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ABSTRACT 

This paper proposes a methodology for probabilistic 

prognosis of a system using a dynamic Bayesian network 

(DBN). Dynamic Bayesian networks are suitable for 

probabilistic prognosis because of their ability to integrate 

information in a variety of formats from various sources and 

give a probabilistic representation of the system state. 

Further, DBNs provide a platform naturally suited for 

seamless integration of diagnosis, uncertainty quantification, 

and prediction. In the proposed methodology, a DBN is used 

for online diagnosis via particle filtering, providing a current 

estimate of the joint distribution over the system variables. 

The information available in the state estimate also helps to 

quantify the uncertainty in diagnosis. Next, based on this 

probabilistic state estimate, future states of the system are 

predicted using the DBN and sequential or recursive Monte 

Carlo sampling. Prediction in this manner provides the 

necessary information to estimate the distribution of 

remaining use life (RUL). The prognosis procedure, which is 

system specific, is validated using a suite of offline 

hierarchical metrics. The prognosis methodology is 

demonstrated on a hydraulic actuator subject to a progressive 

seal wear that results in internal leakage between the 

chambers of the actuator.  

1. INTRODUCTION 

1.1. Background 

The rise of complex and costly systems for use in extreme 

environments has resulted in new challenges in maintenance, 

planning, decision-making and monitoring for these systems. 

To reliably execute the missions they were designed for, 

these systems must be meticulously maintained. Traditional 

schedule-based maintenance results in unnecessary system 

downtime and the potential for serious problems to develop 

between routine maintenance. The alternative, condition-

based maintenance (CBM) (Jardine, Lin, & Banjevic, 2006), 

monitors systems as they operate, alerting personnel when 

faults occur. Maintenance is performed on-demand, resulting 

in less downtime and lower costs. Maintenance and 

operational decision-making, such as resource allocation, 

may further benefit from knowing the prognosis of a system. 

A system’s prognosis is a measure of its fitness to perform a 

prescribed task. Quantitatively, prognosis is commonly 

expressed through the remaining useful life (RUL). RUL 

quantifies the amount of time until a system reaches some 

failure criterion, e.g. fault magnitude or performance metric 

crosses a threshold or system is no longer operable.  Ideally, 

the uncertainty in RUL is quantified by estimating the 

distribution of RUL, resulting in a probabilistic prognosis. 

Importantly, probabilistic prognosis assesses the outlook for 

a specific instantiation of a system, or a particular unit under 

test (UUT). Measurement data updates the belief about the 

present state and RUL of the particular UUT.  In this way, 

probabilistic prognosis differs from probabilistic reliability 

analysis, which aggregates data to obtain a probabilistic 

reliability estimate for a population as opposed to an 

individual. Such population statistics may be suitable for 

tasks such as system design, but less helpful for operational 

and maintenance decisions that focus on individual units, as 

is the case in CBM. Prognosis, on the other hand, tracks the 

health of an individual unit. 

A prognosis methodology should thus have several important 

characteristics. It should provide a distribution of RUL as 

opposed to a point estimate, thus accounting for the 

uncertainty coming from many sources i.e. natural 

variability, information uncertainty, and model uncertainty 

(note: information includes measurements). In most 

situations, prognosis about the future is based on diagnosis of 

the current state; therefore it should account for uncertainty 

in diagnosis (i.e. uncertainty in damage existence, location 

and size, and sensor performance uncertainty). It should 

allow easy transition between situations when measurements 

are available and when they are unavailable. Finally, the 

methodology should survive rigorous validation.  

Prognosis methodologies may be divided into statistical, 

data-based, model-based, and hybrid approaches (see e.g. 

_____________________ 

Bartram and Mahadevan. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

Jardine et al. (Jardine et al., 2006; Tran & Yang, 2009)). 

Statistical approaches include statistical process control 

(Goode, Moore, & Roylance, 2000), logistic regression (Yan, 

Koç, & Lee, 2004), survival models (Banjevic & Jardine, 

2006; Vlok, Wnek, & Zygmunt, 2004), and stochastic 

process models (Lin & Makis, 2004; Wenbin Wang, 2002; 

W. Wang, Scarf, & Smith, 2000).  

Data-based approaches consist of machine learning methods 

(support vector machines (Farrar & Worden, 2012), relevant 

vector machines (Tipping, 2001), neural networks (Dong & 

Yang, 2008; Farrar & Worden, 2012; Vachtsevanos & Wang, 

2001; W. Q. Wang, Golnaraghi, & Ismail, 2004; Yam, Tse, 

Li, & Tu, 2001; Zhang & Ganesan, 1997)), and graphical 

models such as dynamic Bayesian networks (DBNs), hidden 

Markov models (HMMs) (Chinnam & Baruah, 2003; Kwan, 

Zhang, Xu, & Haynes, 2003). Liu et al. (Liu, Saxena, Goebel, 

Saha, & Wang, 2010) use adaptive recurrent neural networks 

for the estimation of battery RUL. Goebel et al. (Goebel, 

Saha, Saxena, Mct, & Riacs, 2008) compare relevance vector 

machines (RVMs), Gaussian process regression (GPR) and 

neural network (NN) methods for prognosis. Gebraeel 

(Gebraeel & Lawley, 2008) uses NNs for degradation 

modeling and test the methodology on ball bearings. Saha et 

al. (Bhaskar Saha, Goebel, & Christophersen, 2009) compare 

relevance vector machines (RVMs, a Bayesian 

implementation of support vector machines) and particle 

filtering to estimate RUL distributions for batteries. 

In model-based approaches, system models are used to 

estimate RUL or other relevant metrics. Such methods rely 

on mathematical models for prediction. These include 

physics-based failure models (Kacprzynski, Sarlashkar, 

Roemer, Hess, & Hardman, 2004), filtering models (Orchard 

& Vachtsevanos, 2009),(Lorton, Fouladirad, & Grall, 

2013),(B. Saha, Celaya, Wysocki, & Goebel, 2009)(Khan, 

Udpa, & Udpa, 2011), and regression and statistical models. 

Orchard and Vachtsevanos (Orchard & Vachtsevanos, 2009) 

use state estimation models combined with particle filtering 

for diagnosis and estimation of the RUL distribution of a 

planetary gear. Lorton et al. (Lorton et al., 2013) combine the 

differential equations of a system with system measurements 

via particle filtering for probabilistic model-based prognosis.  

Hybrid methodologies combine multiple approaches, i.e., a 

combination of data-driven and model-based approaches. 

E.g. Kozlowski (Kozlowski, 2003) uses Autoregressive 

moving average (ARMA) models, neural networks, and 

fuzzy logic for estimation of the state of health, state of 

charge, and state of life of batteries.  

DBNs are probabilistic graphical models with diagnostic and 

prognostic capabilities. They have shown promise in several 

recent applications. Bartram and Mahadevan (Gregory 

Bartram & Mahadevan, 2013) have presented an application 

of DBNs to prognosis of a hydraulic actuator at the PHM 

conference. Dong and Yang (Dong & Yang, 2008) use DBNs 

combined with particle filtering to estimate the RUL 

distribution of drill bits in a vertical drilling machine. While 

very useful, particle filtering is not the only inference method 

available for prognosis.  Jinlin and Zhengdao (Jinlin & 

Zhengdao, 2012) use DBNs modeling discrete variables and 

the Boyen-Koller algorithm for prognosis. Tobon-Mejia et al. 

(Tobon-Mejia, Medjaher, Zerhouni, & Tripot, 2012) use 

mixtures of Gaussian HMMs (a form of DBN) to estimate the 

RUL distributions for bearings. The junction tree algorithm 

is used for exact inference. The prognosis methodology is 

validated using the hierarchical metrics proposed by Saxena 

et al. (Saxena, Celaya, Saha, Saha, & Goebel, 2010).  

1.2. Motivation 

While the preceding literature review identifies several 

prognosis approaches, prognosis is still an emerging research 

area with room for much additional work. The combination 

of DBN and particle filtering has many qualities that are 

attractive for prognosis:  

1) The graphical representation of a problem provided by 

DBNs aids understanding of interactions in a system.  

2) DBNs provide a probabilistic model of the system that 

accounts for uncertainty due to natural variability, 

measurement error, and modeling error.   

3) DBNs can integrate different types of information that may 

be encountered during prognosis (including expert opinion, 

reliability data, mathematical models, operational data, and 

laboratory data) into a unified system model.   

4) DBNs can update the distributions of all variables in the 

network when observations are obtained for any one or more 

variables. This allows the most recent system measurements 

to be accounted for in prognosis. 

5) The probabilistic state estimate generated during particle 

filtering contains information about diagnosis uncertainty 

that can be used in prognosis and decision making. 

6) Particle filtering algorithms can take advantage of parallel 

computing, thus reducing computation time. 

 Additionally, prognosis methodologies reported in the 

literature are mostly application-specific. There is a need for 

a prognosis methodology that can make use of heterogeneous 

information and be applied to a wide range of problems. 

1.3. Contributions 

This paper proposes a framework for probabilistic prognosis. 

The methodology advances the use of DBNs in prognosis by 

integrating heterogeneous information. Further, the DBN-

based methodology addresses the need for a general 

prognosis framework for developing validated prognosis 

methodologies for any system. The methodology provides a 

means for quantifying diagnosis uncertainty that can be used 

in prognosis and decision making. 
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The DBN is constructed from prior information, including 

physics-of-failure models. The DBN is a store of prior 

information, but also provides the means for integrating 

current measurements into a probabilistic estimate of the 

current state of a system. In this paper, particle filter-based 

inference is used for diagnosis, and forward sampling in the 

DBN is used for recursive prediction. Diagnosis uncertainty 

is quantified using the probabilistic state estimate of the 

system that results from particle filtering. Sample-based 

estimates of detection and isolation probabilities as well as 

density estimates of system damage parameters are 

developed based on marginal distributions in the state 

distribution. This information can be used in decision making 

for improvement of the health monitoring system. The 

probabilistic state estimate also provides a seamless 

transition from diagnosis to future state prediction using 

recursive sampling. The ability of the methodology to 

estimate RUL is validated using metrics from Saxena et al. 

(Saxena et al., 2010). The methodology is illustrated for a 

hydraulic actuator with a seal leak.  

The remainder of this paper is organized as follows. Section 

2 details the proposed prognosis methodology, including 

system modeling, diagnosis, prediction, and validation. In 

Section 3, the proposed methodology is demonstrated on a 

hydraulic actuator system with a progressive internal leak. 

Section 4 discusses conclusions and future work. 

2. PROPOSED PROGNOSIS FRAMEWORK 

The challenge of prognosis is to minimize the uncertainty in 

the estimated distribution of RUL given constraints on 

available information about the system, operating 

environment and loading conditions, computational 

resources, and time horizon. In this paper, a DBN-based 

prognosis framework is proposed. The prognosis framework 

first constructs a DBN-based system model using 

heterogeneous information sources. Expert opinion, 

reliability data, mathematical models, and operational and 

laboratory data are used in the construction of the DBN 

model. In particular, inclusion of physics-of-failure models is 

important in prognosis. The evolution of phenomena such as 

cracking, wear, and corrosion play a large role in determining 

the health of a mechanical system. The system model is used 

for diagnosis to obtain information about the current state of 

the system. A recursive Monte Carlo sampling then predicts 

future system states and estimates the RUL distribution. 

Finally, the prognosis capability of the resulting system 

model, diagnostic, and predictive algorithms are validated 

using a four-step hierarchical procedure. The prognosis 

procedure is shown in Fig. 1. 

2.1. Dynamic Bayesian Networks 

A dynamic Bayesian network is the temporal extension of a 

static Bayesian network (BN). A static BN, also referred to 

as a belief network and directed acyclic graph (DAG), is a 

probabilistic graphical representation of a set of random 

variables and their conditional dependencies. Variables are 

represented by nodes (vertices) and conditional dependence 

is represented by directed edges. Unconnected nodes are 

conditionally independent of each other. The acyclic 

requirement means that no paths exist in the graph where, 

starting at node xi, it is possible to return to node xi.   

A DBN describes the joint distribution of a set of variables x 

on the time interval [0, ∞). This is a complex distribution, but 

may be simplified using the Markov assumption. The 

Markov assumption requires only the present state of the 

variables xt to estimate xt+1, i.e. p(xt+1 | x0, …, xt) = p(xt+1 | xt) 

where p indicates a probability density function and bold 

letters indicate a vector quantity. A linear relationship 

between xt+1 and xt is implied by this assumption. 

Additionally, the process is assumed to be stationary, 

meaning that p(xt+1 | xt) is independent of t. This approach to 

modeling DBNs is developed by Friedman et al. (Friedman, 

Murphy, & Russell, 1998). 

DBNs provide a flexible modeling framework, allowing 

integration of expert opinion, reliability data, mathematical 

models (including state-space, surrogate, and physics-of-

failure models), existing databases of operational and 

laboratory data, and online measurement information. 

Bartram and Mahadevan (G. Bartram & Mahadevan, S., 

2013) have proposed a methodology for the integration of 

such heterogeneous information into DBN system models. In 

the next section, that discussion is extended to consider 

physics-of-failure models, which are of particular importance 

in prognosis. 

Figure 2 shows a cantilever beam with a potential crack 

and/or damage at the support. The damage at the support 

renders a portion of the support ineffective, thus reducing the 

 

Figure 1. Proposed Prognosis Methodology 
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stiffness of the system and increasing the magnitude of 

deflections. The variable amplitude load causes the crack, if 

present, to grow, resulting in increased downward 

deflections.  Figure 3 shows a DBN of the system. Variables 

for the DBN are described in Table 1. The DBN encodes four 

system states (healthy, damaged support, cracked, damaged 

support and cracked) by using binary variables to indicate the 

presence of each fault. Gaussian Process (GP) regressions 

model the stress intensity factor and crack length, and a linear 

regression models the deflection of the beam. The parameters 

of the DBN may be inferred offline using synthetic data.  

2.2. Physics-of-Failure Models 

A key distinction between a system model capable of 

diagnosis and one capable of prognosis is that a prognostic 

model estimates the evolution of damage in the future while 

a diagnosis model only needs the ability to infer the current 

state of damage. Diagnostic procedures based on fault 

signatures or pattern recognition are examples of this. While 

they may be able to detect and isolate damage, quantification 

can be done using least-squares based estimation, they do not 

necessarily have any ability to model progressive damage 

mechanisms such as crack growth, wear, and corrosion. One 

of the challenges of prognosis is to develop accurate and 

comprehensive physics-of-failure models. These damage 

mechanisms are complex, varying with system design and 

dynamics, and can interact in many ways. The cantilever 

beam DBN includes physics of failure models for the three 

faulty system states through two mechanisms. First, the linear 

regression for predicting beam deflection changes 

coefficients depending on the health state of the system. 

Second, parameters of Paris’ law for crack growth as well as 

crack length are predicted using GP regression. The GP takes 

the place of direct use of the crack growth law, but the 

parameters SIF and a are still retained within the DBN. The 

material dependent properties m and C, while also potential 

sources of uncertainty, have been taken as constants in this 

example. 

Diagnosis 

Diagnosis is the process of detecting and isolating damage in 

a system and quantifying the magnitude of damage. When the 

probability of a fault occurring crosses the detection 

threshold, a fault isolation procedure finds fault candidates 

for further analysis. To isolate candidate faults, statistical 

 
Figure 2. Diagram of cantilever beam. 
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inference computes the probability of each fault. The 

magnitude of the fault may then be estimated.  

In the context of prognosis, diagnosis (or more specifically, 

filtering) provides the initial conditions for prognosis of a 

UUT. The initial condition for prognosis has a large impact 

on the accuracy and precision of the RUL distribution. As 

such, it is important to understand and account for diagnosis 

uncertainty. 

Uncertainty in diagnosis is due to natural variability, 

measurement error, model error, error due to approximate 

inference, and any approximations in optimization or least 

squares procedures used to estimate fault magnitudes. 

Sankararaman and Mahadevan (Sankararaman & 

Mahadevan, 2011) propose a methodology for quantifying 

the uncertainty in diagnosis. This is an integral part of the 

diagnosis procedure, and it is modified in this paper to 

accommodate a particle filter (PF) based diagnosis 

procedure. 

Diagnosis can be performed using a DBN model of the 

system to estimate the state of the system as measurements, 

zt, become available. The simplest approach is to expand 

(“unroll”) the two time-slice network (Figs. 3a and 3b) and 

compute the states of all the unobserved variables in the 

system, xt
, including faults, using a standard inference 

technique such as the clique tree algorithm (Koller & 

Friedman, 2009). However, this is generally a 

computationally intractable problem (Boyen & Koller, 1998). 

As a result, approximate inference based on Bayesian 

recursive filtering is pursued. 

2.2.1. Bayesian Recursive Filtering 

The procedure for updating the belief about the system state 

as new information becomes available is called Bayesian 

recursive filtering. Bayes’ theorem is the engine for 

performing the update. Diagnosis of a dynamic system may 

be achieved by maintaining the joint distribution over the 

system variables, parameters, and faults and as new noisy 

measurements become available via Bayesian recursive 

filtering. The joint distribution provides the best estimate of 

whether faults have occurred and what values system 

parameters and responses may have. This joint distribution is 

commonly called the belief state 𝝈𝒕(x𝒕). 𝝈𝒕(x𝒕) = 𝒑(x𝒕|z𝟏:𝒕) 
), where 𝒑(x𝒕|z𝟏:𝒕) is the distribution over the variables x𝒕 
estimate given all previous measurements z𝟏:𝒕. The belief 

state estimate includes estimates of the states of faults and 

system parameters, whose states are otherwise unknown. 

Equation 2, derived from Bayes’ theorem, is the engine for 

belief state updating: 

 𝝈𝒕+𝟏(x𝒕+𝟏) =
𝒑(z𝒕+𝟏|x𝒕+𝟏)𝒑(x𝒕+𝟏|z𝟏:𝒕)

𝒑(z𝒕+𝟏|z𝟏:𝒕)
 (1) 

 

where 𝑝(𝐳𝑡+1|𝐱𝑡+1) is the likelihood of the measurements, 

𝑝(𝐱𝑡+1|𝐳1:𝑡) is the prior state estimate at time t, 𝑝(𝐳𝑡+1|𝐳1:𝑡) 
is the normalizing constant, and 𝜎𝑡+1(𝐱𝑡+1) is the posterior 

state estimate at time t.  

Tutorials on Bayesian recursive filtering are available in 

Koller and Friedman (Koller & Friedman, 2009)  and Ristic 

and Arulampalam (Ristic & Arulampalam, 2004). 

2.2.2. Particle Filtering 

Under certain assumptions, such as when the system is linear 

and Gaussian, the belief state 𝝈𝒕+𝟏(x𝒕+𝟏) will be of a known 

parametric form and computationally efficient solutions to 

the filtering problem (e.g. Kalman filter, extended Kalman 

filter, unscented Kalman filter) are available. Outside such 

assumptions, a computationally feasible method for inference 

in the DBN is found in particle filtering, a form of sequential 

Monte Carlo based on Bayesian recursive filtering (see e.g. 

Chen [42]). 

Particle filtering is a method for approximating the 

distribution of the belief state with a set of samples and 

weights. Common particle filtering methods are based on 

sequential importance sampling (SIS), which improves upon 

Variable Symbol Type Distribution Role 

Damage at 

support 

indicator 

D Discrete 
Binomial 

(false, true) 
Model parameter 

Crack indicator Cr Discrete 
Binomial 

(false, true) 
Model parameter 

Load P Continuous Gaussian  Input (measured) 

Stress Intensity 

Factor 
ΔK Continuous Gaussian Model parameter 

Crack length a Continuous Gaussian Model parameter 

Deflection  δ Continuous Gaussian Output (measured) 

Table 1. Cantilever beam DBN (Fig. 3) model variables 
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the basic sequential MC by weighting point masses 

(particles) according to their importance sampling density, 

thus focusing on the samples that affect the posterior belief 

state the most. A comprehensive tutorial on particle filters is 

given by Ristic et al. (Ristic & Arulampalam, 2004) and in 

Koller and Friedman (Koller & Friedman, 2009). 

In this paper, an algorithm for systems with multiple 

operating modes (Andrieu, Davy, & Doucet, 2003) that 

extends the auxiliary particle filter (APF) (Pitt & Shephard, 

1999) is used. This auxiliary particle filter has an auxiliary 

step where samples �̃�𝑖
𝑡+1 are drawn based on 𝐱𝑖

𝑡. Weights for 

each particle are then calculated based on 𝐳𝑡+1. A resampling 

step, which reproduces particles in proportion to their 

likelihood (thus eliminating particles of negligible weight), 

determines a set �̃�𝑖
𝑡 that consists of the 𝐱𝑖

𝑡 that produce the 

�̃�𝑖
𝑡+1 with the largest weight. �̃�𝑖

𝑡 are then used to sample 𝐱𝑖
𝑡+1. 

Resampling may be performed again. Compared to a basic 

SIS filter with a resampling step, the APF can more closely 

estimate the true state provided that process noise remains 

low. Regularization (Ristic & Arulampalam, 2004) is also 

applied to prevent sample degeneracy. 

2.2.3. Fault Diagnosis and Diagnosis Uncertainty 

Quantification 

When using a particle filter, the belief state itself provides the 

information necessary for fault detection, isolation, and 

damage quantification. The marginal distribution over 

combinations of the discrete fault indicator variables is a 

multinomial distribution, whose parameters are easily 

calculated from the particles representing the current belief 

state. Given m fault indicator variables that can take on values 

of true or false, there are 𝑛 = 2𝑚 combinations of faults, 

including the healthy condition. The 𝑖𝑡ℎ combination at the 

𝑡𝑡ℎ cycle has an expected probability 

 𝒑𝒊
𝒕 =∑𝑵𝒊

𝒕𝒘𝒊
𝒕 𝑵𝒔⁄  (2) 

The probability of any fault (probability of damage) is then 

 𝒑𝑭
𝒕 = 𝟏 − 𝒑𝟎

𝒕  (3) 

where 𝑝0
𝑡  is the probability of that no faults occur. When 𝑝0

𝑡  

is greater than some threshold, an alert may be issued to a 

decision maker and a prognosis procedure may be triggered. 

The remaining 𝑝𝑖
𝑡  (𝑖 ≠ 0) are the isolation probabilities of 

each fault combination. From the belief state, 𝜎𝑡+1(𝐱𝑡+1), the 

marginal distributions over damage parameters may be 

constructed from the particles and their weights.  

The probabilities pt that parameterize a multinomial 

distribution are themselves uncertain and follow a Dirichlet 

distribution. Based on the Dirichlet distribution, the variance 

of 𝑝𝑘
𝑖  is  

 𝑽𝒂𝒓[𝒑
𝒕
𝒊] =

𝑵𝒌
𝒊 (𝑵𝒔 − 𝑵𝒌

𝒊 )

𝑵𝒔
𝟐(𝑵𝒔 + 𝟏)

 (4) 

The uncertainty in pt is directly dependent on the number of 

samples, 𝑁𝑠. With the detection and isolation probabilities 

and their corresponding uncertainties as well as estimates of 

the distributions of damage parameters known, a decision 

maker is better able to assess the criticality of damage and the 

appropriate actions to make to balance safety and cost 

concerns. 

Using a particle filtering algorithm, estimates of the health 

state of the beam are inferred from measurements of the 

deflection. These estimates are probabilistic and naturally 

provide estimates of the SIF and crack length. 

2.3. Prediction 

In probabilistic prognosis, possible future states of the system 

are generated and the remaining useful life (RUL) 

distribution, 𝑟(𝑡), of the particular unit under test (UUT) is 

estimated. RUL is the amount of time a UUT is usable until 

corrective action is required and may be measured in hours, 

minutes, cycles, etc. Measurements are unavailable and the 

system model is assumed to be valid under future operating 

conditions. Prediction can be initiated at any time in the life 

of a system based on the last available state estimate obtained 

during diagnosis. However, in this paper, the time of 

prognosis, tP, the first time point for which a prognosis 

estimate is obtained, is after the time of fault detection, tD. 

This ensures that prognosis effort is expended only once a 

known cause of failure has been identified. Figure 4 

illustrates these important prognosis time indices.  

One approach to prediction when performing particle 

filtering on a DBN is a basic sequential Monte Carlo starting 

with the last available belief state estimate from diagnosis. 

This belief state estimate is a probabilistic initial condition 

for prediction that accounts for uncertainty in diagnosis. 

Starting with the last belief state estimate (with 

measurements available), particles are recursively sampled 

through the two time slice DBN until some termination 

criterion is met, such as 𝑃𝑟(𝑟(𝑡) = 0) is above some target 

threshold. Thus, there are 𝑁𝑠 trajectories of the variables of 

interest beginning at time t,  {𝚽(𝑡)}𝑖=1
𝑁𝑠 . Each trajectory 

consists of a series of predictions for the variables of 

interest, 𝚽(𝑡) = {𝝋(𝑡|𝑡), 𝝋(𝑡 + 1|𝑡), …𝝋(𝐸𝑜𝑃|𝑡)}, where 

the end of prediction (EoP) is the time index of the last 

prediction before the end of life (EoL) is reached. The EoP 

depends on frequency and occurs after the end of useful 

predictions (EoUP), which is the last time index before the 

required logistics lead time makes corrective active infeasible 

(and updating of the RUL unnecessary)   Particle weights are 

fixed from the last available measurement, as there is no basis 

for updating the weights. This results in a particle-based 

approximation of RUL (similar to the belief state 

approximation), using the last available set of weights, that 
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accounts for uncertainty in diagnosis and prediction.  When a 

new measurement is obtained, a new RUL distribution may 

be estimated.  

To further tailor the prognosis to a particular UUT, the 

conditional probability distributions in the DBN may be 

updated as measurements become available. This may be 

performed via Bayesian updating of the distributions. If a 

conjugate prior is available, the update can be performed 

analytically. Otherwise, techniques such as Markov chain 

Monte Carlo (MCMC) may be required. 

The RUL distribution is sensitive to many aspects of the 

problem. The initial state estimate provided by the diagnosis 

algorithm must be accurate. As such, the filtering algorithm 

and number of particles are important algorithmic design 

decisions. These decisions also involve a tradeoff between 

accuracy and computational effort, which must be 

considered. Optimal sensor placement and improved sensor 

reliability also impact the accuracy of the diagnosis.  

The accuracy of predictive models, including those for inputs 

(loads) and physics-of-failure models, is another large source 

of uncertainty in the RUL estimate. Because the prediction is 

recursive with no measurements available to correct the 

prediction, errors in prediction compound quickly and must 

be minimized.  

Three additional factors that affect the diagnosis (and 

prognosis) of a system are the sensitivity of the system 

measurements to damage, noise in the training and 

measurement data, and the sampling rate i.e. frequency at 

which measurements are obtained. If the sensitivity to 

damage is low and the noise large, diagnosis may be difficult 

or impossible. Noise in the training and measurement data 

obscures the true system state and contributes uncertainty to 

state estimates in diagnosis and prognosis. A low sampling 

frequency can deteriorate the quality of state estimates in 

systems that depend on previous states, due to nonlinear 

dynamic systems as in the actuator system considered in this 

paper. The state estimates amount to a linearized 

approximation of the state across the sampling interval 

(reciprocal of sampling frequency). As sampling rate 

decreases, the interval becomes wider and the linear 

approximation worsens. A higher sampling rate decreases the 

sampling interval and reduces the error due to linearization, 

thus improving state estimates. In the cantilever beam 

example, once a crack is diagnosed at tD, estimation of the 

RUL commences. The last filtered system state estimates of 

the fault states, load, stress intensity factor, crack length, and 

deflection serve as initial conditions for predictions.  

Figure 5 shows a possible distribution of crack length at tD.  

Possible trajectories of these system variables are then 

simulated, one for each particle, providing in an ensemble of 

trajectories. Figure 6 shows possible trajectories of the crack 

length over the next 60 load cycles. A zero value on the 

horizontal axis indicates the distribution of crack lengths at 

time tD (the distribution of these samples corresponds to Fig. 

6). The failure criterion for the beam is its crack length being 

above a threshold value, indicated by the horizontal red line 

in Fig. 6. Each particle has a unique crack length and growth 

trajectory, resulting in a particular number of load cycles until 

 

 

 

 

Figure 4. Prognosis time indices: r*(t) is the ground truth RUL, tEoUP is the end of useful prognosis, dashed line depicts 

median r(t). 
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exceedance of the critical crack length. This results in a 

distribution of the RUL, depicted as a histogram in Fig. 7, 

with median RUL also shown. 

2.3.1. Measurement Gaps 

Systems may experience periods of times where 

measurements are unavailable. This may be a result of the 

system configuration, availability of measurements, failure of 

sensing systems, or the desire to have system state estimates 

at a higher rate than the available measurements. For 

example, offline inspection data may be available for an 

aircraft on the ground, while onboard sensing provides a 

steady stream of information about temperature, altitude, 

windspeed, pressure, etc. These onboard measurements may 

only be available for portions of a flight (perhaps during 

cruising but not takeoff or landing). 

Using the same recursive sampling used for RUL estimate, 

predictions may be produced and used to fill in the 

information gaps. When a measurement becomes available, 

the particle filtering algorithm is used to update the last 

predicted system state. The particle filter update may be 

performed as long as at least one measurement is available.  

2.4. Prognosis Validation 

Prognosis validation is essential to establish confidence in the 

RUL estimate. Many sources of uncertainty, including 

modeling errors, sensor faults, noisy data, and unpredictable 

loading conditions and operating environments, strongly 

affect prognosis. Therefore, validation of a prognosis 

procedure must be done using quantitative performance 

metrics. These metrics must be carefully chosen, as many 

issues arise when evaluating prognosis algorithms, such as 

time scales or the ability to improve accuracy as more 

measurements are obtained (Saxena et al., 2010). Saxena et 

al. (Saxena et al., 2010) propose a four-metric hierarchical 

test to evaluate a prognosis algorithm. This hierarchical test 

assumes that prognosis will improve as more measurements 

become available. Together, these four metrics — the 

prognostic horizon, 𝛼 − 𝜆 accuracy, relative accuracy, and 

convergence —provide a means for testing and comparing 

prognostic algorithms.  

The first two metrics examine the accuracy of the RUL 

estimates by determining the probability p that the RUL 

estimate is between ±𝛼 of the ground truth RUL. This 

probability p is compared to a threshold value, β. It is 

desirable for p to be greater than β. The primary difference 

between the first two metrics is in how 𝛼 is determined, 

which results in a stricter test for the second metric than the 

first. 

Prognostic horizon (PH) indicates the time at which RUL 

estimates using a particular prognostic algorithm for a 

particular system are within acceptable limits. The upper and 

lower limits are the ground truth RUL plus or minus a 

constant α, which is some percentage of the EoL value. PH is 

the difference between the true EoL time and the time when 

the prognostic algorithm attains this acceptable level of 

accuracy (𝑝 > 𝛽). As this is a validation metric, the true EoL 

is known. A longer PH is indicative of a better prognostic 

 
Figure 7. Distribution of remaining useful life. 

 

 

Figure 6. Crack length predictions 60 cycles into the future. 

 

Figure 5. PDF of crack length at time of detection. 
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algorithm. Figure 8a provides a visual representation of 

prognostic horizon.  

Prognostic horizon maintains upper and lower bounds that 

are always the same distance from the true RUL. The second 

validation metric, 𝛼 − 𝜆 accuracy, utilizes a stricter criterion 

that gradually tightens the limits about the RUL estimate 

(Figure 8b). Additionally, the accuracy of the RUL is 

considered at time 𝑡𝜆, where 0 ≤ 𝜆 ≤ 1, 𝑡𝜆 = 𝑡𝑃 + 𝜆(𝑡𝐸𝑜𝐿 −
𝑡𝑃), and 𝑡𝑃is the time at which a prognosis estimate is first 

obtained. This metric reflects the idea that, as more 

information is collected about the system, the RUL estimate 

is expected to improve, and thus the accuracy requirement for 

the RUL estimate should become more stringent. The 𝛼 − 𝜆 

accuracy is equal to 1 when the increasingly stringent 

accuracy requirements are met, and zero otherwise.    

In step three, the relative accuracy (RA) of the prognostic 

algorithm is calculated. Instead of merely indicating that 

accuracy requirements have been met, the accuracy of the 

RUL estimate is quantified. At 𝑡𝜆 

 𝑹𝑨𝝀 = 𝟏 −
|𝒓∗(𝒕𝝀) − 𝒓(𝒕𝝀)|

𝒓∗(𝒕𝝀)
 (5) 

where 𝑟(𝑡𝜆) is a central tendency point such as the mean or 

median of the RUL estimate at 𝑡𝜆 and 𝑟∗(𝑡𝜆) is the ground 

truth RUL. The RA is computed separately for each time step 

at which RUL is estimated. RA is a value between 0 and 1, 

and values closer to 1 indicate better accuracy. 

Finally, convergence measures how quickly a metric, such as 

RA, improves with time. It is determined by the distance from 

the centroid of the area under the curve in the interval [tp, 

tEoUP] of a prognosis metric (M) located at (xc, yc), to the 

origin, located at (0, tp).    A high rate of convergence is 

desirable and leads to a larger PH. The convergence measure 

CM  of a prognosis metric M is defined as 

 𝑪𝑴 = [(𝒙𝒄 − 𝒕𝑷)
𝟐 + 𝒚𝒄

𝟐]
𝟏
𝟐⁄  (6) 

where 

 𝒙𝒄 =

𝟏
𝟐
∑ (𝒕𝒊+𝟏

𝟐 − 𝒕𝒊
𝟐)𝑴(𝒕𝒊)

𝑬𝒐𝑼𝑷
𝒊=𝑷

∑ (𝒕𝒊+𝟏 − 𝒕𝒊)𝑴(𝒕𝒊)
𝑬𝒐𝑼𝑷
𝒊=𝑷

 (7) 

and  

 𝒚𝒄 =

𝟏
𝟐
∑ (𝒕𝒊+𝟏

𝟐 − 𝒕𝒊
𝟐)𝑴(𝒕𝒊)

𝟐𝑬𝒐𝑼𝑷
𝒊=𝑷

∑ (𝒕𝒊+𝟏 − 𝒕𝒊)𝑴(𝒕𝒊)
𝑬𝒐𝑼𝑷
𝒊=𝑷

 (8) 

 

where 𝑀(ti) is the non-negative prediction accuracy, EoUP 

is the end of useful prediction, and P is the time at which the 

prognosis algorithm makes its first prediction. End of useful 

prediction is the time after which corrective action cannot be 

performed before EoL. A high rate of convergence is better 

and leads to a larger PH. 

Using ground truth data, the four validation metrics indicate 

the overall suitability for prognosis of the system model 

represented by the DBN and the Monte Carlo inference 

algorithm. This subsumes many design decisions for the 

system model, including which variables to include or 

exclude and their conditional probability distributions, graph 

structure of the network, training point selection, frequency 

of updates, number of samples to use in inference, etc. In 

particular, the numerical example in Section 3 investigates 

the sensitivity of the validation metrics to sampling rate.  

 

 

 

 

 

 
a) b) 

 

Figure 8. a) Prognostic horizon with +/- α bounds about the ground truth RUL  

 b) +/- α bounds for evaluating α-λ accuracy 
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2.5. Summary of Proposed Prognosis Framework 

This section presented a framework for probabilistic 

prognosis, and illustrated portions of the framework with a 

cantilever beam example. Figure 9 summarizes the 

framework. DBNs are used as a system modeling paradigm 

due to their ability to handle uncertainty and to integrate 

many types of information, both in the offline model 

construction phase and the online belief state updating phase. 

For prognosis, it is of particular importance to model 

complex physics-of-failure phenomena and integrate such 

models into the DBN. After the DBN model is established, 

the model is used for tracking the state of a particular UUT. 

Particle filtering is used to update the belief state as new 

measurements are obtained. Uncertainty in the state estimate 

(diagnosis) is quantified, and when a fault is detected, 

estimation of RUL via recursive prediction begins. The result 

is an estimate of the distribution of RUL. Section 2.4 

considers the situation when there are gaps in the availability 

of measurements. 

When a prognosis procedure (DBN model of system 

combined with available measurements and filtering 

algorithm), is designed for a particular system, it is then 

validated using the 4 step hierarchical procedure outlined in 

Section 2.5.  

3. COMPUTATIONAL EXAMPLE 

A hydraulic actuator system was considered to demonstrate 

the proposed methodology. Such a system is often used to 

manipulate the control surfaces of aircraft.  The system 

consists primarily of three subsystems: a hydraulic actuator, 

critical center spool valve, and an axial piston pump (Fig. 10). 

Figure 9. Diagram of proposed prognosis methodology 
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The servo-controlled piston pump provides the steady 

hydraulic pressure to the servo (spool valve) controlled 

actuator. The position of the spool valve is adjusted via an 

electric motor. The position of the actuator changes based 

upon the flow of hydraulic fluid in and out of its two 

chambers. The control signal to the spool valve motor is 

typically a result of feedback about the actuator’s current 

displacement versus the desired displacement. Expert 

opinion, reliability data, mathematical models, operational 

data, and laboratory data were used to construct a DBN model 

of the spool valve and hydraulic subsystems.  

First, expert opinion is invoked to determine the scope of the 

problem, variables and faults to model, and establish the 

DBN structure. Next, reliability data is drawn upon to 

determine the conditional probabilities for the faults. The 

mathematical model of the system is used to generate 

predictions of the system variables. The predictions are 

treated similar to operational and laboratory data and used to 

train a regression model for estimating the reduction in seal 

orifice area, which is equivalent to the seal leakage area. 

3.1. DBN Model Construction 

3.1.1. Expert Opinion 

Expert opinion was considered first to define the basic 

parameters of the problem. Seven state variables and six 

discrete faults were selected to model the behavior of the 

system. 

A generic initial structure for the DBN is first selected (Fig. 

11) based on expert opinion. This generic two time slice 

structure consists of the set of faults, F, model parameters, θ, 

system state, x, and measurements, z. In this structure, faults 

cause changes in system parameters, which then cause 

changes in system responses, which are observed. F contains 

the persistent variables in the DBN – their future values 

depend upon their present values. The observations, z, while 

not connected across time slices, are nonetheless not  

independent across time slices, but correlated via  θ.  

Table 2 lists the faults considered in the actuator system and 

the parameter affected by that fault (the faults are described 

further in Section 3.1). For each fault, a binary variable that 

indicates the presence of the fault is added to the network at 

time t and t + 1. Similarly, a Gaussian variable is added at 

time t and t + 1 for each affected parameter. Links are drawn  

 

 

Figure 10. Hydraulic actuator system 

 

 
Figure 11. Generic DBN structure 
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Invisible anchor text.   

 

Figure 12. DBN structure (solid lines – based on expert opinion, dotted lines – learned from data) 

State Variable Symbol Unit Type Note 

Actuator position xact m continuous measured 

Actuator velocity vact m/s continuous measured 

Pressure in chamber 1 P1 Pa continuous measured 

Pressure in chamber 2 P2 Pa continuous measured 

Valve position xvalve m continuous measured 

Valve velocity vvalve m/s continuous measured 

Control signal u V continuous input 

Water leak W - binary inferred 

Air leak A - binary inferred 

Pump sensor fault P - binary inferred 

Valve fault V - binary inferred 

Seal leak S - binary inferred 

Electrical Fault E - binary inferred 

Fluid bulk modulus β MPa continuous inferred 

Supply pressure ps MPa continuous inferred 

Wear rate ws Mm3/Nm continuous inferred 

Table 2. DBN variables 
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pointing from faults to affected parameters. The parameters 

are assumed to have Gaussian distributions, whose mean and 

variance depend on the health state of the system. The 

leakage area parameter is a special case, as wear and leakage 

are assumed to be present at all times. The discrete variable 

for leakage area indicates that the leakage area has increased 

beyond some threshold value.   

Parameters from the current time step and initial conditions 

from the previous time step are input into a physics-based 

model of the actuator, which estimates the system responses, 

assumed to be Gaussian variables. Measurements are then 

connected to the corresponding system response. Links are 

also drawn between like faults at time t and t + 1 and like 

parameters at time t and t + 1. Finally, a Gaussian variable is 

added at time t and t + 1 for each measurement available. The 

resultant DBN is shown in Fig. 12 with parameters described 

in Table 2.  

3.1.2. Published Reliability Data 

The DBN model of the system should be able to simulate 

multiple faults and predict system behavior multiple steps 

into the future for the model to be a useful diagnosis and 

prognosis tool. The overall failure rate for an actuator may be 

determined by estimating the base failure rate and making 

empirical corrections for temperature and fluid 

contamination (Naval Surface Warfare Center, 2011). The 

RIAC Databook (RIAC Automated Databook, 2006) and the 

Handbook of Reliability Prediction Procedures for 

Mechanical Equipment (HRPPME) (Naval Surface Warfare 

Center, 2011) give failure rates for many mechanical 

systems. For illustration of the methodology, a handful of the 

possible faults for the actuator system are considered in this 

paper. Table 3 lists the faults that have been considered, the 

subsystem where they are located, and the parameters 

affected by those faults. 

Failure rates from the literature were then used to calculate 

the probability of each fault occurring. These probabilities 

correspond to parameters of the discrete fault indicator 

variables in the DBN. 

3.1.3. Mathematical Behavior Models 

Several mathematical models are used in this example. A 

physics-based model of a hydraulic actuator, described by 

Kulakowski et al. (Kulakowski, Gardner, & Shearer, 2007) 

and Thompson et al. (Thompson, Pruyn, & Shukla, 1999) 

with Eqs. 9-19, is integrated into the DBN through a 

deterministic conditional probability distribution (Koller & 

Friedman, 2009). This model has been implemented in the 

Matlab Simulink environment. The model is run recursively 

in 0.25 second increments (4 samples per second). Each 

increment has a constant load value determined by a load 

model. When an abrupt fault occurs, it is programmed into 

the model at the beginning of the load interval for which it 

occurs. 

The actuator is shown in Fig. 10. The parameters and 

variables for this system are described in Table 4. The 

relationships among these quantities are as follows: 

 

�̇�𝑎𝑐𝑡 = 𝑣𝑎𝑐𝑡  (9) 

�̇�𝑎𝑐𝑡 =
1

𝑚
[(𝑃1 − 𝑃2)𝐴𝑝𝑖𝑠𝑡 − 𝑏𝑎𝑐𝑡𝑣𝑎𝑐𝑡 … (10) 

−𝑘𝑎𝑐𝑡𝑥𝑎𝑐𝑡 − 𝐹𝑒𝑥𝑡]  

 

Fault Parameter Affected Subsystem Failure Rate Data Source 

Seal Leak Leakage Area Actuator 
0.249 failures 

/106 hours 

RIAC 

Databook [47], 

Literature [48] 

Water Leak into 

System 

Hydraulic Fluid 

Bulk Modulus 
Piping/Fittings 

2.736 failures 

/106 hours 

RIAC 

Databook [47], 

Literature [48] 

Air Leak Into 

System 

Hydraulic Fluid 

Bulk Modulus 
Piping/Fittings 

0.167 failures 

/106 hours 

RIAC 

Databook [47], 

Literature [48] 

Pressure Valve 

Malfunction 
Supply Pressure Pressure Valve 

15.575 failures 

/106 hours 

RIAC 

Databook [47], 

Literature [48] 

Pump Pressure 

Sensor Fault 
Supply Pressure Piston Pump 

14.3 failures 

/106 hours 
HRPPME[38] 

Electrical Fault Control Signal Electrical 
1.510 failures 

/106 hours 

RIAC 

Databook [47], 

HRPPME [38] 

Table 3. List of faults and affected parameters and subsystems 
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�̇�1 =
1

𝐶𝑓1
(𝑄1 − 𝐴𝑝𝑖𝑠𝑡𝑄2 + 𝑄𝑙𝑒𝑎𝑘) (11) 

�̇�2 =
1

𝐶𝑓2
(𝑉2𝑥𝑎𝑐𝑡 − 𝑄2 − 𝑄𝑙𝑒𝑎𝑘) (12) 

�̇�𝑣𝑎𝑙𝑣𝑒 = 𝑣𝑣𝑎𝑙𝑣𝑒  (13) 

�̇�𝑣𝑎𝑙𝑣𝑒 = 𝑎1𝑣𝑣𝑎𝑙𝑣𝑒 + 𝑎0𝑥𝑣𝑎𝑙𝑣𝑒 + 𝑏0𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑  (14) 

𝐶𝑓1 =
𝑉1(𝑥𝑎𝑐𝑡)

𝛽
 (15) 

𝐶𝑓2 =
𝑉2(𝑥𝑎𝑐𝑡)

𝛽
 (16) 

If 𝑥𝑣𝑎𝑙𝑣𝑒 > 0,  

{
 
 

 
 
𝑄1 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒𝑠𝑖𝑔𝑛(𝑃𝑠 − 𝑃1)√

2

𝜌
|𝑃𝑠 − 𝑃1|

𝑄2 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒√
2

𝜌
(𝑃2)

 

If 𝑥𝑣𝑎𝑙𝑣𝑒 < 0, 

(17) 

{
 
 

 
 

𝑄1 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒√
2

𝜌
(𝑃1)

𝑄2 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒𝑠𝑖𝑔𝑛(𝑃𝑠 − 𝑃2)√
2

𝜌
|𝑃𝑠 − 𝑃2|

 (18) 

𝑄𝑙𝑒𝑎𝑘 = 𝐶𝑑𝑎𝑙𝑒𝑎𝑘√
2

𝜌
|𝑃2 − 𝑃1|𝑠𝑖𝑔𝑛(𝑃2 − 𝑃1) (19)  

For demonstration of the prognosis methodology, the load is 

simulated using an ARIMA (autoregressive integrated 

moving average) model.  In reality the load on a flight control 

actuator is depends on many variables related to the dynamics 

of the aircraft and the desired flight path (see Mahulkar et al. 

(Mahulkar, McGinnis, Derriso, & Adams, 2010), Karpenko 

and Sepeheri (Karpenko & Sepehri, 2003), and McCormick 

(MacCormick, 1995)).   

 

Parameter/variable Symbol Nominal Value/ Unit 

Actuator position 𝑥𝑎𝑐𝑡  m 

Actuator velocity 𝑣𝑎𝑐𝑡 m/s 

Servovalve position 𝑥𝑣𝑎𝑙𝑣𝑒 m 

Servovalve velocity 𝑣𝑣𝑎𝑙𝑣𝑒  m/s 

Pressure in chamber 1 𝑃1 Pa 

Pressure in chamber 𝑃2 Pa 

Combined mass of actuator and load mact 40 kg 

Combined damping of actuator and load bact 800 Ns/m 

Combined stiffness of actuator and load kact 106 N/m 

Piston annulus area Apist 0.0075 m2 

Valve port width wvalve 0.0025 m 

Spool valve model coefficients 

b0 90 m/Vs2 

a0 360,000 1/s2 

a1 1/s 

Hydraulic fluid bulk modulus 𝛽 1000 MPa 

Hydraulic fluid density 𝜌 847 kg/m3 

Discharge coefficient 𝐶𝑑 0.7 

Supply pressure 𝑃𝑠𝑢𝑝𝑝𝑙𝑦  20 MPa 

Chamber 1 volume V1 m3 

Chamber 2 volume V2 m3 

Chamber 1 fluid capacitance Cf1 m3/(kg/s) 

Chamber 2 fluid capacitance Cf2 m3s/(kg/s) 

Volumetric flow rate into chamber 1 Q1 m3/s 

Volumetric flow rate out of chamber 2 Q2 m3/s 

Externally applied force Fext 0 N 

Input voltage ecommand Sin(2*pi*t) V 

Leakage volumetric flow rate Qleak 0 m3/s 

Leakage area aleak 0 m2 

Table 4. Model parameters and variables for a spool valve and hydraulic actuator  
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Finally, the physics-of-failure model for the seal leak is 

considered. The seal leakage volume is modeled as in Section 

2.2. The wear rate is treated as a random variable whose 

distribution is learned from laboratory data. The volume of 

material removed is divided by the contact length of the seal 

(Fig. 13) to arrive at the leakage area required for use in Eqs. 

9-19. 

Generally, seal leakage is due to wear caused by friction 

between the seal and piston, which removes seal material and 

allows fluid to pass between the chambers of the actuator. 

The cross section of the actuator in Fig. 10 is shown in Fig. 

14. The surface area of the seal is (𝑟2
2 − 𝑟1

2) , where r1 and r2 

are the inner and outer radii of the seal, respectively. 

The volume of material removed from the seal per cycle 

depends on the friction force and sliding distance per cycle 

and may be calculated by 

 𝑉(𝑡) = 𝑤𝑠(𝑡)𝐹 (20) 

where 𝑤𝑠 is the wear rate of the seal in mm3/N/m, F is 

the frictional force on the seal, d is the total sliding 

distance, and t refers to the load cycle. 

For the seal shown in Fig. 13, where L is the contact length 

of the seal and P is pressure, the leakage area (considered in 

Eqs. 16-29 in Thompson et al. (Thompson et al., 1999)) based 

on the volume of material removed is assumed to be 𝑎𝑙𝑒𝑎𝑘 =
𝑉(𝑡) 𝐿⁄ . 

While wear is a continuous process, in this paper the 

occurrence of wear is modeled as a binary event, where 

modeling begins when the leakage area has reached a value 

that has detectable effects. The occurrence is modeled using 

an empirically derived seal failure rate, which modifies an 

experimentally determined base failure rate for the seal. 

Details of deriving the failure rate are available in (Naval 

Surface Warfare Center, 2011). 

The wear rate itself varies with factors such as the age of the 

seal, temperature, contaminants in the fluid. The load 

experienced by the seal also varies as does the velocity of the 

actuator. As a result, the volume of material removed and 

leakage area are nonlinear functions of seal age, temperature, 

and contaminant concentration. However, for the sake of 

demonstration, it is assumed that the wear rate is steady, 

which is possible outside of the initial wear-in phase and 

under constant environmental conditions. 

3.1.4. Operational and Laboratory Data 

Operational and laboratory data appear as historical 

databases and online measurement data. The data is 

organized in a time-lagged database as in Bartram and 

Mahadevan (G. Bartram & Mahadevan, S., 2013). This 

format facilitates structure and parameter learning in the 

DBN. For the actuator model, the values of system 

parameters ws β, ps and aleak are estimated. Because the data 

is synthetic, 20:1 signal to noise ratio (SNR) Gaussian white 

noise was added to all system response and load data to 

mimic measurement error. Further, as operational data 

becomes available during diagnosis, that data is used to 

update the distributions of the actuator parameters and 

responses as well as to estimate the parameters of the ARIMA 

model used in load history simulation.   

3.2. Diagnosis 

Diagnosis is performed as described in Section 2.3. The 

actuator was operated for 20 seconds with a leak occurring 

after 6 seconds. At this point, the system has already reached 

the steady state. Synthetic measurement data was generated 

using the Simulink model for two cases. In the first case, the 

data was not resampled (i.e. the sampling frequency remained 

 

 

 

 

Figure 13. Hydraulic actuator diagram showing dynamic 

seals 

 

 

 

Figure 14. Actuator cross section 
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4 samples per second). In the second case, data was 

resampled at 2 samples per second. This was done to compare 

the effect of sampling rate on diagnosis and prognosis. The 

system responses and load were assumed to be measurable 

while the system parameters including wear rate and leakage 

area were assumed to be unobservable.  Inference via particle 

filtering (Ns = 250) was performed on the DBN to obtain 

filtered estimates of the system state.  

After obtaining the state estimate at cycle t, the probability of 

damage was calculated as in Section 2.2. If the probability of 

damage exceeded 95%, an alarm was triggered. The fault was 

then isolated and quantified. Figure 15 shows maximum a 

posteriori (MAP) estimates of the system responses against 

their measured values for the 2 samples/sec series (not shown 

are responses for the 4 samples/sec series that appear similar). 

It is seen that the MAP system responses track the measured 

values closely. Figure 16 shows the MAP estimates of the 

system parameters for the 2 samples/sec series, including the 

leakage area, and load against the ground truth values. This 

figure shows how the leakage area changes with time and 

how well the filtering procedure can infer the value of the 

leakage area. The system responses in Fig. 15 are sensitive to 

changes in the supply pressure and leakage area. However, 

experimentation with the model revealed that these responses 

were insensitive to changes in the fluid bulk modulus. 

Changes in bulk modulus, however, may result in effects such 

as changes in wear rate that have not been included in the 

ground truth model.  In both Fig. 15 and Fig. 16, the good 

estimates may be attributed to the use of an accurate physics-

based model, but also to the use of synthetic measurement 

data whose sampling rate matched the internal sampling rate 

of the generative model. Thus, the performance of filtering is 

favorably biased. 

 

Figure 15. MAP estimates and measured values of actuator position and velocity, servovalve position and 

velocity, and pressure in each actuator chamber (2 samples/sec) 
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3.3. Diagnosis Uncertainty 

Diagnosis uncertainty was quantified during filtering as in in 

Section 2.3. Figure 17 shows the damage probability as it 

evolves with time for the 2 samples/sec case. The damage 

probability passes the alarm threshold 0.5 seconds after the 

actual occurrence of the fault.  

At the time of detection (t = 18 cycles), all particles for the 2 

samples/sec series have a value of 1.038E-8 for the leakage 

area. This is in contrast to a ground truth value of 9.339E-9. 

Note that all particles have the same value due to resampling. 

These leakage area values are the initial condition for 

prognosis starting at t = 18. Figure 17 may be used to signal 

an alarm that a fault has occurred. In some cases, this alarm 

can be used to initiate RUL estimation or other tasks such as 

inspection. 

3.4. Prediction 

After alerting the presence of a leak above the threshold of 

7.578E-9 m2, estimation of the RUL distribution was 

performed as in Section 2.4. The RUL distribution assumes a 

failure threshold for leakage area of 4.123E-8 m2. The RUL 

distribution at the 25th cycle is shown in Fig. 18 for the 2 

samples/sec series.  

3.5. Computational Effort 

The above diagnosis was performed with 12 Intel Nehalem 

processor cores working in parallel. Each belief state update 

in diagnosis takes approximately 30 seconds. Similarly, each 

prediction step in prognosis takes approximately 30 seconds. 

The majority of the computational effort is directed towards 

solving the differential equations for the actuator in the 

Matlab Simulink environment. 

 

Figure 16. MAP estimates of system parameters and load with ground truth and measured values (2 samples/sec) 
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3.6. Prognosis Validation 

By continuing to estimate the new RUL distribution as new 

measurements become available, the performance of the 

prognostic algorithm may be evaluated. In Fig. 19, median 

RUL estimates are plotted against the ground truth RUL with 

+/- α bounds for the 2 samples/sec series. The +/- α bounds 

are selected to be +/-15% of the ground truth EoL about the 

current ground truth RUL. Figure 20 indicates whether the 

probability of the RUL estimate being between the +/- α 

bounds at a particular time is greater than a threshold value, 

taken as β = 0.6. From this information, it is also determined 

that the prognostic horizon (PH) is about 1.25 seconds. To 

determine the PH, the first time the probability mass of the 

RUL distribution lying between the +/- α bounds exceeds and 

remains above the threshold of β = 0.6 is at t = 13.5 sec is 

determined. Because the EoL is t = 14.75 sec., PH = 14.75-

13.5 = 1.25 seconds. Similarly, Fig. 21 and Fig. 22  show the 

same plots for the 4 samples/sec series and have a PH of 6.9 

seconds. The disparity in PH may be attributed to the 

sampling rate, as all else is the same. 

+/- α bounds that narrow as the EoL approaches are 

considered for both sampling rates in Fig. 23 and Fig. 24 for 

λ = 0.5 and α = 0.20. λ = 0.5 considers the accuracy of the 

RUL estimate halfway between the time of prognosis and end 

of life, termed tλ. The bottom plots of Fig. 23 and Fig 24. 

show the λ-α accuracy, which is a binary value that indicates 

whether the probability of the RUL estimate being between 

 

 

 

Figure 17. Damage probability with actual fault time (2 samples/sec) 

 

 

Figure 18. RUL density estimate at t = 25 sec (2 samples/sec) 
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the +/- α bounds at a particular time is greater than a threshold 

value, taken as 0.8 here. The λ-α accuracy is mostly zero for 

the 2 sample/sec series, indicating that the RUL estimate is 

too diffuse to pass this test. However, the 4 sample/sec series 

performs reasonably well, although it reaches EoL 

prematurely. The higher sampling rate results in much better 

performance on this metric. Even at 4 samples/sec, 

performance is not ideal. This is likely due to the limited 

number of samples (250) used in particle filtering. 

Figure 25 and Fig. 26 show the relative accuracy of the RUL 

density estimate based on the median RUL value, and shows 

that the median values are accurate. The 2 sample/sec series 

again lags the 4 sample/sec series in performance. Based on 

the relative accuracy and excluding any zero values, the 

convergence is estimated to be 19.95 for the 4 sample/sec 

series. Convergence is not calculated for the 2 sample/sec 

series because it fails on λ-α accuracy.  When comparing 

prognostic algorithms, larger convergence values are 

desirable. 

3.7. Discussion 

The DBN-based methodology successfully integrates 

heterogeneous sources of information to diagnose the system 

and estimate RUL. Particle-filter based inference provides a 

seamless method for switching between probabilistic 

diagnosis and prediction while facilitating uncertainty 

quantification. 

The prognosis validation results indicate that the 

methodology provides reasonable median estimates of RUL, 

even as the RUL density estimates are sometimes diffuse. 

The sampling rate of the measurements is a large factor in 

whether or not prognosis is successful. Inclusion of 

 

 

 

Figure 19. Ground truth RUL, median RUL, and α 

bounds with α = 0.15 (2 samples/sec) 

 Figure 20. Probability that RUL is within α bounds 

with α = 0.15 (2 samples/sec) 

 

  

Figure 21. Ground truth RUL, median RUL, and α 

bounds with α = 0.15 (4 samples/sec) 

Figure 22. Probability that RUL is within α bounds with α 

= 0.15 (4 samples/sec) 

 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

20 

inspection data may reduce the uncertainty in the leak area 

estimate and thus the RUL estimate. The accuracy of 

prognosis, of course, will vary depending on the system, 

available information, measurement noise, loading 

conditions, and environmental conditions. 

Computational effort is a persistent issue in particle-based 

methodologies, affected by the complexity of the system, 

models involved, simplifying assumptions, filtering 

algorithms, etc. The prognosis methodology described in this 

paper is flexible with respect to these decisions, so 

computational effort will vary. Reductions in computational 

effort may be achieved by using reduced-order models (e.g. 

linearized model of actuator), feature selection and 

dimensional reduction techniques, and improved particle 

filtering techniques (e.g. Rao-Blackwellized particle filter 

(Koller & Friedman, 2009)). Additionally, the ability to 

massively parallelize a particle filter using modern central 

processing units (CPUs) and graphics processing units 

(GPUs) provides the potential for greatly decreased 

computation times. The actuator problem would see 

immediate decreases in computational time with additional 

processor cores. 

Thus far, the methodology has only been demonstrated using 

synthetic data, and needs to be tested further using real-world 

data. Further, more complex physics-of-failure models 

should be considered. 

  

Figure 23. Bounds used for calculating λ-α accuracy with 

α = 0.15 (top) and λ-α accuracy (bottom) for (2 

samples/sec) 

Figure 24. Bounds used for calculating λ-α accuracy 

with α = 0.15 (top) and λ-α accuracy (bottom) for (4 

samples/sec) 

 

 

 

 

 

Figure 25. Relative accuracy based on median RUL 

estimate 2 samples/sec 

Figure 26. Relative accuracy based on median RUL 

estimate 4 samples/sec 
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4. CONCLUSION 

A methodology for DBN-based probabilistic prognosis that 

integrates heterogeneous information sources and diagnosis 

uncertainty is presented in this paper. First, expert opinion is 

used to establish the system definition and basic assumptions. 

Available reliability data is used to calculate conditional 

probabilities for fault indicator variables for damage at the 

support and a crack. Operational and laboratory data are 

organized in a time-lagged database and used for estimating 

actuator parameters including the wear rate.  The system 

DBN model is used in online diagnosis via particle filter-

based inference. Two sampling rates are considered to show 

the effects of sampling rate on prognosis. The particle-based 

state distribution also provides information on diagnosis  

uncertainty (probability of detection, isolation, and 

quantification). The particles resulting from filtering 

integrate seamlessly into a sequential Monte Carlo predictive 

procedure, used for estimating RUL distribution. The 

prognosis results are validated using a four-step hierarchical 

procedure. In the future, the methodology needs to be 

extended to systems of larger dimension and realistic data, 

thus requiring feature selection, dimensional reduction, more 

efficient inference, and massive parallelization using multi-

core CPUs and GPUs. Further, the full value of diagnosis 

uncertainty and RUL estimates obtained through the 

proposed prognosis methodology is realized during risk-

informed decision-making for operations, inspection, 

maintenance, repair, and retirement.  
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