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ABSTRACT 

As the fleet of nuclear power plants (NPPs) approach their
1
 

original qualified life (typically 40 years) and operators seek 

license extensions, regulators require assurance that they 

can continue to operate safely in the decades to come. Some 

of the most important, yet often overlooked components, are 

the cables that provide the signal paths for instrumentation 

and control (I&C) systems used to ensure safe and efficient 

operation of NPPs. 

In response to this, the authors explore the use of expanding 

indenter modulus (IM), an industry-accepted technique for 

cable condition monitoring, into a prognostic tool for 

predicting the remaining useful life (RUL) of I&C cables.   

Not only is this technique non-destructive, but it can be 

performed while NPP cables are in service, thus making it 

practical for adoption into existing cable condition 

monitoring programs. In this paper, the authors describe an 

accelerated aging cable test bed used to acquire several 

types of measurement parameters as cables age.  

Additionally, practical techniques are described in which 

simple IM measurements can be leveraged for condition 

monitoring and RUL estimation. 

Error analysis indicates the proposed method is superior to 

conventional RUL estimation techniques, such as simple 

trending and curve fitting. The authors demonstrate that 

using IM can potentially provide a non-destructive, in-situ 

estimation of RUL for I&C cables. As described in this 

paper, the IM data clearly shows trends as a function of 

cable age, and shows promising performance for RUL 

estimation especially compared with conventional 

techniques. 

                                                           
McCarter et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 

  

1. INTRODUCTION 

As existing nuclear power plants begin to operate beyond 

their initial design lifetimes, it becomes increasingly 

important for plant engineers and operators to be able to 

monitor aging and degradation of critical plant equipment 

and components. The extension of plant life, coupled with 

power uprates and shorter outage durations results in aging 

plants that are not only operating for longer periods, but are 

also being driven harder than in the past.  Along with the 

next generation of NPPs, existing plants need to be able to 

maintain reliable operation to meet the energy demands over 

the coming decades. The need for more reliable operation 

has prompted the nuclear industry to explore alternatives to 

traditional time-based maintenance practices in favor of 

condition-based maintenance strategies that employ 

advanced surveillance, diagnostic, and prognostic 

techniques (Coble, Ramuhalli, Bond, Hines, & Upadhyaya, 

2012). 

Prognostic and Health Management (PHM) technology has 

been given consideration by research organizations and 

other experts as a promising avenue that can be used by the 

nuclear industry. The majority of this research, however, has 

been focused on end-device components such as bearings, 

pumps, motors, batteries, etc. As a result, little attention has 

been paid to an important part of the I&C chain: the electric 

cabling (Villaran & Lofaro, 2009). Cabling is one of the 

largest cost factors in adding new instrumentation to 

existing NPP equipment and one of the most difficult to 

replace. Cable aging, in particular, is primarily concerned 

with degradation of the polymer material by thermal 

oxidation while exposed to heat, humidity, radiation, and 

other environmental stressors (Toman, 2002). Consequently, 

as the polymer degrades, it embrittles, cracks, and becomes 

susceptible to moisture intrusion that can cause shorts and 

shunts in the cable circuits. 

The following details the results of performing prognostic 

analysis on data collected from accelerated aging of 

instrumentation and control (I&C) cables, and uses this data 

to empirically assess the use of a non-destructive 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 
 

 

2 

 

mechanical measurement known as indenter modulus (IM) 

for the prediction of cable RUL. Over the course of the 

accelerated aging, IM measurements are taken at regular 

intervals. After the completion of the experiment, two  data 

driven prognostic techniques, trend evaluation and  the 

General Path Model (GPM), are used to estimate the RUL 

of the cables at various points in the cables’ life and these 

estimates are compared with the actual RUL to empirically 

determine the error.  

The following sections will first present a background of 

research previously conducted on the mechanisms behind 

aging of I&C cables. Next, a summary of the prognostic 

techniques used for RUL estimation is presented. After 

summarizing the details of the accelerated cable aging 

experiment and results, the data is then used to perform 

RUL estimations. Finally, an analysis and discussion of the 

results of the selected RUL methods is presented, as well as 

an estimation of the error present in each method. 

2. CABLE DEGRADATION MECHANISMS AND CONDITION 

MONITORING 

As discussed by Toman (2002), low-voltage cable aging is 

dominated by the effects of radiation and thermal stress on 

the polymer material comprising the cable’s insulation 

and/or jacket. Generally speaking, this results in a net 

hardening of the material over time, although the exact 

behavior is specific to the type of polymer (e.g., amorphous 

vs. semi-crystalline). This hardening can eventually result in 

cracking of the material, thus exposing the current 

conductors to the environment .  

Conventionally, the nuclear industry has used a destructive 

mechanical measurement known as Elongation-at-Break 

(EAB) to quantify the condition of the polymer material of a 

cable’s jacket or insulation and to determine if it is qualified 

for continued use. EAB is measured using a specimen of the 

cable’s polymer material stretched on a tensile strength 

machine (Figure 1) until the sample breaks. EAB values for 

new cables typically range from 250%-650%. Higher EAB 

values for new cables do not reflect superior quality, but the 

nominal properties of the material as engineered by the 

manufacturer (Toman, 2005).  As stated by Villaran and 

Lofaro (2009), the conservative acceptance criterion for a 

nuclear power plant cable is an EAB of 50% or more.  That 

is, if a sample specimen stretches by at least 50% of its 

original length before it breaks, it is qualified for nuclear 

service. In addition to using EAB to characterize the 

condition of cable polymer materials, the Electric Power 

Research Institute (EPRI) showed that the predictability of 

EAB could be used to estimate a cable’s RUL. This was 

done by correlating the EAB of the cable-under-test to 

typical EAB curves, and calculating the time until 50% 

EAB (Toman, 2005). 

 

Figure 1. EAB Testing Equipment 

Because of the destructive nature of EAB, significant work 

was carried out in the 1980’s and 1990’s by EPRI and other 

institutions to develop a non-destructive method for 

characterizing the mechanical condition of cable polymer 

material.  Like EAB, compressive modulus is a mechanical 

property that can be used to assess the condition of a 

material that exhibits an orderly change in mechanical 

properties as it ages (Toman, 2003). Further, testing a 

cable’s compressive modulus is non-destructive. This 

eventually led to the development of a portable device 

known as an indenter (Figure 2) for calculating the 

compressive modulus (i.e., indenter modulus) of materials. 

The device uses a small probe to gently press into the 

material while recording the relationship between force and 

displacement. The IM is then calculated as the ratio of the 

change in force to the change in displacement (Figure 3). 

Typically, several IM measurements are collected from 

various locations around the circumference of the cable and 

averaged to account for local changes in cable 

configuration. Experimental research has shown that the 

correlation between IM and EAB is strong for several 

common polymers found in NPP cables, such as Ethylene 

Propylene Rubber (EPR) and Chlorosulfonated 

Polyethylene (CSPE) (Toman, 2005). 
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Figure 2. IM Testing Equipment 

 

 

Figure 3. Principle of Indenter Modulus 

3. USING PROGNOSTICS FOR REMAINING USEFUL LIFE 

ESTIMATION 

As described by Hines, Garvey, Preston, and Usynin (2008), 

data-driven prognostic techniques can be classified into 

three categories. Type I techniques use historical failure data 

to generate failure distributions and predict the behavior of 

the average component in average conditions. An example 

of this type of method is Weibull Analysis, which is 

commonly used in reliability engineering.  Type II methods 

quantify the effect of specific conditions, environments, or 

parameters on the average component. The Cox 

Proportional Hazards Model, for example, is commonly 

used in analyzing the different factors that impact survival 

rates of those affected by particular diseases. Type III 

methods aim to make predictions based on specific 

conditions and a specific component.  

For RUL estimation, this paper compares three techniques 

for RUL estimation: trend evaluation, and two applications 

of the General Path Model (GPM). Application of these 

techniques generally requires the selection of a prognostic 

parameter – essentially a measurement over time that 

increases or decreases in a predictable manner until failure. 

An individual prognostic parameter in a set is known as a 

degradation path. Because it is not always known a priori 

what measurements will make suitable prognostic 

parameters, a variety of metrics can be used to quantify how 

well a candidate parameter would perform for RUL 

estimations. Researchers at the University of Tennessee 

have developed a set of three metrics for quantifying a 

candidate parameter’s fitness for development into a 

prognostic model: monotonicity, trendability and 

prognosability (Coble, 2010). A high degree of 

monotonicity is characterized by a path whose slope is 

always positive or negative.  To have high trendability, all 

of the measured degradation paths must have the same 

underlying shape.  Finally, prognosability defines the degree 

to which the degradation paths end at the same level of 

damage.  Each metric is scaled from zero to one and the sum 

is used to quantify the fitness.  Therefore, a good prognostic 

parameter will have a fitness value close to three.   

3.1. Trend Evaluation 

Trend Evaluation is one of the simplest types of data-driven 

prognostic methods, using standard regression techniques to 

extrapolate degradation data to failure (Sikorska, 

Hodkiewicz, & Ma, 2011). An assumption of this method is 

that the degradation parameter, typically originating from a 

single sensor or a fusion of several sensors, displays some 

repeatable behavior over time that could be modeled using a 

mathematical function. As new data is collected, it is 

assumed that the data continues to follow the same 

underlying shape, and the new data is used to generate an 

updated extrapolation to failure. Assuming that the selected 

mathematical model always describes the degradation 

behavior, this method can provide reasonably accurate 

results if sufficient degradation data is available. On the 

other hand, this method can contain a large amount of error 

in the estimation when little data is available.  With little 

data, regression error is typically higher and can often result 

in unreasonable RUL estimations (e.g., infinite RUL). 

Figure 4 shows a simple illustration of this method. The 

degradation parameter data from the device under test is 

used to regress the selected mathematical model and 

extrapolate this model to the failure threshold. The 

difference between the time at the current data point and the 

point at which the extrapolated behavior crosses the failure 

threshold is the estimated RUL. 
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Figure 4. Example of Using Trend Evaluation to Estimate 

RUL. 

 

3.2. General Path Model 

The General Path Model (GPM) was first adapted for 

reliability estimation by Lu and Meeker (1993). For 

prognostics, the GPM technique constructs a model based 

on a population of degradation paths. In a similar manner to 

trend evaluation, building a GPM consists of fitting a 

selected function to a degradation path. However, the GPM 

fits this function to each path in a population of degradation 

paths, then uses the average of each constant in the function 

to yield a ‘general path.’  

GPM development begins with the selection of an 

appropriate functional form that will be used to model the 

‘general path’ that a prognostic parameter follows. Building 

a GPM consists of individually fitting the selected 

functional form to each degradation path and then 

calculating the average of each constant in the function. 

Ideally, selection of the functional form is done using a 

physics-based, first principles approach. For example, Lu 

and Meeker (1993) used Paris’ Law to model crack growth 

propagation in the development of their GPM. Many times, 

however, the underlying physics may be unknown or the 

system too complicated to derive a first principles approach. 

In this case, empirical methods can be used (Hines et al., 

2008).    

Several techniques can then be used to apply the GPM to 

RUL estimation. One approach is to assume that each new 

component will always behave exactly as the general path. 

In other words, each new component will always have the 

same RUL as the general path. As expected, this approach 

has an appreciable amount of error as it ignores any current 

trends in data, although this technique does not suffer from 

the possible unreasonable estimations of the trend 

evaluation technique with new datasets.  

For improved performance, it is desirable to combine the 

early strengths of the GPM-only approach and the late 

accuracy of the trend evaluation method.  To accomplish 

this, a trade-off between the general path data and new data 

is needed. One simple method to accomplish this, 

referenced herein as the Appended GPM method, is to 

simply splice the general path onto the end of the new data. 

As shown in Figure 5, the general path is vertically shifted 

along the y-axis to intercept the final data point of the new 

dataset and the RUL. The difference between this time and 

the time at which the shifted GPM intercepts the failure 

threshold is the RUL. 

 
Figure 5. Example of RUL Estimation Using Appended 

GPM.E 

 

The Bayes approach was developed to provide a statistical 

transition from an almost purely historical estimation in the 

beginning to an individual estimate towards the end of life 

as more data is collected.  In this way, the RUL estimate 

typically converges on an accurate prediction faster than the 

two previous methods alone. This method uses a technique 

of Bayesian updating to gradually transition from the GPM-

only estimation to the trend evaluation method as more and 

more data becomes available. Bayesian updating allows 

prior information about the general path model parameters 

to be combined with new data to generate a new estimation 

of model parameters for the current device (Coble and 

Hines, 2011). Essentially, as more data for the device is 

collected, the general path is weighted less in favor of the 

trend evaluation method.   

A detailed mathematical analysis of this method is beyond 

the scope of this work and the interested reader is directed to 

Lindely and Smith (1972) for a more in-depth derivation. A 

brief review of this technique is provided here using the 

linear least-squares method. Equation 1 is a linear regression 

model and the model parameters b can be calculated using 

Eq. 2.  

      (1) 

   



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 
 

 

5 

 

                (2) 

   

The vector Y is constructed using the degradation values of 

each degradation path, and the matrix X (Eq. 4) is 

constructed using the coefficients of the selected 

mathematical model (e.g., linear, quadratic, etc.). 
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The general path is then calculated as the average of each 

estimated model parameters determined from Eq. 2.  

As new data is collected, Eqs. 3 and 4 are appended with the 

GPM model parameters and an identity matrix, respectively. 

To provide the transition between the GPM and the trend 

evaluation approach, the data is weighted using Eq. 5, which 

represents the accuracy of each entry in Eq. 3. To calculate 

the noise variance (σy
2
), each model is subtracted from the 

corresponding measured values to normalize the error and 

enable a variance calculation.  The individual variances will 

be averaged to obtain the population variance. The noise 

variance, σy
2
, is typically very small compared to the model 

variances, σβ
2
, which are calculated from the distribution of 

GPM model parameters.   Therefore, the historical model 

will be weighted more and have a greater influence.  

Finally, Eq. 6 is used to calculate the model parameters of 

the Bayesian-updated GPM.    
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4. REMAINING USEFUL LIFE ESTIMATION WITH INDENTER 

MODULUS 

4.1. Accelerated Aging of I&C Cables 

Accelerated thermal aging of I&C cables was accomplished 

using the industrial furnaces shown in Figure 6. Several 

sample configurations were used to accommodate the 

collection of various types of electrical and mechanical 

measurements (Figure 7). For IM measurements, thirty two, 

1-ft. cable samples were prepared. Sixteen of these samples 

consisted of complete sections of cable (i.e., jacket, 

insulation, and conductors) while the remaining sixteen 

consisted of only the insulation and conductor (Figure 8). 

To account for variation in local material composition and 

configuration of the complete cable sections, ten IM 

measurements were taken around the circumference of the 

outside of the jacket and averaged. For EAB measurements, 

tubular samples of the Ethylene Propylene Rubber (EPR) 

insulation material and dumbbell samples of the Chlorinated 

Polyethylene (CPE) jacket material were prepared in 

accordance with IEC/IEEE 62582 (IEEE, 2012) and a total 

of five EAB measurements were collected and averaged per 

test.  

During thermal aging, all samples were subjected to a 

uniform temperature of 130°C, collecting various electrical 

and mechanical tests including IM and EAB at specific 

intervals throughout the accelerated aging period. The 

particular aging temperature selected for this work was 

based on aging experiments documented in a report 

investigating the qualification practices for low-voltage 

electric cables (Toman, 2005). The majority of these 

experiments were performed at temperatures between 120-

150°C and these temperatures were selected based on 

qualifications performed by the original cable manufacturer. 

It should be noted that because the physical configuration of 

the EAB samples is different than that of the samples used 

for IM testing, the EAB samples degrade faster, and thus 

provide a more conservative estimation of the cable’s age. 

Further, although a direct one-to-one relation between IM 

and EAB could be established by collecting both 

measurements from the same sample, this is impossible 

since EAB is a destructive test. As discussed in Villaran, 

and Lofaro (2009), EAB measurements provide reliable and 

trendable measurements and can be directly correlated with 

material condition.  Additionally, EAB is being used as a 

reference for the cable end-of-life, whereas the focus of this 

research is the general behavior of IM data as a function of 

cable age as well as its performance as a prognostic 

parameter for RUL estimation.   

 

 

Figure 6. Industrial Furnaces Used for Accelerated Cable 

Aging 
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Figure 7. Cable Sample Configuration used for Accelerated 

Aging 

 

 

Figure 8. Sample Configuration Cross Sections for IM 

Measurements 

 

4.2. Results of Accelerated Aging Experiment 

Figure 9 and Figure 10 show the raw data results of EAB 

testing collected for the EPR insulation samples and the 

CPE jacket samples, respectively. Note that these figures 

represent the average of five individual EAB measurements 

per aging time, and the error bars represent the standard 

error. As indicated earlier, unlike the samples prepared for 

IM testing, the EAB samples consist of the polymer material 

only, prepared in accordance with IEC/IEEE standards. 

These results were used to guide the data collection of the 

aging experiment described herein, and determine the 

corresponding time of failure.  Table 1 includes tabulated 

EAB averages and standard errors for reference. 

Figure 11 and Figure 12 show the results of the IM testing 

In addition, the EAB results are overlaid with the IM data 

for reference. Referring back to Table 1, 3146 hours of 

aging would correspond to an EAB of approximately 168% 

and 89% for the EPR insulation/conductor and full cable 

sample, respectively, indicating that the IM cable samples 

have not yet reached end-of-life. Although the samples have 

not yet reached the benchmark 50% EAB, it is visually 

obvious that the IM measurements trend with time, and it is 

expected that this behavior will continue to end-of-life. 

 

 

Figure 9. EAB Average of EPR Insulation. Error Bars 

Represent Standard Errors 

 

Figure 10. EAB Average of CPE Jacket. Error Bars 

Represent Standard Errors 

Hours 
Aged 

EPR Insulation  CPE Jacket 

Average 
Standard 

Error 
Average 

Standard 
Error 

0 358 23.4 220 22.9 

289 319 26.5 174 7.1 

579 342 38.3 197 14.4 

817 323 9.7 156 15.9 

922 326 28.9 162 5.1 

1250 284 26.3 142 15.2 

1464 266 33.3 124 8.2 

1856 320 36.7 101 8.8 

2383 221 24.0 92 11.9 

2790 174 45.4 66 16.2 

3146 168 26.5 89 15.7 

Table 1. EAB Results 
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Figure 11. IM and EAB Measurements for EPR 

Insulation/Conductor Samples 

 

 

Figure 12. IM and EAB Measurements for Sections for Full 

Cable Samples 

 

One important behavior to note is the apparent increase in 

variance of the IM measurement as a function of the cable’s 

age. Figure 13 shows the standard deviation of the 

individual values for each measurement time. Here, the 

values appear somewhat constant until approximately 2000 

hours where there is an increase with cable age. It is 

unknown if this increase as a function of age will continue. 

Further, the cause of this behavior is unknown, and could be 

a result of yet explained chemical changes in the polymer, 

thermal gradients in the cable aging oven, or limitations in 

the precision or accuracy of the measurement device. 

4.3. Prognostics Model Development Using IM 

Since the cable samples in the current accelerated aging 

experiment have not yet aged long enough to reach the 

corresponding 50% EAB, the failure threshold for these 

samples will be shifted to correspond to the current EAB 

values of 168% for the insulation/conductor configuration 

and 89% for the full cable configuration. Essentially, the 

final time value for each individual IM degradation path will 

correspond to the failure value for that cable sample. 

 

Figure 13. Standard Deviation of IM Data 

 

Referring back to Section 3, now that a candidate prognostic 

parameter has been identified, its fitness should be 

quantified using the three metrics discussed (Coble, 2010). 

Performing these calculations results in the values shown in 

Table 2. Note that although the insulation/conductor IM 

parameter shows a higher fitness than that of the full cable 

sample (2.68 to 2.58), the full cable sample will be used for 

the GPM model development since this is the configuration 

that would be encountered in the field.    

 

Metric 
Insulation/ 

Conductor 
Full Sample 

Monotonicity 0.78 0.68 

Trendability 0.98 0.98 

Prognosability 0.92 0.92 

Total Fitness 2.68 2.58 

Table 2. Prognostic Fitness Metrics for IM 

 

After quantifying the fitness of the candidate parameter, and 

confirming that it is a suitable prognostic parameter, the 

next step is to select the functional form for the GPM. 

Visual inspection of the full cable sample IM data (Figure 

12) suggests that the data could be modeled using an 

exponential or polynomial function. Simple error analysis 

indicates that a 3
rd

 order polynomial, of the form in Eq. (7), 

is well suited to model the data. Indeed, best-fit cubic 

functions to each individual path indicate R
2
 values of 

greater than 0.97, suggesting that a 3
rd

 order polynomial 

accounts for much of the variation in the data.  

                   (7) 

The GPM is then calculated by performing a 3
rd

 order 

polynomial fit to each individual degradation path and 

averaging the constants of each fit. This results in the 

general path shown in Figure 14. Here, the general path 
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(dashed line) as well as the general path final value (dotted 

line) is superimposed on the individual IM degradation 

paths. 

 

Figure 14. IM Data with Corresponding GPM (dashed) and 

GPM Failure Value (dotted). 

It is important to note that the GPM developed from the 

aforementioned accelerated aging data is directly affected 

by the aging temperature. This means that any RUL 

estimations generated from this model are applicable only if 

the cable being tested is experiencing the same conditions as 

the cables used to build the model. For example, because the 

cables were aged at 130° C, a temperature significantly 

higher than would be typically encountered in a NPP, the 

accelerated aging data would need to be normalized to the 

temperature being experienced by the cable under test prior 

to GPM development. One of the most common methods 

for this is to use the Arrhenius Relationship (Yang, 2007), 

described in Eq. (8), where t1 is the estimated age, t2 is the 

time the specimen was aged, T1 is the service temperature, 

T2 is the aging temperature, Ea is the activation energy, and 

k is the Boltzmann constant.  

 
  

  
  

  
 

 (
 

  
 

 

  
)
  (8) 

 

Care should be taken when applying the Arrhenius 

relationship to note the assumptions of the underlying 

model, which include the assumption of a first-order 

relationship and constant activation energy. Normalization 

of the accelerated aging data and subsequent analysis is 

planned for future work. 

5. RESULTS AND ANALYSIS 

To test the performance of the GPM approach, an iterative 

technique was used to estimate the error of the GPM method 

and compare the GPM method to other types of RUL 

estimations. To start, each of the IM degradation paths was 

censored, or removed, from the population prior to the GPM 

development and treated as an unknown data set.  Each of 

the data points in the censored, unknown data set was then 

treated as a simulated field measurement. RUL estimations 

were calculated from each data point of the censored 

degradation path using both types of GPM techniques 

(Bayes and appended) as well as a 3
rd

 order trend 

evaluation.  

Figure 15 shows the absolute percent error, calculated using 

Eq. 9, between the estimated RUL for all methods, averaged 

across all paths as a function of number of points. Note that 

at least 4 data points must be available in order to calculate 

a 3
rd

 order polynomial fit for the individual method. Table 3 

provides the numerical values of the average percent error 

along with the calculated standard errors. As expected, 

when estimating RUL using only a regression of the 

available data, the error tends to decrease as more data 

becomes available. Additionally, and more importantly, 

both GPM methods always outperform the individual fit 

method. This behavior is supported in other experiments 

performed by the authors to explore the use of  Frequency 

Domain Reflectometry (FDR) as a prognostic parameter 

(Shumaker, McCarter, Hashemian, & O’Hagan, 2014).  

 

  | 
                       

         

    | (9) 

 

 

Figure 15. Absolute Percent Error in RUL Estimation as a 

Function of Number of Data Points. 
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No. 
of 

Pts. 

GPM with 
Bayes 

Appended 
GPM 

Trend 
Evaluation 

% 
Error 

Std. 
Error 

% 
Error 

Std. 
Error 

% 
Error 

Std. 
Error 

1 5.58 0.01 6.89 0.50 - - 

2 5.63 0.09 7.33 1.27 - - 

3 5.19 0.24 3.24 0.65 - - 

4 6.05 0.43 18.00 2.75 59.25 1.64 

5 6.70 0.74 12.14 2.38 45.01 5.05 

6 5.57 0.79 11.46 1.77 26.43 6.71 

7 4.66 0.64 7.41 0.93 19.31 4.69 

8 10.88 5.35 9.35 1.35 16.87 1.69 

9 5.60 0.62 5.34 0.85 6.25 0.88 

10 5.50 0.59 5.19 0.63 5.34 0.60 

Table 3. Absolute Average Percent Errors and Standard 

Error of RUL Estimation Population.  

 

Although this method performs well in laboratory 

conditions for CPE/EPR polymer cables, more experiments 

with different polymer materials subjected to a range of 

temperatures are needed to help establish the accuracy of the 

IM technique as a predictor of cable age. Additionally, the 

authors will soon begin investigating the relationship 

between the mechanical measurements of EAB and IM to 

other thermal and chemical measurements such as percent-

crystallinity, melting temperature, or glass transition 

temperature changes.  
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