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ABSTRACT 

Prognostic is an engineering technique used to predict the 

future health state or behavior of an equipment or system. In 

this work, a data-driven hybrid approach for prognostic is 

presented. The approach based on Echo State Network (ESN) 

and Artificial Bee Colony (ABC) algorithm is used to predict 

machine’s Remaining Useful Life (RUL). ESN is a new 

paradigm that establishes a large space dynamic reservoir to 

replace the hidden layer of Recurrent Neural Network 

(RNN). Through the application of ESN is possible to 

overcome the shortcomings of complicated computing and 

difficulties in determining the network topology of traditional 

RNN. This approach describes the ABC algorithm as a tool 

to set the ESN with optimal parameters. Historical data 

collected from sensors are used to train and test the proposed 

hybrid approach in order to estimate the RUL. To evaluate 

the proposed approach, a case study was carried out using 

turbofan engine signals show that the proposed method can 

achieve a good collected from physical sensors (temperature, 

pressure, speed, fuel flow, etc.). The experimental results 

using the engine data from NASA Ames Prognostics Data 

Repository RUL estimation precision. The performance of 

this model was compared using prognostic metrics with the 

approaches that use the same dataset. Therefore, the ESN-

ABC approach is very promising in the field of prognostics 

of the RUL. 

1. INTRODUCTION 

Unexpected machine failures often result in production 

downtime, delayed delivery schedule, poor customer 

satisfaction, economic losses and safety issues. Condition 

monitoring, diagnostic and prognostic utilizes sensors signals 

to assess the machine’s health status and make inferences 

about the Remaining Useful Life (RUL) (Heng, Zhang, Tan, 

and Mathew, 2009).  The RUL at time instant tp (time of 

prognostic) is calculated as a difference between the End of 

Life (EoL) at time instant tp, and the actual time tp (Shankar, 

2015). RUL prognostic is a key task of a Prognostic and 

Health Management (PHM) system (Dong & He, 2007; 

Pecht, 2008; Pecht & Jaai, 2010; Gasperin, Juricic, Baskoski, 

and Jozef, 2011) and Condition Based Maintenance (CBM) 

(Wang & Zhang, 2008).  

Generally, three main prognostic approaches can be 

distinguished (Vachtsevanos, 2006): model-based (Zhang, 

Zhao, Liu, Zhang, Jia, and Feng, 2011, Compare & Zio, 2014, 

Daroogheh, Meskin, and Khorasani, 2014, Weiming, Bing, 

Min, and Houjun, 2014), data-driven (Hu, Youn, and Wang, 

2011, Ferreiro, Arnaiz, Sierra, and Irigoien, 2012, Li, Wang, 

and Ismail, 2013, Pla, Lopez, Gay, and Pous, 2013) and 

hybrid method (combination of model-based and data-

driven) (Kumar, Torres, Chan, and Pecht, 2008, Liao & 

Kottig, 2014). The main advantage of model-based approach 

is the ability to incorporate physical understanding of the 

system; on the other hand, the drawback is the difficult to find 

mathematical representation of complex systems. The 

strength of data-driven techniques is their ability to transform 

high-dimensional data into lower dimensional information 

for prognostic; the main disadvantage is the high 

computational cost. The data-driven approach is 

recommendable to systems with large historical data, and 

where is not comprehensive their physical model and failure 

mechanisms.  

Prognostic approaches for CMAPSS datasets was classified 

in the three categories by Ramasso and Saxena (2014), the 

first category (mapping between set of inputs and RUL) was 

applied in this paper. For this category is showed the 

following methods: RNN, EKF, MLP, RBF, KF, ANN, ESN, 

Fuzzy Rules, GA, used by different authors.  The list of 

methods show that Artificial Neural Network (ANN) is one 

of the most used technique on data-driven approach that aims 

to estimate the machine’s RUL processing information of 

machine’s operational condition. From different kind of 

ANN, the Recurrent Neural Networks (RNN) is a powerful 

tool that integrates large dynamic memory and high adaptable 

computational capabilities. However, their training process is 
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inherently difficult (Jaeger, 2002b, Lukosevicius & Jaeger, 

2009). In the last years, Reservoir Computing (RC) concept 

was introduced to make RNN training very simple, producing 

other paradigms like Echo States Network (ESN) proposed 

by Jaeger (2001). An ESN has three layers: input, reservoir 

and readout (Jaeger, 2001), the dynamic reservoir neurons are 

randomly connected and their weights fixed before the 

training process. Then, it needs only one-step linear training 

for readouts. ESN arises as a solution for two characteristics 

often adverse: simplicity of the mathematical model and 

ability to approximate nonlinear dynamic behavior (Boccato, 

2013). 

The dynamic reservoir is the main element in the ESN, adjust 

their parameters with optimum values is a challenge. 

Evolutionary methods for pre–train the reservoir is a natural 

strategy in the search the best parameters and weight values 

(Lukosevicius & Jaeger, 2009). Several evolutionary 

approaches to ESN reservoir optimization have been 

presented (Bush & Tsendjav, 2005, Ishii, van der Zant, 

Becanovic, and Ploger, 2004). 

Comparing with other techniques, Karaboga and Akay 

(2009) contrasted the ABC algorithm performance, with the 

performance of techniques like Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO) and Differential 

Evolution Algorithm (DEA). The results shown that the ABC 

performance is better or similar to the other algorithms. The 

results obtained by Turanoglu, Ozceylan, and Kiran (2011), 

Butani, Gajjar, and Thakker (2011) and Hossain and El-

Shafie (2014), where was compared the efficiency of the 

ABC and PSO algorithm, shown that the ABC is more 

efficient for optimal solution searching. In this work is 

presented an approach for ESN design using the ABC 

algorithm. The strategy adopted in this work, first search the 

ESN best parameters, after that, the reservoir weights is 

generated. The experiments were implemented in Matlab. 

This paper is organized as follows. Section 2 outlines some 

basic concepts about ESN used in this paper for RUL 

estimation; Section 3 reports the ABC algorithm that is used 

to adjust optimized ESN parameters. Section 4 describes the 

ESN-ABC approach as a prognostic tool proposed in this 

work; Section 5 presents the experimental case study of 

turbofan engine used for validating the prognostic approach; 

Section 6 presents the results and discusses. 

2. ECHO STATE NETWORK 

In the last years, new training approach of RNN attracted 

attention from researchers. These methods were proposed 

independently by the name of Liquid State Machines (LSM) 

(Maass, Natschlager, and Markram, 2002, Natschlager, 

Maass, and Markram, 2002) and Echo State Networks (ESN) 

(Jaeger, 2001, Jaeger, 2002b, Jaeger & Haas, 2004). The 

LSM and ESN with the most recent method called 

Backpropagation Decorrelation (BPDC) (Steil, 2004), gave 

rise to the term Reservoir Computing (RC) (Verstraeten, 

Schrauwen, D’Haene, and Strooband, 2007, Schrauwen, 

Verstraeten, and Campenhout, 2007). 

A pioneer RC method is the ESN, proposed by Jaeger (2001) 

as a RNN topology. This network includes interconnected 

recurrent neurons called dynamic reservoir in their hidden 

layer. The main characteristic of ESN is that only the readout 

needs to be trained while the reservoir and input weights are 

remained untrained. This characteristic reduces the 

complexity of training RNN to a simple linear regression.  

2.1. Basic Structure of an ESN 

The generic structure of ESN has three layers: input, hidden 

(reservoir) and output (readout) as shown in the Figure 1. The 

input layer receives information from the environment. The 

Dynamic Reservoir (DR), with recurrence inside, consists of 

a large number of neurons, usually about 20 ~ 500 neurons 

(Song, Zhao, Feng, An, and Song, 2011). The weight values 

in the DR are generated randomly. ESN exploits the dynamic 

of large DR to extract interesting properties of input sequence 

(Jaeger, 2001). 

As shown in the Figure 1 the ESN has K input, L output and 

N hidden neurons. The weights of the connections from the 

input layer to DR, within DR, from DR to readout and 

reversely from the readout to DR is denoted as Win, W, Wout 

and Wback, with sizes N×K, N×N, L×N and N×L respectively. 

The values of Win, W and Wback are assigned randomly. 

However, to ensure Echo State Property (ESP) and the 

richness of DR behaviors, the reservoir connectivity should 

be sparse, and the spectral radius of W should be smaller than 

the unit (Jaeger, 2002b).The connectivity density and the 

spectral radius are denoted as d and sr, respectively. Only the 

weight matrix Wout needs to be train. 
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Figure 1. Basic Structure of ESN 

2.2. Echo State Property (ESP) 

The ESP is a basic, necessary property for the ESN learning 

principle to work. Under certain conditions, the reservoir 

states X(n) becomes asymptotically independent of initial 

conditions and depends only on input history U(n). Here 

X(n)={x1(n), x2(n),…, xN(n)} xi(n) is the ith internal state of 
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the neuron at time n, the input history U(n) = {u(n), u(n 

−1),u(n − 2),...}. In other word, it means that there exists such 

a function Echo, which satisfies X(n) = Echo(U(n)). 

Metaphorically speaking, the reservoir state X(n) can be 

considered as the so-called echo reflection of its previous 

inputs (Jaeger, 2001, Jaeger, 2002b). 

2.3. Learning Scheme 

The basic idea of ESN is to use a huge DR as a source of 

dynamic behavior, which neural activities are combined into 

desired output. ESN presents a kind of fast, simple and 

constructive algorithm for supervised learning of RNN. The 

reservoir state and the readout are updated through the Eq. (1) 

and Eq. (2), respectively. 

𝑥(𝑛 + 1) = 𝑓 (𝑊𝑖𝑛𝑢(𝑛 + 1) +𝑊𝑥(𝑛)) (1) 

𝑦(𝑛) = 𝑓𝑜𝑢𝑡(𝑊𝑜𝑢𝑡𝑥(𝑛)) (2) 

Where: f and fout are the activation function of the reservoir 

neurons and readout neurons, respectively. Win is the input 

weights, Wout the output weights, W the reservoir weights. 

x(n) are the internal state of the reservoir neurons, y(n) the 

ESN output value. 

ESN training usually are considered as some linear regression 

problems, which can be solved via two kind of algorithms: 

online and offline. The ESN online algorithm can be realized 

via Recursive Least Square (RLS) algorithm (Jaeger, 2003). 

Given a T training input/output sequence <u(1), ytarget(1)), ..., 

(u(T), ytarget(T)>, and desire to obtain a trained ESN (Win, W, 

Wback, Wout) whose output y(n) approximates the teacher 

output ytarget (n), when the ESN is driven by the training input 

u(n). The ESN offline algorithm used in this work is usually 

carried out by four steps: (1) Define an untrained ESN (Win, 

W, Wback) which satisfies the echo state property; (2) Sample 

network training dynamics, drive the network by the training 

data; (3) Compute output weights (Wout); and (4) 

Exploitation, the network (Win, W, Wback, Wout) is now ready 

for use. It can be driven by novel input sequences u(n), using 

the update Eq. (1) and Eq. (2). Major details of the learning 

procedure are explained by Jaeger (2002b). The learning 

algorithm is applied in order to reduce the Mean Square Error 

(MSE) between the target values (ytarget) and the ESN output 

(y) shown in the Eq. (3). 

𝑀𝑆𝐸 =
1

𝑇
∑(𝑦𝑡𝑎𝑟𝑔𝑒𝑡(𝑛) − 𝑦(𝑛))

2
𝑇

𝑛=1

 (3) 

Where: T the number of samples in the data time series of 

input/output used for training. The goal is to find the best Wout 

weights matrix corresponding to the lowest MSE possible 

result, achieved by a linear regression. 

3. ARTIFICIAL BEE COLONY ALGORITHM 

Artificial Bee Colony (ABC) algorithm is a swarm 

intelligence method which simulates intelligent behavior of 

honey bees. The first studies of ABC algorithm are testing the 

performance of the algorithm for constrained and 

unconstrained problems and comparing with those of other 

well-known modern heuristic algorithms such as Genetic 

Algorithm (GA), Differential Evolution (DE), Particle 

Swarm Optimization (PSO) (Karaboga & Basturk, 2007). 

The classification performance of the ABC algorithm is 

tested on training neural networks (Karaboga & Ozturk, 

2009) and on clustering (Karaboga & Ozturk, 2010) with 

benchmark classification problems and the results are 

compared with those of other widely-used techniques. The 

model of ABC algorithm consist of three groups of bees; 

employed bees, onlooker bees and scout bees in the colony 

of artificial bees (Karaboga, 2010).  

In order to understand the ABC algorithm is presented a 

parallelism with classical Genetic Algorithm (GA). The 

number of food source is equivalent to the number 

chromosomes, the nectar amount is equivalent to the fitness 

value, and the onlooker bee phase is similar to the crossover, 

the scout bee phase similar to the mutation.   

Half of the colony consists of employed bees, and the other 

half includes onlooker bees. Employed bees are responsible 

for exploiting the nectar sources explored before and giving 

information to the waiting bees (onlooker bees) in the hive 

about the quality of the food source sites which they are 

exploiting. Onlooker bees wait in the hive and decide on a 

food source to exploit based on the information shared by the 

employed bees. Scouts either randomly search the 

environment in order to find a new food source depending on 

an internal motivation or based on possible external clues. 

In ABC algorithm, the location of a food source represents a 

potential solution to the optimization problem and the nectar 

amount of a food source corresponds to the quality (fitness) 

of the associated solution. The nectar amount of a food source 

corresponds to the profitability (fitness) of the associated 

solution. Each food source is exploited by only one employed 

bee. In other words, the number of employed bees is equal to 

the number of food sources existing around the hive (number 

of solutions). The employed bee whose food source has been 

abandoned becomes a scout. Using the analogy between 

emergent intelligence in foraging of bees and the ABC 

algorithm, the units of the basic ABC algorithm can be 

explained as follows: 

3.1. Initialization Phase 

In the beginning, the ABC algorithm generates a uniformly 

distributed population of SN solutions (Solution Number) 

where each solution (i = 1, 2,..., SN) is a D-dimensional 

vector. Here D is the number of variables in the optimization 

problem and xi represents the ith food source in the 
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population. Initial food sources are produced randomly 

within the range of the boundaries of the parameters, 

described by the Eq. (4). 

𝑥𝑖𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) (4) 

Where: i = 1…SN, j = 1…D. SN is the number of food sources 

and D is the number of optimized parameters. 

In addition, the ABC algorithm depends on the three control 

parameters: the first one is the population size that determines 

the number of food sources in population. The second is the 

maximum cycle number that determines the maximum 

number of generations. The last one is the Limit that is used 

to determine the number of allowable generations after which 

each non improved food source is to be abandoned. After 

producing food sources and assigning them to the employed 

bees, the objective function specifically for the optimization 

problem is operated, its value is obtained, and all the fitness 

values of the food sources are calculated by the Eq (5). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = {
1/(1 + 𝑓𝑖) 𝑓𝑖 ≥ 0
1 + 𝑎𝑏𝑠(𝑓𝑖) 𝑓𝑖 < 0

 (5) 

Where: fi is the cost value of the solution. For maximization 

problems, the cost function can be directly used as a fitness 

function.  

3.2. Employed Bees Phase 

As mentioned earlier, each employed bee is associated with 

only one food source site. Hence, the number of food source 

sites is equal to the number of employed bees. An employed 

bee produces a modification of the position of the food source 

(solution) in her memory depending on local information 

(visual information) and finds a neighboring food source, and 

then evaluates its quality. In ABC, finding a neighboring food 

source is defined by Eq. (6). 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜙𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) (6) 

Within the neighborhood of every food source site 

represented by xi, a food source vi is determined by changing 

one parameter of xi, j is a random integer in the range [1, D] 

and 𝑘 ∈ {1, 2, …𝑁} is a randomly chosen index that has to be 

different from i. ϕij is a uniformly distributed real random 

number in the range [-1, 1]. 

3.3. Onlooker Bees Phase 

After all employed bees complete their searches, they share 

their information related to the nectar amounts and the 

positions of their sources with the onlooker bees in the dance 

area. This is the multiple interactive feature of the artificial 

bees of ABC. An onlooker bee evaluates the nectar 

information taken from all employed bees and chooses a food 

source site with a probability related to its nectar amount. 

This probabilistic selection depends on the fitness values of 

the solutions in the population given by the Eq. (7). 

𝑝𝑖 = 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑆𝑁
𝑖=1

 (7) 

In this probabilistic selection scheme, as the nectar amount of 

food sources (the fitness of solutions) increases, the number 

of onlookers visiting them increases, too. This is the positive 

feedback feature of ABC. 

3.4. Scout Bees Phase 

An employed bee become scout bee if the employed bee is 

associated with an abandoned food source, also, the food 

source is replaced by randomly choosing another food source 

from the search space. The scout bees phase is started when 

a position of a food source is not updated for a predetermined 

number of cycles, then the food source is assumed to be 

abandoned. Inside ABC, the predetermined number of cycles 

is a crucial control parameter, which is called limit for 

abandonment. 

4. ESN-ABC AS A PROGNOSTIC TOOL 

In this section is detailed the ESN-ABC approach, describing 

the motivation, the proposed approach and the RUL 

prognostic algorithm.  

4.1. Motivation 

From various optimization techniques, the ABC algorithm is 

highlighted by their efficiency in searching optimal solutions 

for different kind of problems, with the advantage of using 

few control parameters. These characteristics and results 

obtained when compared with other optimization techniques 

motivated the application of the ABC algorithm to adjust the 

ESN parameters and the application to RUL prognostic. 

The main parameters that determine the ESN are: the 

reservoir size, the spectral radio, the density of connection, 

the input and output scale, the input and output shift, and the 

activation function (Verstraeten et al., 2007, Ishii et al., 

2004). Search ESN parameters using optimization algorithms 

was applied by Ishii et al. (2004), Ferreira, Ludermir, Aquino, 

Lira, Neto (2008), and Ferreira and Ludermir (2009). 

Usually, the search for those parameters is carried out in an 

exhausting way or through random experiments, which in 

general takes long time to be accomplished and demand high 

computational resource.  

4.2. Proposed Approach 

The RUL prognostic approach presented in this paper used 

historical condition monitoring dataset and event data (Run-

to-Failure information) of a group of machines, equipment or 

system with similar characteristics. The proposed 

architecture is shown in the Figure 2, and include three 

modules: Data Acquisition, Optimization and Training, and 

RUL Prognostic. 
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Data Acquisition: This module collects condition 

monitoring data and event data from sensors installed on 

machines. Signal processing can be applied when necessary 

to the data collected in order to extract and select relevant 

characteristics for prognostic. The total dataset needs to be 

separated into training and testing dataset. 

Solution: The approach developed focus to optimize the 

dynamic reservoir parameter, specific six of them and 

generate the matrix weight W randomly. The parameters are: 

the reservoir size, the spectral radio, the input and output 

scale, and the input and output shift. The solution S is 

represented through a vector format showed in the Eq. (8). 

𝑆 = [𝑁, 𝑠𝑟, 𝐼𝑆, 𝐼𝐹, 𝑂𝑆, 𝑂𝐹] (8) 

Where: N is a reservoir size, sr is the spectral radio, IS is the 

input scale, IF is the input shift, OS is the output scale, and 

OF is the output shift. 

Equipment / System

Features Extraction 

and Selection 

Historical Data 

of CM & Events

Train Dataset

Test Dataset

ABC Parameters

Optimization 

ABC Algorithm

RUL

Datasets Split

Train ESN

Performance
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OPTIMIZATION & TRAINING

 PROGNOSTIC

DATA 

AQUISITION

Test ESN

Fitness Function

Create ESN

Metrics

ESN Parameters

 

Figure 2. ESN-ABC Architecture 

Fitness Function: Inspired in the publication of Ferreira, 

Ludermir, and Aquino (2013), in this paper is used a fitness 

function showed in the Eq. (9), which tries to play the GL 

criterion presented in Proben1 (Prechelt, 1994). The fitness 

function is based on the performance in the training set and 

in the test set, choosing this function minimizes the chances 

of overfitting. 

𝑓 = 𝑁𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + |𝑁𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 − 𝑁𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡| (9) 

Where f is the value to be minimized by the ABC algorithm 

and the NRMSE (Normalized Root Mean-square Error) is 

calculated as in Eq. (10), where NRMSEtrain is the average of 

NRMSE in the training set and NRMSEtest is the average of 

NRMSE in the test set. 

𝑁𝑅𝑀𝑆𝐸 =
1

𝐿𝑃
∑∑√

(𝑦𝑖𝑗 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑗)
2

𝑣𝑎𝑟(𝑦𝑑)

𝐿

𝑗=1

𝑃

𝑖=1

 (10) 

Where: P is the total number of patterns in the set, L is the 

number of output units of the ESN, yij and ytargetij are actual 

and desired outputs of the ith neuron in the output layer, 

respectively. 

 

Parameters: The application of the ABC algorithm along 

with ESN to failure prognostic is important to choose the 

parameters that have influence in its performance. The 

parameters must be chosen according the problem necessity 

and the resource available. In the Table 1 and Table 2 is 

detailed the main parameters of the ABC algorithm and the 

ESN. 

Parameter Description  Value 

COL Colony Size (employed+onlooker 

Bees) 

[100, 1000] 

BN Initial Employed Bees COL/2 

SN Food Source Number BN 

BC Initial Onlooker Bees COL-BN 

maxTrial A food source that can’t be 

improved  

[50, 500] 

maxIter Cycles number [10, 100] 

D Number of parameters to be 

optimized 

Size (S) 

f The fitness function to be 

minimized 

Eq. (9) 

ub Upper limit of the parameters max(S) 

lb Lower limit of the parameters min(S) 

Table 1. ABC algorithm parameters 

ESN-ABC Algorithm: The search process of the ABC 

algorithm consist of a step sequence where a set of solutions 

passes through the selection process. This process is divided 
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in three phases described in the Algorithm 1: the inputs that 

describe the parameters, the optimization process where is 

realizes the tuning of parameters minimizing the fitness 

function as detailed in the Algorithm 2, and finally, the results 

show the better ESN parameters. 

Parameter Description  Value 

NE Input number of the ESN # variables 

N Reservoir size [20, 500] 

IS Input Scale [0.01, 1] 

IF Input Shift [-1, 1] 

OS Output Scale [0.01, 1] 

OF Output Shift [-1, 1] 

sr Spectral Radio [0.01, 1] 

c Reservoir connectivity [0.1, 0.5] 

Table 2. ESN parameters 

Input: SN, S, f, [xmin; xmax], maxTrial, maxIter

Output: Better Solution Sg: ESN parameters and weights

01: Start

02:      Generate random position for the SN Food source   

           Eq. (4) and calculate fitness f(S)

03:      Repeat

04:           // EMPLOYED BEE PHASE

05:           For each solution i calculate the neighborhood k

  and dimension j

06:      Produce a new solution using the Eq. (6)

07:   Calculate the fitness value f(S)

08:   Update positions if f(Si) improve the last value

09:   //ONLOOKER BEE PHASE

10:   Calculate the probabilities vector pi using Eq. (7)

11:   For i = 1 : SN do

12:       If rand() > pi then

13:           Determine a neighborhood k and dimension j

14:                   Produce a new solution Si using the Eq. (4)

15:                   Calculate the fitness value f(Si)

16:                   Update positions if f(Si) improve the last value

17:               End If

18:   End For

19:   //SCOUT BEE PHASE

20:   Determine the abandoned solution and send scout

                 bee to search new food source

21:    Update the best solution Sg Acording the fitness

22:    iter = iter + 1

23:         Until iter <= maxIter

24: End

Algorithm 1:  Pseudo-code for ESN-ABC Algorithm

 

4.3. RUL Prognostic  

The RUL prognostic approach is based on historical 

condition monitoring data. An ESN with parameters defined 

by the ABC algorithm realizes the prognostic process. After 

the training process, the ESN with their parameters adjusted 

and weight trained will be capable to estimate RUL. The RUL 

prognostic is perform processing the test dataset. The 

prognostic result is compared with the true RUL present in 

the test data. The results achieved by the ESN-ABC is 

compared to the results of other researcher through 

prognostic metrics, this metrics result of a mathematical 

equations having as a input variables the estimated RUL and 

the true RUL. 

Input: Train Dataset, Test Dataset, ESN Parameters

Output: Fitness function value: f

1: Start

2:      Load Train Dataset

3:      Load Test Dataset

4:      Create ESN with ESN Parameters

5:         Training the readout weights

6: Calculate train dataset error Eq. (10)

7: Calculate test dataset error Eq. (10)

8: Calculate the fitness funtion value Eq. (9)

9: End

Algorithm 2: Fitness function pseudo-code

 

5. CASE STUDY: TURBOFAN ENGINE 

The result of the RUL prognostic algorithm based on ESN-

ABC is demonstrated through a case study of turbofan 

engines (Figure 3) from the NASA Prognostic Data 

Repository (Saxena & Goebel, 2008). The structure of the 

dataset is described and then the effectiveness of the proposed 

is demonstrated and the results compared with other results.  

 

Figure 3. Turbofan engine 

5.1. Turbofan Data 

The prognostic dataset is a result of run-to-failure 

experiments simulated to investigate the degradation of the 

turbofan engine system. The simulation model was built on 

Commercial Modular Aero-Propulsion System Simulation 

that was developed at NASA Army Research Laboratory 

(Frederick, De Castro, and Litt, 2007).The repository has four 
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datasets generated from independent simulation experiments. 

The datasets consist of multi-variate time series signals from 

different degrading instances and contaminated with noise. 

Each dataset contains engine units that are in the same 

manufacturing batch, but with a different initial state. 

 

Figure 4. Sensor measurement and RUL distribution 

Each engine begins from a normal operation, but due to some 

fault occurrence, starts to degrade. The fault magnitude 

increases with time until functional failure takes place. The 

first dataset has 100 trajectories for train and 100 for test, one 

operating conditions (sea level), and one fault mode is the 

HPC (High-Pressure Compressor) degradation. The second 

dataset has 260 trajectories for train and 259 for test, six 

operational conditions, and one fault mode (HPC 

degradation). The third dataset has 100 trajectories for train 

and 100 for test, one operating conditions (sea level), and two 

fault modes (HPC degradation, Fan Degradation). The fourth 

dataset has 248 trajectories for train and 249 for test, six 

operational conditions, and two fault modes (HPC 

degradation, Fan Degradation). 

Each unit is further divided in “training” and “test” subsets. 

The training subset contain examples of units that run until 

failure, while the test subset end sometime before to failure. 

In this work is used the first dataset “train_FD001.txt” 

composed of 100 training engines (with different temporal 

length or life as shown in the Figure 4), and “test_FD001.txt” 

also with 100 engines. It should be noted that the test data are 

composed of pieces of trajectories and remaining life is 

unknown.  

Each cycle either to train or for test, contains 24 dimensional 

time series (3 operating conditions and 21 sensor 

measurements). From the 21 condition measurements, only 

14 are used in this paper based on the results obtained by 

Wang (2010), these fourteen signals are from sensors {2, 3, 

4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21} that present tendency 

and provide the degradation trajectory to perform prognostic. 

Furthermore, the selection of variables reduces the 

dimensionality of the problem. 

5.2. Prognostic Results 

In this section is described the configuration parameters, the 

topology and the results obtained by classical ESN and the 

hybrid approach ESN-ABC developed in this work. The ESN 

and ESN-ABC algorithm were developed in Matlab based on 

ToolboxESN (2015) and ToolboxABC (2015) to implement 

the ESN and the optimization ABC algorithm, respectively. 

The experiments conducted in this study are divided into two 

subsections. First, implemented a classic ESN where the 

parameters are defined manually. The second part of this 

section deals with the proposed approach, adjusting the 

optimal parameters of the ESN through the ABC algorithm. 

Parameters Scale Step Value 

N [40, 300] 5 150 

sr [0.01, 1] 0.05 0.5 

IS [0.01, 1] 0.05 0.05 

IF [-1, 1] 0.05 0.95 

OS [0.01, 1] 0.05 0.005 

OF [-1, 1] 0.05 -0.05 

Table 3. Parameters setting for classical ESN 

Classical ESN Approach: The RUL prognostic of turbofan 

engines is realized through a classical ESN. For this purpose 

is necessary condition monitoring signals and a continue 

variable that represents the number of cycles remaining to the 

failure occurrence. This variable represents the RUL and 

considered as a target for ESN training. The result obtained 

by the classical ESN is useful as a reference for the ESN-

ABC model. A practical guide for ESN application published 

by Lukosevicius (2012) was used as a reference to set the 

ESN parameters as shown in the Table 3. The estimated RUL 

by the classical ESN and the true RUL, and the RUL residual 

for 100 engines of the test subset is shown in the Figure 5. As 

can be observed there are 24% of the estimated RUL between 

the false positive and false negative threshold.  

 

Figure 5. Classical ESN trained 
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ESN-ABC Approach: This approach starts generating the 

input weights Win
 as a random uniform distribution. Next, is 

initialized the parameters, defined reservoir weights 

randomly. The ABC algorithm starts the iterative process, 

adjusting the parameters in order to minimize the fitness 

function (Eq. (9)). Finally is calculated the readout weights. 

The parameters founded experimentally by the ABC 

algorithm is shown in the Table 4. 

N sr IS IF OS OF 

198 0.09 0.83 0.38 0.14 0.83 

Table 4. Parameters Setting by ABC Algorithm 

The Figure 6 shows the estimated and the true RUL by the 

ESB-ABC approach, and the RUL residual for 100 engines 

of the test dataset. Can be observed that the ESN-ABC 

approach obtain good results for RUL prognostic. The RUL 

residual (34%) are between a false positive and false negative 

threshold, +13 and -10 respectively, these thresholds was 

defined by Saxena & Goebel (2008). 

5.3. Performance Metrics 

Determining precision, accuracy and performance of 

prognostic algorithm is a recent topic. The taxonomy of these 

performance metrics for RUL estimation was proposed by 

Saxena, Celaya, Balaban, Goebel, Saha, Saha, and 

Schwabacher (2008a) and Saxena, Celaya, Saha, Saha, and 

Goebel (2010) where was presented different categories 

based on: accuracy, precision, and specifically for prognostic 

(PHM metrics). The Table 5 shows publications that use 

metrics for dataset 1. 

 

Figure 6. ESN trained by ABC algorithm 

In order to assess the performance of the case study, it is 

realized the comparison between the estimated RUL and the 

true RUL “rul_FD001.txt”. Using the prognostic metrics 

equation presented by Saxena et al. (2010) is obtained the 

prognostic metric values that are used to perform a 

quantitative comparison. The metric PHM08 have been used 

in the PHM08 competition presented by Saxena, Goebel, 

Simon and Eklund (2008b) is described by the Eq. (11). 

𝑃𝐻𝑀08 =

{
 
 

 
 ∑ 𝑒

−(
𝜀𝑚
𝑎1
)
− 1   𝑝𝑎𝑟𝑎   𝜀 < 0

𝑀

𝑚=1

∑ 𝑒
(
𝜀𝑚
𝑎2
)
− 1    𝑝𝑎𝑟𝑎   𝜀 ≥ 0

𝑀

𝑚=1

 (11) 

Where: a1 and a2 are the parameters that control the 

asymmetric preference. ɛm is a RUL residual.    

The FPN (False Positive Number) is calculated by Eq. (12) 

using the thresholds defined in the PHM08. 

𝐹𝑃𝑁 = {
1 𝜀 > 𝑡𝐹𝑃
0 𝑂𝑡ℎ𝑒𝑟

 (12) 

Where: ɛ is a RUL residual and tFP is the false positive 

threshold.    

The Eq. (13) describe MSE (Mean Square Error), the Eq. (14) 

the MAE (Mean Absolute Error). The ME (Mean Error) 

represented by the Eq. (15), the MAD (Mean Absolute 

Deviation) by the Eq. (16). The MAPE (Mean Absolute 

Percentage Error) described in the Eq. (17), this metric 

quantifies the error in percentage. 

𝑀𝑆𝐸 =
1

𝑀
∑ 𝜀𝑚

2

𝑀

𝑚=1

 (13) 

𝑀𝐴𝐸 =
1

𝑀
∑|𝜀𝑚|

𝑀

𝑚=1

 (14) 

𝑀𝐸 =
1

𝑀
∑ 𝜀𝑚

𝑀

𝑚=1

 (15) 

𝑀𝐴𝐷 =
1

𝑀
∑ |𝜀𝑚 − �̅�|
𝑀
𝑚=1 , �̅� = 𝑚𝑒𝑑𝑖𝑎𝑛(𝜀𝑚)  (16) 

𝑀𝐴𝑃𝐸 =
1

𝑀
∑ |

100𝜀𝑚
𝑡𝑅𝑈𝐿

|

𝑀

𝑚=1

 (17) 

Where: ɛ is a RUL residual and M is the total engine numbers, 

and tRUL is the true RUL of the engine m.    

The metrics calculated is compared with the metrics obtained 

by other researchers that used the same dataset of the NASA 

prognostic data repository, the results are shown in the Table 

5. 

Comparison based on PHM8 metric show that ESN-ABC 

approach presents better result that classical ESN. The 

approach presented by Peng, Wang, Wang, Liu, and Peng 

(2012) based on classical ESN obtain as a prognostic metric 

MSE = 3969. In this paper the classical ESN obtains 

MSE=1558 and the ESN-ABC obtains MSE = 1415. The 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

9 

difference in the results can be because Peng et al. (2012) use 

all the 24 dimension time series, and ESN parameters N=90, 

sr = 0.05, in this work were used only 14 sensor 

measurements, N=150 and sr = 0.5.  The approach overcome 

the results obtained in term of mean square error. Analyzing 

the other prognostic metrics can be observe that ESN trained 

by ABC algorithm, though consume more computational 

resource, have better performance than the classical ESN 

trained manually. 

Liu, Gebraeel and Shi (2013) present a data-level approach 

that use composite health index using in their case study the 

first dataset of the prognostic repository. They use 11 sensor 

measurement and calculate the metric MAPE for each sensor 

selected. The MAPE value is better that the ESN-ABC. 

 Accuracy Precision 

P
H

M
0
8
 

F
P

N
 

M
S

E
 

M
A

P
E

 

M
A

E
 

M
E

 

M
A

D
 

ESN-

ABC 
7634 14 1415 39.5 28.8 21.4 22.6 

ESN 9988 10 1558 63.9 31.5 24.1 24.3 

Peng 

(2012) 
--- --- 3969 --- --- --- --- 

Liu et al. 

(2013) 
--- --- --- 9 --- --- --- 

Table 5. Metrics Comparison for train/test dataset 

6. CONCLUSION 

In this paper is presented a hybrid approach that uses the ABC 

algorithm for setting ESN parameters, this solution is applied 

to RUL prognostic. ESN is an efficient technique to design 

and train a RNN. On the other hand, the ABC algorithm has 

been successfully used for optimization problems.  

Recently, several approaches have been presented for design 

and train the dynamic reservoir. As a contribution, we use the 

ABC algorithm for adjusting a subset of the reservoir 

parameters. Setting the parameters of the reservoir using 

meta-heuristics can be a very expensive task. Therefore, 

setting ESN parameter is performed using the ABC algorithm 

in an automatic way. However, the proposed approach 

demands a high computational cost due to the large search 

space, especially for higher values of N. 

The ESN-ABC source code implemented in Matlab is 

available in https://sourceforge.net/projects/esn-abc/, also on 

this site is attached the tutorial video in Portuguese. The 

application development organized into three modules: data 

acquisition, training, and RUL prognostic, according to the 

proposed approach. The software application is a friendly 

GUI (Graphic User Interface) tool, with the objective to test 

the ESN-ABC approach.  

The possibility to get the best ESN parameters is one of the 

main advantages of this proposed approach. 

For future work, we are working to test the approach to the 

others 3 dataset of the prognostic repository where will be 

possible compare with researchers that used these datasets. 

Another research field identified is extend the same 

procedure to other Reservoir Computing methods such as 

Liquid State Machines (LSM) and Backpropagation 

Decorrelation. As well as, it is interesting to implement and 

compare the performance reached by the ABC algorithm with 

other swarms intelligent and bio-inspired techniques. 
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ANN Artificial Neural Network 

BPDC Backpropagation Decorrelation 

CBM Condition Based Maintenance 

DR Dynamic Reservoir 

EoL End of Life 

ESN Echo State Network 

ESP Echo State Property 

DE Differential Evolution 

EKF Extended Kalman Filter 

FPN  False Positive Number 

GA Genetic Algorithm 

HPC High-Pressure Compressor 

KF Kalman Filter 

LSM Liquid State Machines 

MLP MultiLayer Perceptron 

MSE Mean Square Error 

MAD  Mean Absolute Deviation 

MAE  Mean Absolute Error 

MAPE  Mean Absolute Percentage Error 

ME  Mean Error 

NRMSE Normalized Root Mean-square Error 

PHM Prognostic and Health Management 

PSO Particle Swarm Optimization 

RBF Radial Basis Function 

RC Reservoir Computing 

RLS Recursive Least Square 

RNN Recurrent Neural Network 

RUL  Remaining Useful Life 

SN  Solution Number 
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