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1 Universidad de Chile, Department of Electrical Engineering. Av. Tupper 2007, Santiago, Chile
davacuna@ing.uchile.cl
morchard@ing.uchile.cl

josilva@ing.uchile.cl
aramis.perez@ing.uchile.cl

ABSTRACT

The implementation of particle-filtering-based algorithms for
state estimation purposes often has to deal with the problem
of missing observations. An efficient design requires an ap-
propriate methodology for real-time uncertainty characteriza-
tion within the estimation process, incorporating knowledge
from other available sources of information. This article ana-
lyzes this problem and presents preliminary results for a mul-
tiple imputation strategy that improves the performance of
particle-filtering-based state-of-charge (SOC) estimators for
lithium-ion (Li-Ion) battery cells. The proposed uncertainty
characterization scheme is tested, and validated, in a case
study where the state-space model requires both voltage and
discharge current measurements to estimate the SOC. A sud-
den disconnection of the battery voltage sensor is assumed to
cause significant loss of data. Results show that the multiple-
imputation particle filter allows reasonable characterization
of uncertainty bounds for state estimates, even when the volt-
age sensor disconnection continues. Furthermore, if volt-
age measurements are once more available, the uncertainty
bounds adjust to levels that are comparable to the case where
data were not lost. As state estimates are used as initial con-
ditions for battery End-of-Discharge (EoD) prognosis mod-
ules, we also studied how these multiple-imputation algo-
rithms impact on the quality of EoD estimates.

1. INTRODUCTION

Over the last decades, we have experienced a significant in-
crement in the development and production of electric vehi-
cles. The automotive industry has been allocating research ef-
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forts into the development of energy storage devices (ESDs)
for the production of hybrid electric vehicles (HEV) or fully
electric vehicles (EV). As a result, ESDs currently play a
crucial role regarding autonomy of the systems they ener-
gize. This last fact has motivated research on Li-Ion bat-
tery cells due to their advantages over other types of ESDs,
being its larger charge density (by unit of mass or volume)
one of the most important features to consider. From the
automotive industry, the concept of “Battery Management
Systems” (BMS) (Pattipati, Sankavaram, & Pattipati, 2011)
rises naturally when looking for systems capable of provid-
ing protection and optimal operating conditions for batteries,
while simultaneously accounting for life predictions through
the supervision of real-time acquired data. In this regard,
the “State-of-Charge” (SOC) (Pattipati et al., 2011) -a mea-
sure of the remaining available energy stored-, the “State-of-
Health” (SOH) (Pattipati et al., 2011) -a measure of battery
degradation-, and the associated “Remaining Useful Life” (RUL)
(Orchard & Vachtsevanos, 2009) are parameters that provide
important information about the current condition of the bat-
tery. Unfortunately, due to incapability to measure them di-
rectly in an online manner, BMS systems must incorporate
real-time estimation and prediction routines to carry out their
objectives.

These estimation and prediction routines heavily depend on
real-time measurements for their implementation and thus,
these schemes are subject to information losses due to, for ex-
ample, transmission problems or sensor disconnection. Com-
pleting missing values within the acquired data set is not just
as simple as filling in missing data with averaged values. In
this regard, many strategies can be adopted to solve the prob-
lem of sequential state estimation with incomplete data sets.
Among them, single imputation methods fail due to the lack
of uncertainty characterization. To solve this issue, the idea
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of multiple imputations was proposed in (Rubin, 1987). This
latter method considers different values for each missing da-
tum and combines their induced probability distributions into
a single solution for parameter estimation. This technique led
to the multiple imputation particle filter (Housfater, Zhang,
& Zhou, 2006), where particle-filtering methods (Andrieu,
Doucet, & Punskaya, 2001) were used, taking into account
uncertainty of missing data through a multiple imputation
strategy.

This work presents an improvement of the particle-filtering-
based Bayesian approach adopted by (Pola et al., 2015) for
real-time uncertainty characterization in SOC estimation for
Li-Ion batteries, based on a multiple-imputation strategy. Two
validation cases are considered for this algorithm. The first
case considers a situation where 1000 sequential voltage mea-
surements are lost, emulating the disconnection of the as-
sociated sensor during the execution of a specific discharge
cycle. The second case explores the impact of losing 500
sequential voltage measurements just before the execution
of a prognosis module. Obtained results show that the un-
certainty associated to missing information is bounded when
using the proposed method. Furthermore, obtained uncer-
tainty bounds are smaller than those obtained when simply
discarding incomplete measurements and computing the n-
step-ahead prior state probability density function (PDF).

The article is structured as follows. In Section 2, a theoret-
ical background is presented reviewing the underlying con-
cepts of particle filters and the multiple imputation strategy.
In Sections 3, a new multiple-imputation-based particle filter
is presented for SOC estimation in Li-Ion battery cells when
voltage and discharge current are measured. Sudden discon-
nections of the battery voltage sensor are simulated and un-
certainty characterization is analyzed in Section 4 (both in
terms of estimation and prognosis modules). Finally, conclu-
sions and future work are presented in Section 5.

2. THEORETICAL BACKGROUND

Real world systems are commonly dynamic, nonlinear, and
may involve a high dimensionality relationship between vari-
ables. State-space models offer a good theoretical framework
for the development of diagnostic (or prognostic) modules
devoted to monitor critical system components which phe-
nomenology follow laws of fist principles. Moreover, uncer-
tainty due to the lack of knowledge about the actual system
dynamics or noisy measurements (or sensor nonlinearities)
can be incorporated into the state-space form with ease. This
allows to adopt Bayesian filtering approaches, where the main
objective is to estimate the underlying probability distribution
to perform statistical inference. Since analytical solutions
may be found under certain conditions, the real problem to
be addressed is that of evaluating complex integrals where
numerical methods tend to breakdown, even more when high

dimensional systems are involved. An alternative to address
this problem is the use of particle filters, which is presented in
the following section. Later, an introduction to multiple im-
putation for dealing with missing data and the way multiple
imputation particle filter is presented.

2.1. Particle Filters

Due to the employment of digital computers for signal pro-
cessing, it is of interest to develop a Bayesian processor where
measurements arrive sequentially in time. The process of re-
cursively estimating the evolving posterior distribution is the
so called optimal filtering problem. A mathematical frame-
work is provided below for solving this problem using parti-
cle filters.

Let X = {Xt, t ∈ N} be a first order Markov process denot-
ing a nx-dimensional system state vector with initial distri-
bution p(x0) and transition probability p(xt|xt−1). Also, let
Y = {Yt, t ∈ N \ {0}} denote ny-dimensional conditionally
independent noisy observations. The whole system is repre-
sented in state-space form as

xt = f(xt−1, ωt−1) (1)
yt = g(xt, vt) (2)

where ωt and vt denote independent random variables whose
distributions are not necessarily Gaussian. Since it is difficult
to compute the filtering posterior distribution p(xt|y1:t) di-
rectly, Bayesian estimators are constructed from Bayes’ rule.

Under Markovian assumptions, the filtering posterior distri-
bution can be decomposed into

p(xt|y1:t) =
p(yt|xt) · p(xt|y1:t−1)

p(yt|y1:t−1)
(3)

In this context, sequential Monte Carlo methods (SMC) of-
fer an alternative to numerical integration techniques that fail
in the context of real-time embedded systems due to high
computation requirements. SMC methods, also called par-
ticle filters, are stochastic computational techniques designed
for simulating highly complex systems in an efficient way.
In Bayesian estimation, these techniques simulate probability
distributions by using a collection of N weighted samples or
particles, {x(i)t ,W(i)

t }Ni=1, that yields to discrete mass proba-
bility distributions, as shown in Eq. (4).

p̂(xt|y1:t) ≈
N∑
i=1

W(i)
t δ(xt − x(i)t ) (4)

The weighting process is made by applying the sequential
importance resampling (SIR) algorithm, which is explained
in the following subsections.
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2.1.1. Sequential Importance Sampling

The concept of importance sampling is used to simulate sam-
ples from a proposed distribution in order to estimate a pos-
terior distribution. The key point for a successful sampling
is to choose appropriately the importance distribution. Sam-
pling from posterior distributions is a common task in order to
get Monte Carlo (MC) estimates. However, it is not feasible
most of the time since it becomes computationally intensive.
For example, Eq. (5) shows the calculation of expectations.

f̂(xt) = EX|Y {f(xt)} =

∫
X

f(xt)p(xt|y1:t)dxt (5)

Drawing N independent identically distributed random sam-
ples from p(xt|y1:t), the integral may be approximated by a
sum of delta-Dirac functions.

f̂(xt) ≈ 1

N

N∑
i=1

f(xt)δ(xt − x(i)t ) (6)

=
1

N

N∑
i=1

f(x
(i)
t ) (7)

These approximations may not hold when it is not possi-
ble to sample directly from p(xt|y1:t), thus the sequential
importance sampling (SIS) algorithm avoids these difficul-
ties by drawing samples from an importance distribution ap-
proximating the targeted posterior distribution by appropriate
weighting. The weights are recursively defined as

w
(i)
t = w

(i)
t−1 ·

p(yt|x̃(i)t ) · p(x̃(i)t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1, y1:t)

(8)

where {x̃(i)t }Ni=1 is a set ofN random samples drawn from the
importance distribution π(x̃

(i)
t |x̃

(i)
0:t−1, y1:t). Also, defining

normalized weights

W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

(9)

then the posterior distribution can be approximated by the ex-
pression described in Eq. (4).

2.1.2. Resampling

When the updating process begins, a tendency to increase the
variance of particles can be seen, setting negligible weights to
some of them. These particles become useless as they track
low probability paths of the state vector. In order to solve
this problem, a resampling step is incorporated, which leads
to the SIR algorithm.

An analytical expression for measuring how degenerated are
the particles is given by the effective particle sample size

shown in Eq. (10).

Neff (t) =
N

1 + V arp(·|y1:t)(w(xt))
(10)

As it is not possible to calculateNeff , an estimate is given by

N̂eff (t) =
1∑N

i=1(W(i)
t )2

(11)

In other words, the resampling step consist of removing small
weighted particles while retaining and replicating those of
large weights. Thus, whenever N̂eff ≤ Nthres, with Nthres
a fixed threshold, the depletion of the particles is imminent
and resampling must be applied.

Algorithm 1 SIR Particle Filter
1. Importance Sampling

for i = 1, . . . , N do
• Sample x̃(i)t ∼ π(xt|x(i)0:t−1, y1:t) and
set x̃(i)0:t , (x

(i)
0:t, x̃

(i)
t )

• Compute the importance weights

w
(i)
t = w

(i)
t−1 ·

p(yt|x̃(i)
t )·p(x̃(i)

t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1,y1:t)

end for
for i = 1, . . . , N do
• Normalize
W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

end for

2. Resampling
if N̂eff ≥ Nthres then

for i = 1, . . . , N do
• x(i)0:t = x̃

(i)
0:t

end for
else

for i = 1, . . . , N do
• Sample an index j(i) distributed according to the
discrete distribution satisfying P (j(i) = l) = W(i)

t
for l = 1, . . . , N

• x(i)0:t = x̃
j(i)
0:t and w(i)

t = 1
N

end for
end if

In general, the SIR particle filter is divided into two steps.
Firstly, a prediction is done using the state transition model
to generate the prior distribution p(xk|xk−1). Then an update
step is done to modify the particle weights through the like-
lihood p(yk|xk). If the resulting particles are degenerated, a
resampling step is added, as it was shown previously.

2.2. Multiple imputations

Missing data is a problem that may be treated mainly from
two perspectives. On the one hand, single imputation tech-
niques fill the incomplete data set imputing single values at
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each missing datum. The advantage of this perspective is that
it allows standard complete data methods to be used. How-
ever, these techniques fail due to the lack of uncertainty char-
acterization of both, the sampling variability and the uncer-
tainty associated with the imputation model. On the other
hand, the idea of multiple imputations retains the advantages
of single imputation techniques and also accounts for the un-
certainty of the missing mechanism. Multiple imputations
(Rubin, 1987) consist of creating multiple complete data sets
imputing m values for each missing datum so that sampling
variability around the actual values is incorporated for per-
forming valid inferences. Nevertheless, multiple imputations
has disadvantages like the need of drawing more imputations
and larger memory space for storing and processing multiple-
imputed data sets.

An important issue is the task of choosing the right number
of imputations (Graham, Olchowski, & Gilreath, 2007). Ob-
viously, the computational cost is higher as the number of
imputations increases. In this regard, (Rubin, 1987, p. 114)
shows that an approximation of efficiency for an estimate is
given by

(1 +
γ

m
)−1/2 (12)

in units of standard errors, where m is the number of im-
putations and γ is the fraction of missing information in the
estimation. Consequently, excellent results may be obtained
using only few imputations (m = 3, 4, 5).

2.3. Multiple Imputation Particle Filter

Originally introduced by (Housfater et al., 2006), the Mul-
tiple Imputation Particle Filter extends the PF algorithm by
incorporating a multiple imputation (MI) procedure for cases
where measurement data is not available, so that the algo-
rithm can include the corresponding uncertainty into the es-
timation process. The main statistical assumption in this ap-
proach is that the missing mechanism is Missing at Random
(MAR), thus, it does not depend on the missing measures
given the observed ones.

For readability, a change in notation is necessary. As it was
stated in (Housfater et al., 2006), lets denote now the mea-
surements as a partitioned vector Ut = (Zt, Yt), where Zt
corresponds to the missing part and Yt is from now on the
observed part. Then, the MI PF algorithm performs the same
as the SIR PF except that there are missing measures. In this
case, a MI strategy is adopted.

An imputation model expressed as a probability distribution
φ is required for drawing m samples -imputations-, that is

zjt ∼ φ(zt|y1:t) (13)

where j = {1, . . . ,m} denotes the imputation index. Sim-
ilarly to importance sampling, each imputation is associated
with a weight pjt holding the condition

∑m
j=1 p

j
t = 1. Ac-

cording to (Liu, Kong, & Wong, 1994), the filtering posterior
distribution may be expressed as

p(xt|y1:t) =

∫
p(xt|u1:t−1, yt)p(zt|y1:t)dzt. (14)

By performing a Monte Carlo approximation yields

p(xt|y1:t) '
m∑
j=1

pjtp(xt|u1:t−1, u
j
t ), (15)

where ujt = (zjt , yt) are complete data sets formed from im-
puted values. Additionally, by applying particle filtering to
each of these data sets yields

p(xt|u1:t−1, ujt ) ≈
N∑
i=1

w
(i,j)
t δ(xt − x(i,j)t ), (16)

where the indexes i and j indicate the particle and the im-
putation, respectively. Thus, an approximation of the desired
posterior distribution is

p(xt|y1:t) ≈
m∑
j=1

N∑
i=1

pjtw
(i,j)
t δ(xt − x(i,j)t ). (17)

3. MULTIPLE-IMPUTATION-BASED UNCERTAINTY
CHARACTERIZATION FOR SOC ESTIMATION

The SOC is conceived as a quantification of the available en-
ergy stored regarding the actual rated capacity, but as a per-
centage. It conforms an important feature to address for sys-
tems’ autonomy when they are energized by ESDs, either as
main sources or as a backup. As it is not possible to directly
measure the SOC, estimation and prognosis algorithms must
be addressed for getting valid predictions from usually noisy
measurements like current, voltage and temperature, while
carrying out a proper management of the system. Actually,
knowledge about it is essential for control of autonomous
systems where the End-of-Discharge (EoD) time plays a key
role.

According to (Pola et al., 2015), a wide variety of meth-
ods have been proposed in the literature for modeling bat-
teries in offline applications; e.g., electrochemical models.
Other methods, more suitable for online implementations, are
based on open-circuit voltage (OCV) representations. These
methods relate directly the SOC and measured voltage but re-
quires large resting periods for batteries, being inefficient for
online estimation. The “Electrochemical Impedance Spec-
troscopy” (EIS) method requires costly equipment, being in-
feasible for practical applications. In this regard, research ef-
forts have focused on developing estimation and prognosis al-
gorithms based on phenomenological relations through fuzzy
logic, neural networks and Bayesian frameworks (Orchard,
Cerda, Olivares, & Silva, 2012), among others. The main
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problem in all these cases is that these approaches assume
complete data sets for state/parameter estimation purposes.

3.1. State-Space Model for Lithium-Ion Batteries

One of the main advantages of adopting a particle-filtering
approach for estimation under noisy measurement data is that
prior knowledge about the systems dynamics can be directly
incorporated into the model as well as its associated uncer-
tainties. Also, it is possible to capture critical physical phe-
nomenology directly into the state-space form, relating it to
an observation model which enables the convergence to the
true estimates through the likelihood of sequential measure-
ment data.

Proposed by (Pola, 2014), the state-space model for lithium-
ion battery cells used is the following.

State transition model

x1(t+ 1) = x1(t) + ω1(t) (18)

x2(t+ 1) = x2(t)− v(t) · i(t) ·∆t
Ecrit

+ ω2(t) (19)

Measurement equation

v(t) = vL + (v0 − vL) · eγ·(x2(t)−1) + α · vL · . . .
. . . (x2(t)− 1) + (1− α) · vL · (e−β − . . .

. . . e−β·
√
x2(t))− i(t) · x1(t) + η(t)

(20)

where ω1(t) ∼ N (0, σ1) and ω2(t) ∼ N (0, σ2) correspond
to additive white Gaussian noise and η(t) ∼ N (0, σobs) is
also a normal distributed random variable accounting for mea-
surement uncertainties. The sample time ∆t[sec] and the cur-
rent i(t)[A] are considered input variables whereas the battery
voltage v(t)[V ] is considered the system’s output. The state
variables x1(t) and x2(t) are chosen strategically under phys-
ical meaning as the internal resistance and the SOC, respec-
tively. Finally, as the SOC is expressed as a percentage of
energy, Ecrit represents a normalizing constant whose units
are [V A sec]. All other model parameters are assumed to be
known constants within each battery discharge cycle. Their
values are obtained by following the procedure described in
(Pola, 2014) and (Pola et al., 2015), and applying it to data
that should be obtained from a complete discharge cycle at
constant (nominal) discharge current.

3.2. Implementation of a Multiple Imputation Strategy

(Pola et al., 2015) proposed a detailed procedure for estima-
tion and prognosis for the SOC. However, what happens when
sudden disconnections (or data losses) affect sensor perfor-
mance? Perhaps, SOC estimates may be eventually biased,
affecting deeply the whole estimation stage and providing
invalid information, and the system’s autonomy would no

longer be guaranteed. In this regard, a new approach from the
Multiple Imputation Theory is proposed for uncertainty char-
acterization in particle-filtering-based SOC estimators where
voltage measurements are missing during extended periods of
time (while discharge current measurements are always avail-
able). Future work will focus on the case when battery dis-
charge current measurements are lost instead.

The Multiple Imputation Particle Filter uses voltage imputa-
tions in a different manner, depending on which stage of the
filtering procedure is currently being applied. During the pre-
diction stage, and if past voltage measurements are missing,
the multiple-imputation algorithm suggests to draw voltage
values from a proposal distribution φ. Each one of these im-
putations will define a different prior distribution for the next
time instant, since x2(t + 1) depends on v(t) in Eq. (19).
However, as the state transition equations place particles in
different positions of the state-space, by applying Rubin’s
rule of multiple imputation theory it yields, as a consequence,
an increase of the particle population. This consequence is
not directly an implication of Rubin’s rule, but of the depen-
dency of the prior distribution on the measurement v(t).

Rubin’s rule suggests that if a conditioning variable of a dis-
tribution is missing (its value is unknown), then this distribu-
tion can be approximated by an appropriate weighted sum of
the distribution conditioned in several possible values. These
last are called imputations (Rubin, 1987),

Assuming that the prior distribution is known and the actual
voltage value is unknown, then voltage imputations may also
be considered for the update stage of the particle-filtering
algorithm. Furthermore, in that case the resulting particles
(which represent the posterior distribution) will keep the same
location within the state-space. Thus, the number of particles
is not increased since Rubin’s rule (Rubin, 1987) is applied.

As multiple-imputed data generate an increase of the number
of particles during the prediction stage, a reduction stage has
to be incorporated into the algorithm to keep a fixed number
of particles throughout time; avoiding a progressive increase
of the particle population. This way, the SIR PF will work as
it was originally designed, especially after voltage measure-
ments are available once more again.

In particular, the problem of reducing the number of particles
from N · m to N -where N is the size of the original par-
ticle population and m is the number of imputations- could
be achieved by resampling. However, this kind of technique
fails because of the algorithm tendency to retain high prob-
ability particles only, thus discarding the uncertainty charac-
terization provided by the MI strategy. Therefore, a subop-
timal solution is proposed. The main focus consists on pre-
serving the probability distribution described by N ·m parti-
cles using only N of them. Thus, as an attempt to solve this
problem, the particles are arranged as a function of the SOC
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({x(l)k ,W
(l)
k }N ·ml=1 ) and clustered into groups of m particles,

noting that the SOC corresponds to a state and its dynamic
is described in Eq. (19). One particle is obtained from each
group by a weighted sum and its probability is assumed to be
the sum of probabilities of each particle in the group. There-
fore, the N new particles are generated as

W̄(i)
k =

m·i∑
l=m·(i−1)+1

W(l)
k (21)

x̄
(i)
k =

1

W̄(i)
k

·
m·i∑

l=m·(i−1)+1

W(l)
k x

(l)
k (22)

∀ i ∈ {1, . . . , N}. The biggest assumption adopted for the
reduction stage was that the internal impedance remains con-
stant at least when the battery’s SOC is over 20%, which in
practice makes it almost independent of the SOC. Of course,
other factors also affect the value of the internal impedance,
for example the battery temperature. In fact, that is the main
reason why this parameter has to be estimated from voltage
and discharge current measurements. The impact of these fac-
tors will not be considered in this particular version of the al-
gorithm, but they will be included as part of future research
work. Even though the dynamics of the internal impedance
are affected by several variables (including SOC), all the re-
sults presented in this article are based on the state transition
model described by Eqs. (18)-(19).

The proposed MI PF implementation solely solves the prob-
lem of missing voltage observations, whereas the discharge
current is assumed in the model as an input variable that is
known at each time instant. The imputation model adopted
is defined through the probability distribution induced by Eq.
(20), providing prior knowledge on the voltage variability that
is conditional to the currently available state estimate. Thus,
in the case of particle-filtering-based estimators, when sub-
stituting each particle from the prior distribution in Eq. (20),
a different imputation model for the battery voltage will be
generated.

By construction, the proposed algorithm shows a strong de-
pendency -regarding its performance- on the quality of the
measurement model. However, this feature is at the same
time including an important source of information which is
not accounted by n-step prediction algorithms.

Denoting the multiple-imputed measurement data set as ỹj1:t =

{ỹ1:t−1, yjt } where ỹ1:t = {ỹ1:t−1, y1t , . . . , ymt }, with j ∈
{1, . . . ,m}, the MI PF implementation is summarized in Al-
gorithm 2.

Algorithm 2 Multiple Imputation Particle Filter
1. MI Importance Sampling

if yt is available then
• SIR PF

else
for j′ = 1, . . . ,m do

for i = 1, . . . , N do
• Sample x̃(i,j

′)
t ∼ π(xt|x(i)0:t−1, ỹ

j′

t−1) and

set x̃(i,j
′)

0:t , (x
(i)
0:t−1, x̃

(i,j′)
t )

end for
end for
• Compute m imputations yjt ∼ φ({x̃(i,j

′)
t , w

(i,j′)
t }, ηt)

and its associated weights pjt .
• Reduce the particle population from N ·m to N .
x̃
(i,j)
t → x̃

(i)
t

• Defining the importance weights

w
(i,j)
t = w

(i)
t−1 ·

p(yjt |x̃
(i)
t )·p(x̃(i)

t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1,ỹ

j
1:t)

for i = 1, . . . , N do
• Apply Rubin’s rule
w

(i)
t =

∑m
j=1 w

(i,j)
t

end for
for i = 1, . . . , N do
• Normalize
W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

end for
end if

4. EXPERIMENTAL RESULTS

In this article, the proposed multiple-imputation algorithm is
applied to the case of SOC estimation in Li-Ion battery cells.
Particularly, this method is intended to improve the way SOC
is monitored on a BMS. A complete discharge cycle, con-
taining a total of 2920 samples that were obtained from an
experimental setup located at the Advanced Control Systems
Laboratory, University of Chile, is analyzed for purposes of
algorithm test and validation.

4.1. Impact on Estimation Stage

To test the algorithm during the estimation stage, we consider
a case where 1000 sequential voltage measurements are lost
due to sensor disconnection. Estimates are obtained using 60
particles and 10 imputations. Performance is analyzed and
compared considering an average of 30 realizations for three
different cases: i) SIR PF with a complete data set, ii) compu-
tation of a 1000-step-ahead prior PDF in the absence of new
measurements, and iii) MI PF with an incomplete data set.

The probability density that was used to draw voltage impu-
tations corresponds to the distribution induced by Eq. (20),
where particles are obtained from the prior PDF shown in Eq.
(18)-(19). These particles, together with 33 realizations of the
observation noise η(t), are substituted in Eq. (20) to gener-
ate an empirical conditional distribution for the lost voltage
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measurement. The imputations are randomly drawn from the
aforementioned distribution, and hence their weights are as-
sumed to be equal.

For this case study, the conventional SIR PF is applied in all
the cases as long as there are no missing measurements. The
focus lays on comparing the MI strategy to a simple n-step-
ahead prior PDF (Orchard et al., 2012) that could be applied
when voltage measurements are lost. Also, the MI strategy
will be compared to the PF-based estimates that are obtained
with no missing data. Both comparisons yield results for in-
ternal impedance, SOC and voltage which are exposed in Fig-
ures 1, 2 and 3, respectively. For a better analysis, the same
conditions are adopted for all the cases up to the time where
data starts being lost.

As it is shown in Figure 1a, the assumption of a constant
value for the battery internal impedance becomes invalid as
the number of lost measurements increases. In fact, MI PF
estimates differ significantly from an estimate computed on
the basis of a complete data set mainly because of this as-
sumption. Also, Figure 1b shows that MI PF estimates are
similar, in terms of the expected value, to the ones generated
using the 1000-step-ahead prior PDF. Thus, the main differ-
ences between these two methods, in terms of uncertainty
characterization, are due to the hypotheses associated with
the evolution of the first state. The strategy focused on the
computation of a 1000-step-ahead prior PDF uses Eq. (18)
for the transition of the first state, which does not represent
the true dynamics of the process but a learning process called
artificial evolution (Pola, 2014). If the prior PDF is charac-
terized only using the artificial evolution concept, uncertainty
will increase over time even though partial information is be-
ing collected through active sensors. Although in this case we
only assumed one voltage sensor for the whole battery pack,
the potential of a MI PF strategy that does not depend solely
on the artificial evolution model will be more evident in a
case where partial information is acquired from other sensors;
which could provide, for example, information at a battery
cell level.

Regardless of this fact, the main feature of the proposed MI
PF is ensuring robust and bounded characterization of the
uncertainty associated with the SOC, which is visualized in
Figure 2. Figure 2a shows how MI PF uncertainty bounds
overlaps the ones provided by the SIR PF, whereas in Figure
2b the bounds associated to MI PF are slightly overlapped
with the uncertainty characterization provided by the 1000-
step-ahead prior PDF. It is interesting to note the MI strat-
egy avoids the use of a resampling stage, yielding similar re-
sults as a long term prediction. Nevertheless, when voltage
measurements are not lost anymore, a bias is incorporated
in both cases (MI PF and 1000-step-ahead prior PDF). This
problem is generated by the assumption of constant internal
impedance, which introduces a bias affecting the SOC esti-
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Figure 1. Internal impedance estimation as a function of the
SOC[%] for a disconnection of 1000 sequential voltage mea-
surements denoted in the area between the dashed vertical
lines. a) Comparison between the MI PF (red line) and the
SIR PF (green line) with 95% confidence intervals. b) Com-
parison between the MI PF (red line) and the 1000-step-ahead
prior PDF (green line) with 95% confidence intervals. Only
the SIR PF has voltage measurements available all the time
whereas they remain unavailable inbetween the dashed verti-
cal lines otherwise. The sampling rate is 1[Hz].

mation as an attempt to correct the first state.

The primal differences between MI PF and the n-step-ahead
prior PDF method are in terms of the manner in which un-
certainty is taken into account. On the one hand, the n-step-
ahead prior PDF (Orchard et al., 2012) method uses the state
transition model to allocate the particles, replacing missing
data with the expectation of the measurement equation, and
neglecting the measurement noise. A regularization step is
performed so that particles are equivalently weighted. These
procedures are repeated along the whole prediction horizon.
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Figure 2. SOC estimation as a function of time[s] for a dis-
connection of 1000 sequential voltage measurements denoted
in the area between the dashed vertical lines. a) Comparison
between the MI PF (red line) and the SIR PF (brown line)
with 95% confidence intervals. b) Comparison between the
MI PF (red line) and the 1000-step-ahead prior PDF (brown
line) with 95% confidence intervals. Only the SIR PF has
voltage measurements available all the time whereas they re-
main unavailable inbetween the dashed vertical lines other-
wise. The sampling rate is 1[Hz].

On the other hand, the proposed implementation of MI PF,
described in Section 3.2, incorporates the uncertainty that is
related to the measurement system itself, simulating the con-
volution with typical measurement noise by sampling. The
underlying importance of generating a realistic uncertainty
characterization during the estimation stage is that the algo-
rithm provides appropriate conditions for the initial condi-
tions of the prognosis stage.

In the case of voltage estimation, results are shown in Figure
3. It can be noted in Figure 3a that a small bias is added to the

voltage distribution when using MI PF, mainly because of the
bias associated with the internal impedance estimate. The use
of a few imputations (10 in this case study) provides a reason-
able characterization of the output variability by generating a
robust approximation to the true statistics even when data is
partially lost. The bias remains negligible considering that the
total amount of lost data reaches 1000. However, Figure 3b
shows that the 1000-step-ahead prior PDF shares its behavior,
by describing nearly identical curves.

4.2. Impact on Prognosis Stage

In previous section we analyzed the effect of losing data con-
secutively in a window of 1000 samples during the estima-
tion stage. We also analyzed the problems arising from this
situation, yielding biased estimates and hence lack of uncer-
tainty characterization in some cases. But what if instead of
estimating after losing measurements, a prognosis routine is
executed?

When information and decision making systems are involved,
knowledge about future behavior of the system plays a crucial
role for planning control strategies that ensure an optimal use
of the available resources. In this regard, this section focuses
on exposing the performance of a prognosis routine described
in (Pola et al., 2015) for SOC estimation of Li-Ion batteries
having lost 500 voltage measurements just before the progno-
sis module is executed.

For testing the algorithm during the prognosis stage, a loss of
500 sequential voltage measurements is considered just be-
fore the estimation stage is finished. The results, as in the
previous section, are obtained with the use of 60 particles and
10 imputations. The performance is analyzed considering the
average of 30 realizations for three different cases: i) SIR PF
with a complete data set, ii) 500-step-ahead prior PDF pro-
cedure along the missing measurements, and iii) MI PF with
an incomplete data set. Each realization includes in turn the
mean performance of 30 realizations of prognosis in order to
get results closer to the expected ones.

When the prognosis module is executed, the actual discharge
current is unknown and, therefore, it must be simulated using
Markov chains that help to characterize the past battery usage
profile. For this reason, several realizations of the Markov
Chain are required before the EoD time is adequately prog-
nosticated. More information about this particular topic can
be found in (Pola et al., 2015).

Figure 4 shows the effect of missing measurements on prog-
nostic results in the case of the state related to the battery
internal impedance. As it was mentioned before, the use of
artificial evolution as a state transition model forces the ex-
pectation of the predicted distribution to remain constant, al-
though its uncertainty steadily increases over time. Different
is the case of the second state, which is associated with the
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Figure 3. Voltage estimation as a function of the SOC[%] for
a disconnection of 1000 sequential voltage measurements de-
noted in the area between the dashed vertical lines. a) Com-
parison between the MI PF (red line) to the SIR PF (blue
line) with 95% confidence intervals. b) Comparison between
the MI PF (red line) and the 1000-step-ahead prior PDF (blue
line) with 95% confidence intervals. Only the SIR PF has
voltage measurements available all the time whereas they re-
main unavailable inbetween the dashed vertical lines other-
wise. The sampling rate is 1[Hz].

battery SOC; see Figure 5. Although when comparing the
results of SIR PF and MI PF (see Figure 5a) in terms of the
expectation of the predicted PDF these results only offer mi-
nor differences, there are slight dissimilarities in terms of the
length of the confidence intervals that are built from the pre-
dicted distributions for the SOC. These slight differences in
terms of the length of the confidence intervals are the conse-
quences of having lost data before running the prognosis rou-
tine. Similar conclusions can be obtained from the analysis of
the predicted battery voltage; see Figure 6. In this regard, it
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Figure 4. Internal impedance estimation and prognosis as a
function of the SOC[%] for a disconnection of 500 sequential
voltage measurements denoted in the area between the dashed
vertical lines. a) Comparison between the MI PF (red line)
and the SIR PF (green line) with 95% confidence intervals. b)
Comparison between the MI PF (red line) and the 500-step-
ahead prior PDF (green line) with 95% confidence intervals.
Only the SIR PF has voltage measurements available all the
time whereas they remain unavailable inbetween the dashed
vertical lines otherwise. The sampling rate is 1[Hz].

is important to note that the proposed method does not affect
negatively the accuracy of the prediction. Moreover, in cases
where the evolution of one of the states is based on the arti-
ficial evolution concept (which is helpful when learning the
true value of a model parameter, but inaccurate to describe its
future evolution), it helps to bound the uncertainty associated
to the long-term prediction, thus improving the precision of
prognostic results.
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Figure 5. SOC estimation and prognosis as a function of
time[s] for a disconnection of 500 sequential voltage mea-
surements denoted in the area between the dashed vertical
lines. a) Comparison between the MI PF (red line) and the
SIR PF (brown line) with 95% confidence intervals. b) Com-
parison between the MI PF (red line) and the 500-step-ahead
prior PDF (brown line) with 95% confidence intervals. Only
the SIR PF has voltage measurements available all the time
whereas they remain unavailable inbetween the dashed verti-
cal lines otherwise. The sampling rate is 1[Hz].

5. CONCLUSION

A new multiple-imputation particle-filtering based scheme for
estimation with missing measurement data is proposed. In
this approach, Multiple Imputation Theory is the main core
for uncertainty characterization. A particular implementation
for SOC estimation is presented when voltage measures are
sequentially lost along a period of time. Preliminary results
show the success of the methodology by incorporating uncer-
tainty by increasing the original number of particles, but then
adding a reduction stage.
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Figure 6. Voltage estimation and prognosis as a function of
the SOC[%] for a disconnection of 500 sequential voltage
measurements denoted in the area between the dashed ver-
tical lines. a) Comparison between the MI PF (red line) to the
SIR PF (blue line) with 95% confidence intervals. b) Com-
parison between the MI PF (red line) and the 500-step-ahead
prior PDF (blue line) with 95% confidence intervals. Only
the SIR PF has voltage measurements available all the time
whereas they remain unavailable inbetween the dashed verti-
cal lines otherwise. The sampling rate is 1[Hz].

The case study for testing the algorithm includes a window
with missing data when the SOC is over a 20% of the bat-
tery’s capacity. This allows the adoption of a simplified way
for reducing particles in the algorithm based on the hypoth-
esis that the value of the internal impedance remains con-
stant. The MI strategy is compared to the case where the
filter has access to a complete measurement data set, and also
to a particle-filtering-based algorithm that computes a 1000-
step-ahead prior PDF when data are lost. Although MI PF
estimates are similar to the ones generated using the 1000-
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step-ahead prior PDF in terms of the expected value, the main
differences between these two methods are found in terms
of uncertainty characterization. If the prior PDF is charac-
terized only using the artificial evolution concept (as in the
case of 1000-step-ahead prior PDF), uncertainty will increase
over time even though partial information is being collected
through active sensors. Although in this case we only as-
sumed one voltage sensor for the whole battery pack, the po-
tential of a MI PF strategy that does not depend solely on
the artificial evolution model will be more evident in a case
where partial information is acquired at a battery cell level.
In terms of the impact of prognostic routines, the proposed
method does not affect negatively the accuracy of the predic-
tion. Moreover, in cases where the evolution of one of the
states is based on the artificial evolution concept, it helps to
bound the uncertainty associated to the long-term prediction,
thus improving the precision of prognostic results.

As the MI has been developed for offline applications, there
are several aspects that have to be considered before its im-
plementation in online applications. Some of these aspects
include improvements on the imputation model, adaptive es-
timation for an optimal number of particles and amount of
imputations, alternative reduction methods of particle popu-
lation, better ways for characterizing the internal impedance
evolution in time, risk assessment, among others. Further-
more, the development of an optimal particle reduction may
enable the connection of asynchronous networks, treatment
for missing measurements, and prognosis, to give some ex-
amples.
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