. A total of five different repair codes 

(replaceable components) are present in our training data. 

Here, the age of the vehicle at the time of repair/replacement 

action (i.e., the failure time of the replaced component) is the 

Type I data and the set of 479 PIDs collected at the time of 

DTC occurrence forms the Type II data.  

On the available Type II data, information gain (mutual 

information) algorithm is employed to rank order the PIDs 

and optimal number of PIDs are then selected for the analysis 

(Duda et al., 2000; Bishop, 1997). The idea of IG algorithm 

is to evaluate the amount of information contributed by each 
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feature to a particular class; and the subset of features with 

high information content is used for analysis. In the current 

application, IG algorithm is employed on 479 status 

parameters and the top 16 PIDs are selected based on the 

failure probability estimation accuracy on the test data. Fig. 

3 shows the value of mutual information for each of the status 

parameters and the top features are circled in red. The total 

data available for Type I and Type II data is of the dimension 

β x 1 and β x 16 respectively where β is the total number of 

observed failure cases. 

The fault-test dependency matrix (D-Matrix) between DTCs 

and RCs are learned via maximum likelihood estimation of 

probabilities (see (3) and (4)), which is later used in the 

inference algorithm for inferring the failing components. 

Table 1 shows the diagnostic matrix with 5 RCs and 11 

DTCs. The diagnostic matrix represents fault signatures for 

component faults, these components are coupled via 

observations. For instance, when any of the components 

RC2, RC4 and RC5 are faulty, these faults will generate a set 

of observations that will fail the test P0121 (i.e., set to 1 – 

failed test outcome). It is evident that RC1 and RC3 are 

ambiguous, and hence are grouped into a single repair code 

throughout our analysis (RC1/RC3). Also, the fault 

signatures of components RC1/RC3, RC2, and RC5 are 

hidden within the fault signature of RC4 and hence are 

termed as hidden faults.  

As mentioned in Section 3, the survival functions for 
components and tests are initially learned using the Cox PHM 
model. Then, a k-means clustering technique is employed to 
group the survival functions of RCs as well as DTCs. Here, 
there appear to be 3 clusters of survival functions. Fig 4 
shows the original DTC survival functions. The different 
colors represent different clusters. The averaged survival 
function clusters for DTC P1682 and RC2 are shown in Figs. 
5 and 6, respectively. When the number of clusters were 
increased from 3 to 5 and 6, there was no significant 
improvement in terms of failure probability estimation. 
Hence, for this work, the number of clusters for the DTC and 
the RC was selected to be 3.  

In order to validate the prognostic framework, the detection 

and false alarm probabilities of tests are initially learned from 

the averaged DTC survival function and the averaged RC 

survival function by minimizing the objective function 

derived from a noisy OR model (Singh et al., 2009b) given in 

Eq. (10). 
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A nonlinear least squares estimation technique is 
implemented to solve the problem in Eq. (10) using the 
MATLAB’s fmincon function from the optimization toolbox 
to determine the optimal parameters {pdij, pfij}. Once the 
parameters are learned, continuous test outcomes are 
generated from each of the RC survival function clusters 
using Eq. (11). These soft test outcomes (equivalent to the 
test outcomes obtained from the Type III data in the Online 
phase) are used as input to the soft dynamic multiple fault  

 

Figure 3. Plot of Mutual Information for 479 Status 
Parameters 

 
P01

01 

P01

02 

P01

21 

P06

01 

P15

16 

P16

82 

P21

01 

P21

22 

P21

27 

P21

38 

P21

76 

RC1 0 0 0 0 0 0 0 1 1 1 0 

RC2 0 0 1 0 1 0 1 0 0 0 1 

RC3 0 0 0 0 0 0 0 1 1 1 0 

RC4 
1 1 1 1 1 1 1 1 1 1 1 

RC5 0 0 1 0 0 0 0 0 0 0 0 

Table 1. Diagnostic (D-) Matrix for ETC System 
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Figure 4. Original Survival Functions for “DTC P1682- 

Ignition 1 Switch Circuit 2” 
 

 
Figure 5. Survival Function Clusters 

for “DTC P1682- Ignition 1 Switch Circuit 2” 

 
Figure 6. Survival Function Clusters for Repair Code 

“Throttle Body Assembly Replacement” (RC2) 

diagnosis inference algorithm to infer the component 

degradations at any time epoch k. Under a single fault 

assumption, Figures 7, 8 and 9 show the estimated component 

failure probability for repair codes RC2 (cluster 2), RC5 

(Cluster 2), and RC4 (Cluster 1), respectively. In the first two 

cases i.e., Figs. 7 and 8, the R- square fit is 94%, where as in 

Fig. 9 the R-square fit is only 78%. Although the R-square fit 

is low (in Fig. 9), at around 400 in the (accelerated) age axis, 

the estimated failure probability is higher than the actual 

component fault probability. This suggests that the algorithm 

can estimate/predict the failing component before the actual 

component reaches the failing threshold – which is expected 

of an effective prognostic algorithm. In addition to RC4 in 

Fig 9, the failure probability of RC2 is also significant 

compared to other repair codes, this is because RC2 is a 

hidden fault of RC4 and the algorithm inferred RC2 as failing 

component with failure probability of <0.5. Fig. 10 shows the 

mean square error (MSE) in the estimation of failure 

probabilities. 

 
Figure 7. Estimated Degradation Curve for “Throttle  

Body Assembly Replacement” (RC2 Cluster 2) 

 
Figure 8. Estimated Degradation Curve for “ Throttle 

Position Sensor Replacement” (RC5 Cluster 2) 
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Figure 9. Estimated Degradation Curve for “ Powertrain 

Control Module Replacement” (RC4 Cluster 1) 
 

Figure 10. Plot of MSE Error for Repair Code  

Failure Probability Estimation 

To demonstrate the validity of the proposed prognostic 

framework, the component survival functions prior to 

clustering are used for further validation. Fig. 11 shows the 

component degradation curves prior to clustering. Using the 

learned parameters {pdij, pfij}, the continuous test outcomes 

are generated for each of the RC survival functions using Eq. 

(11). These soft test outcomes are used as input to the 

inference algorithm to infer the component degradations. The 

component degradations are estimated with an R-square fit of 

about 90% except for RC4 (see Fig 12). The performance of 

the soft-DMFD algorithm is also compared with some of the 

state of the art data-driven prognostic techniques, including, 

support vector machine regression (SVMR), relevance vector 

machine (RVM), and Gaussian process (GP) regression 

(Goebel, Saha, & Saxena, 2008). To train these regression 

techniques, 5x2 cross validation is employed, i.e., 50% of the 

data for each of the repair codes is randomly chosen for 

training the prognostic algorithm and is validated using the 

remaining 50% of the data and vice-versa. The process is 

repeated five times and the average performance in terms of 

R-Square and MSE are computed. Figures 12 and 13 shows 

the performance statistics of all the prognostic techniques in 

comparison. The Soft-DMFD inference technique performed 

better than other inference techniques. The average R-square 

with RVM was 85% whereas the other techniques, SVMR 

and GP had R-square fit of about 78% and 75%, respectively. 

The better performance of the soft-DMFD algorithm over 

others could be attributed to the Bayesian inference 

framework maximizing the MAP objective function and the 

soft-Viterbi algorithm for tracking the evolution of coupled 

component fault states that best explains the observed test 

outcomes over time. Similar performance results were 

observed in terms of MSE performance (Fig 13).  

 

 
Figure 11. Component Degradation Curves 

 

 
Figure 12. Plot of R-Square Statistics for Repair Code  

Failure Probability Estimation 
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Figure 13. Plot of MSE Error for Repair Code  

Failure Probability Estimation 

5.2. Application to Regenerative Braking System 

In this application, the prognostic framework described in 

section 3 is applied to estimate the sensor and parameter 

degradations in a regenerative braking system (RBS). The 

RBS model with a series-parallel drivetrain configuration  

(Ehsani, Gao, & Emadi, 2009) is built using the PSAT 

software.  It consists of a driver model, a powertrain 

controller, component controllers, and the powertrain model 

(see Fig 14).  

The driver model simulates the drive cycles (e.g., Urban 

Dynamometer Driving Schedule (UDDS) [EPA]), by setting 

accelerator and brake pedal positions to achieve the desired 

vehicle speed. The output from this block is the driver’s 

torque demand at the wheels; this acts as the input to the 

powertrain controller (PTC). The powertrain controller is the 

 

Figure 14. Functional Flow Diagram of Regenerative 

Braking System 

supervisory controller making the high-level decisions that 

affect the general state of the powertrain (e.g., engine on/off), 

the operating mode of the vehicle (e.g., propelling, 

regenerative braking etc.), and accordingly deliver the torque 

requests to the component controller. Subsequently, the 

component controller converts these torque requests into 

component commands. These commands are, in turn, treated 

as the actuator commands by the individual components in 

the powertrain model to achieve the requested torque and, 

consequently, report the system status (e.g., engine speed, 

battery state of charge) to the supervisory controller. The 

powertrain model comprises of all the components that 

mimic the behavior of hardware components, such as the 

engine, the battery, and the motor. Fig. 15 shows the 

individual component blocks in the powertrain model (with a 

series-parallel drivetrain configuration). The detailed model 

description and mathematical details are presented in 

(Sankavaram, Pattipati, Pattipati, Zhang, & Howell, 2014). 

There are 25 signals that are being monitored in the RBS 

system including (a) sensor signals, such as temperature, 

speed, and current measurements from the hardware 

components in the powertrain model; (b) motor, wheel, and 

engine torque demands sent from the powertrain controller to 

the component controllers; and (c) component commands 

sent from the individual ECU’s to the hardware components 

in the powertrain model. The list of monitored signals is 

provided in Table 2. 

To demonstrate the framework, two faults are considered – 

motor speed sensor fault and wheel inertia fault.  These faults 

are injected into the model as additive biases on the measured 

signals. For instance, a 10% deviation in the motor speed is 

used to model the motor speed sensor fault. Similarly, the 

parametric fault i.e., wheel inertia fault is simulated as 10% 

deviation from its nominal value. Mathematically, the fault 

scenarios are simulated using the following equation,  

                          (1 ).faulty nominalX X                      (12) 

In Eq. (12), Xfaulty is the parameter value under faulty 

condition, Xnominal is the nominal parameter value and Δ is the 

 

Monitored Signals: Signal Description 

S1: Battery State of Charge;   S2: Motor2 Torque Demand;   S3: Wheel 

Torque Demand;  S4: Motor1 Torque Demand;   S5: Engine Torque 

Demand;  S6: Battery Temperature;  S7: Battery Current;  S8: Driver 

Torque Demand;  S9: Motor1 Command;   S10: Gearbox Speed;  S11: 

Wheel Input Speed;  S12: Wheel Output Speed;   S13: Wheel Torque;   

S14: Vehicle Linear Speed;   S15: Motor1 Speed;   S16: Motor1 Current;   

S17: Clutch Input Speed;   S18: Engine Command;  S19: Motor2 

Command;   S20: Motor2 Speed;   S21: Motor2 Current;   S22: Engine 

Speed;   S23: Clutch Output Speed;   S24: Mechanical Accessory 

Torque;  S25: Wheel Command 

Table 2. List of monitored signals 
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Figure 15. Vehicle Powertrain Model with Series-Parallel Configuration 

fractional change in the parameter value (fault severity). The 

simulation data (monitored signals) thus obtained is used in 

the prognostic framework for estimating the component 

degradations.  

The component degradations (or) fault evolution is assumed 

to be of sigmoid (S-) shape as shown in Fig. 16 with 

degradation progressing gradually from low severity level 

(2%) to high severity level (10%) and eventually leading to a 

complete failure. Fig. 16 illustrates the fault progression from 

nominal to failure. Here, 10% severity level is treated as the 

component failure, i.e., the component has failed and is not 

considered to be operational at this point.  

As a first step, the simulated failure time data (Type I data) 

for sensor and parametric faults is considered as shown in 

Table 3. Since the component failure is assumed to occur at 

10% severity level, the corresponding feature data i.e., 

monitored variables is treated as the static parameter data 

(features at the time of failure) – Type II data. This feature 

data corresponding to 10% fault severity level is obtained via 

simulation-based fault injection experiments. During the 

offline training phase, the failure time data and static 

parameter data are used to learn the component survival 

functions using Cox PHM model (see (1)). Figures 17 and 18 

show the baseline survival function and the complementary 

survival functions (component degradation curves) for motor 

speed sensor (F2) and wheel inertia (F3) faults. 

 

 

Figure 16. An Illustration of Failure Progression from 

Nominal to Faulty 

 

Failure Times 

(Motor Speed Sensor)  

Failure Times 

(Wheel Inertia)  

200  250  

400  450  

600  650  

800  850  

1000  1050  

Table 3. Simulated Failure Time Data for Components
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Figure 17. Baseline Survival Function of Components 

 

Figure 18. Degradation Curves (Complementary Survival 

Functions) of Motor Speed Sensor and Wheel Inertia Faults 

Next, the fault-test dependency matrix (or) a diagnostic 

matrix (D-Matrix) is prepared for the faults in the training 

phase. Table 4 shows a partial view of the D-Matrix. To 

generate this matrix of relationships between faults and tests, 

a simple mean threshold test is employed on the residual 

signals as a detection technique. A model is first used to 

generate nominal and faulty data, and the residual signals are 

computed as the deviations of faulty measurements from the 

nominal ones. When there is no fault, the mean of the residual 

signals is expected to be close to zero, whereas in the 

 

 

 T1  T2  T3  T4  T5  T6  T7  … T21  T22  T23  T24  T25  

F1  0 0 0 0 0 0 0 … 0 0 0 0 0 

:        …      

F5  0 0 0 0 1 1 1 … 1 1 1 0 0 

:        …      

F7 0 1 0 0 0 1 0 … 0 1 0 0 0 

:        …      

Table 4. Partial View of Diagnostic Matrix  
(F1: Nominal, F5: Motor Speed Sensor Fault,  

F7: Wheel Inertia Fault, T1-T25: Tests for 25 monitored signals) 

Failure Times 

(Test ‘1’)  

Failure Times 

(Test ‘k’)  

180  260  

380  420  

580  620  

780  820  

980  1030  

Table 5. Sample Failure Time Data for Tests 

 

Figure 19. Baseline Survival Function of Tests 

presence of a fault, the residual signal does not have a zero- 

mean. Hence, a threshold test on the mean of the residual  

signal indicates whether the system is deviating from its 

nominal state. These tests are assumed to fail at least 10 days 

prior to the component failure as shown in Table 5.  Similar 

to the component survival functions, the baseline survival 

function for tests is also obtained via Cox Model as in Fig 19 

and a sample of test survival functions is provided in Fig 20. 
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Figure 21. Steps involved in Testing Phase (Online Phase)

 

Figure 20. Sample Survival Function of Tests 

During the testing phase, when the dynamic feature data (25 

monitored signals) is collected periodically, the learned 

baseline survival functions and the feature data is used to 

compute test probabilities (see Eq. 2). These test probabilities 

are fed to soft-DMFD to infer the component degradations 

(complementary survival functions or failure probabilities). 

Refer to Fig. 21 for the steps involved in the testing phase. 

 

Figure 22. Degradation Curve Estimation for Motor Speed 

Sensor Fault  

Figures 22 and 23 show the estimated component failure 

probability for motor speed sensor fault and wheel inertia 

faults, respectively. The estimated component degradations 

are in good agreement with the truth with an R-square fit of 

about 96%. An estimate of RUL at any time t can be obtained 

by defining a threshold on the failure probability. 
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Figure 23. Degradation Curve Estimation for Wheel Inertia 

Fault 

 

Figure 24. Degradation Curves of Motor Speed Sensor and 

Wheel Inertia Faults 

To establish the validity of the proposed approach, a 

Gaussian measurement noise with random seed is added to 

the monitored signals to generate additional patterns for the 

two faults considered in this application. The variance of the 

added noise is 0.6% of the squares of the magnitude of the 

signals; this corresponds to a signal-to-noise (SNR) ratio of 

22.2 dB. A total of 10 patterns are generated for each fault, 

Fig. 24 shows the evolution of component degradations for 

motor speed sensor and wheel inertia faults. Here, the 

evolution of the faults is assumed to be of sigmoid shape 

(monotonically increasing), other forms of fault evolution 

will be studied as part of our future research. The dynamic 

feature data, i.e., feature data corresponding to 2%, 4%, …, 

10% fault severity levels are used along with the learned 

baseline survival functions to generate test probabilities (see 

Eq. 2). When these test probabilities are fed to the soft-

DMFD algorithm, the component degradations are estimated 

with an R-square fit of about 94%. Table 6 shows the average 

R-square and MSE in estimating the failure probabilities of 

motor speed sensor and wheel inertia faults. Table 6 also 

shows the comparison of soft-DMFD performance with other 

data-driven prognostic techniques. The soft-DMFD inference 

technique performed better than other inference techniques 

with 94% R-square fit. RVM was the next best technique with 

an average R-square value of 83% whereas the other 

techniques SVMR and GP had an R-square fit of about 75% 

and 68%, respectively. Similar performance results were 

observed in terms of MSE performance.  

Fault Type 
Inference 

Technique 
R-square MSE 

Motor Speed 

Sensor Fault 

Soft DMFD 93.64 0.0071 

SVMR 78.84 0.0589 

RVM 84.18 0.0462 

GP 72.27 0.1109 

Wheel Inertia 

Fault 

Soft DMFD 94.42 0.0059 

SVMR 74.66 0.0633 

RVM 83.33 0.0587 

GP 68.49 0.1812 

Table 6. Performance Results  

6. CONCLUSIONS 

The paper presented a novel approach for fault prognosis 

problem in coupled systems by combining three types of data, 

i.e., failure time data, static environmental and status 

parameter data, and dynamic data. The framework employed 

the Cox PHM to infer the survival functions of components 

and subsequently estimated the component degradations via 

the soft dynamic multiple fault diagnosis algorithm.  The 

framework is applied to two different automotive 

applications to infer the component degradations 

(complementary survival functions) and the inference 

algorithm estimated the component failure probabilities with 

a good R-square fit.  

The future work should include the application of this 

approach to continuous parameter identifier data and account 

for the uncertainty in RUL estimation. Another extension of 

the Cox-PHM framework for prognosis is by modeling 

coupled survival dynamics as monotone positive linear 

systems or monotone Markov processes (Zaslavski, 1984; 

Zaslavski, 1987). In monotone positive linear systems, the 

state matrix is a Metzler matrix (i.e., has nonnegative off-

diagonal elements) to ensure that the state variables (in our 

case, survival functions) are nonnegative. In monotone 

Markov processes, the state generator matrix is upper 

triangular. Investigation of these concepts in the context of 

prognosis to estimate survival functions is a novel extension 

of the proposed prognosis framework. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

15 

APPENDIX  

APPENDIX A 
Diagnostic Trouble Code Description 

Diagnostic 

Trouble 

Code 

Diagnostic Trouble Code Description 

P0101 Mass Air Flow Sensor Performance 

P0102 Mass Air Flow Sensor Circuit Low Frequency 

P0121 Throttle Position  Sensor Performance 

P0601 Control Module Read Only Memory 

P1516 
Throttle Actuator Control Module Actuator 

Position Performance 

P1682 Ignition 1 Switch Circuit 2 

P2101 
Control Module Throttle Actuator Position 
Performance 

P2122 
Accelerator Pedal Position Sensor 1 Circuit Low 
Voltage 

P2127 
Accelerator Pedal Position Sensor 2 Circuit Low 

Voltage 

P2138 Accelerator Pedal Position Sensor 1-2 Correlation 

P2176 Minimum Throttle Position Not Learned 

APPENDIX B 

Repair Code Description 

Repair 

Code 
Repair Code Description 

RC1 Accelerator Pedal Replacement 

RC2 Throttle Body Assembly Replacement 

RC3 
Accelerator Pedal Position Sensor 

Replacement 

RC4 Powertrain Control Module Replacement 

RC5 Throttle Position Sensor Replacement 
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