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ABSTRACT 

In this paper, the Generalized Cell Mapping (GCM) method 

for a linear system is compared with a new stochastic 

method for novel cell-to-cell mapping.  The authors 

presented the new stochastic method in Mohon and Pisu 

(2013).  The two methods are compared in an application 

example of a vehicle alternator.  The alternator may 

experience three faults including belt slippage, a faulty 

diode connection, or incorrect controller reference voltage.   

Fault detection and isolation (FDI) is performed using the 

two cell-to-cell mapping methods.  The results show that the 

new stochastic method is slower but yields better isolation 

results than the GCM method. 

1. INTRODUCTION 

Besides high performance, the other most important and 

desirable features of modern technological systems are 

safety and reliability. Owing to their increasing complexity, 

technological systems are becoming more and more 

vulnerable to faults. These faults, if not handled timely and 

properly, may lead to severe failures causing damage to 

property or even human lives. This is particularly true for 

the complex dynamic systems made of interconnected 

components where one faulty component can lead to 

malfunction of the overall system. Therefore, detection and 

isolation of the faults is of extreme importance in modern 

technological systems. Early detection and proper handling 

of faults essentially improve the dependability of the 

dynamic system ensuring safe operation. 

An important tool for analyzing dynamic systems is cell-to-

cell mapping as described by Hsu (1980).  The dynamic 

state space of the system is quantized into cells that the 

system may occupy as time evolves.  State variables are 

considered in intervals instead of a continuum of points.  

Such a system is justified due to the inherent inaccuracy of 

physical measurements.  Using this framework, the 

probability of cell transitions can be computed using various 

approaches such as Monte Carlo, GCM, and Hyperbox-

Mapping methods. 

In the Monte Carlo method, repeated random samplings and 

deterministic computations are used to find possible 

outcomes and their associated probabilities (Kastner, 2010).  

Using this information, a state to state probability transition 

matrix for the system can be constructed (Wang, 1999).  

The more samplings performed, the more accurate the 

probability transition matrix (Sobol, 1994).   

In the GCM method, the boundaries of image cells are 

important in determining state transition probabilities (Hsu, 

1981).  The image cell of the current cell are found first.  

Then the boundaries of the image cell are mapped back to 

locations on the current cell and when linearly connected 

form an area within the current cell.  Now this area is known 

to transition to a particular image cell area.  The probability 

associated with this transition is calculated given the total 

area of the current cell. 

A similar approach to the GCM method is the Hyperbox-

Mapping method. This method is also concerned with area 

transformations to obtain state transition probabilities 

especially for use with stochastic automatons.  In this 

approach, the cells are renamed hyperboxes.  The method 

uses mappings between current state-input and future state-

output plots to define areas and the measure of these areas 

produces probabilities.  Higher accuracy for probabilities 

can be achieved by further sub-dividing the hyperboxes into 

smaller hyperboxes.  A comparison between Monte Carlo 

method and Hyperbox-Mapping method shows the Monte 

Carlo method is an under-estimate of the true transition 

probabilities while the Hypberbox-Mapping method is an 

over-estimate of the true transition probabilities (Schröder, 

2003). 

The main motivation for formulating the GCM method was 

to analyze global dynamics of a system (Hsu, 1982). The 

purpose of the method was to find equilibrium states and 

periodic motions in the system that can be identified after 

many mapping steps are performed (Hsu & Chiu, 1986) 

(Chiu & Hsu, 1986).  This global analysis can yield a 

stationary probability transition matrix that does not change 

with time. Stationary transition matrices allow the global 

behavior of the system to be analyzed through Markov 

Chain theory where the entire evolution of cell mapping 
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over time is determined by the stationary transition matrix 

(Hsu & Guttalu, 1980). 

The Monte Carlo and GCM method each rely on repetitive 

simulations during each time step to calculate transition 

probabilities. Each method effectively uses information 

about the initial cell and image cell(s). The amount of 

computation involved could overwhelm a microcomputer 

trying to calculate transition probabilities in real-time. These 

methods are most suitable for offline approaches. Therefore, 

a new method that only uses information about the initial 

cell would be a beneficial step toward real-time 

applications. 

The Monte Carlo and GCM approaches can also be 

computationally burdensome with respect to high 

dimensional nonlinear systems. Performing the Monte Carlo 

method on these systems requires huge sampling 

populations. The GCM method also requires many 

calculations in order to find image cell boundaries for a 

nonlinear system. Then all these image cell points must be 

inversely mapped into the original cell. The feasibility of 

these methods with nonlinear systems is severely limited. 

The new stochastic method proposed by the authors uses the 

system vector field in quantized regions to calculate state 

transition probabilities as time evolves without computing 

image cells.  In this paper, the new method will be called the 

Flow method.  The flow in/out of a cell through its 

perimeter is analyzed similar to the Divergence Theorem.  

The total flow through a cell is comprised of summation of 

the flow through the sides of the cell.  This flow directly 

impacts the probability of state transition.  At each time 

step, the flow through each side of current state is calculated 

and then normalized to total flow through whole state 

perimeter.  A time-varying probability transition matrix can 

be created from these calculations. 

Once armed with the above methods for obtaining the 

probability transition matrices, they can be applied to FDI 

problems in quantized systems.  For example, if an expected 

state transition has a very low probability, and then the state 

transitions to this state and possibly continues to transition 

to low probability states, then this could indicate a fault in 

the system.  The probability transition matrices obtained 

from the above methods can also be used in conjunction 

with stochastic automatons for quantized systems when the 

system output and system states are not identical (Schröder, 

2003).  This paper applies and compares the GCM and Flow 

methods for fault detection in an alternator system 

previously described by Mohon and Pisu (2013).  Results 

show that the GCM method yields faster detection time with 

incomplete isolation of faults.  On the other hand, the new 

stochastic method results in slower detection time and 

complete isolation. 

The rest of the paper structure is as follows.  The second 

section of this paper describes the GCM method.  The third 

section describes the Flow method.  The fourth section 

describes the computational complexity of the Flow method 

and GCM method.  The fifth section applies the two 

methods to an application example with a faulty automotive 

alternator and compares FDI results.  Lastly, some 

concluding remarks about the usefulness of each method is 

provided. 

2. GENERALIZED CELL MAPPING METHOD 

The method for generalized cell mapping is described in a 

book by Hsu, Marsden, and Sirovich (1987).  Unlike simple 

cell mapping, where one cell is mapped into a single image 

cell, generalized cell mapping allows one cell to be mapped 

to several image cells.  Each image cells represents a 

fraction of the total probability. 

Consider the following simple example.  Suppose we have a 

system described by Eq 1.  There are two states z1 and z2 

and only z2 is observable in output.  We can illustrate the 

state space divided into quantized states 1 through 7 in 

Figure 1.  We will also assume some maximum and 

minimum values for z1. 

 
 

(1) 

 

Figure 1:  Quantized states in state space example 

 

Obtaining the image cell boundaries can be thought of as a 

Monte Carlo exercise.  By randomly choosing a large 

sample of random points within the initial cell (state 4) and 

applying the dynamic system equations, the new location of 

the points can be plotted on the 2D state space.  Figure 2 

and Figure 3 illustrate how the randomly sampled points 

move in time.  A large number of points will clearly 

delineate the boundary of the new image cell. 
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Figure 2:  Initial cell with randomly sampled points 

 

Figure 3:  Image cell containing new position of sampled 

points after a finite time delta t 

 

The new image cell in this example is clearly a quadrilateral 

with four vertices.  These vertices represent the boundaries 

of the image cell.  Note that the image cell is now spanning 

states 3, 4, and 5.  By using the system dynamic equations, 

these vertices and other important points can be mapped 

back into the original cell shown in Figure 4.  This will 

allow us to determine the regions of the original state that 

map into other states. 

 

Figure 4:  Inverse mapping important points on image 

cell back into original cell 

 

The regions of the area now defined in the original cell can 

be used to calculate probabilities of transitioning up or down 

in the system.  Region A2 is mapped back into region A1.  

Region A4 is mapped back into region A3.  The probability 

to transition up, down, or stay in state 4 is given by the 

following. 

 

1Pr( )

3Pr( )

Pr( ) 1 Pr( ) Pr( )

total

total

Aup
A

Adown
A

stay up down





  

 
(2) 

This process can be repeated as the system’s state changes 

along with input values. 

3. PROPOSED FLOW METHOD 

The Flow method was proposed by the authors in a previous 

paper (2013).  This method uses the system’s vector field F 

to determine flow into and out of the current state/cell.  The 

method exploits the divergence theorem and determines the 

total potential of flow through the cell as the sum of flows 

through the perimeter of the cell. 

A two-dimensional form of the divergence theorem is 

defined in Eq. (3).   We define C as a closed curve, A as the 

2D region in the plane enclosed by C, n̅  as the outward 

pointing normal vector of the closed curve C, and F̅ as a 

continuously differentiable vector field in region A.  A 

graph of the 2D divergence theorem for the same 2D system 

in Eq. 1 is shown in Figure 5.   

 

 

(3) 

 

Figure 5.  Graph of 2D Divergence Theorem for 2D state 

space system 

 

We consider that the vector field �̅� describes transition flow 

in and out of the current state along the state boundaries.  

For the DC electric machine model, �̅� is defined as Eq. (4) 

where 𝑖̂ and 𝑗̂ are coordinates of vector field F and functions 

f1 and f2 are defined by states z1 and z2 from the state space 

model in Eq. (1).  

 

 

(4) 

The flow through the left and right sides of the area A in 

Figure 5 will be assumed zero for the alternator system 

shown in Figure 6. The line integrals along the state z 

boundaries will determine flow in and out of the state.  The 

vector field F is illustrated by grey slope field in Figure 6.  
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Flow out of state z is defined as a positive value φ+ and flow 

into state z is a negative value φ-.  Since each side may have 

flow in and flow out sections, the flow transition point z** 

or z* is found if necessary and the appropriate limits of 

integration for flow in and flow out are integrated for each 

side.  Transition points are shown in Figure 6.  Without loss 

of generality assume f2 < 0 if z1 < z*,z** and f2 > 0 if  z1 > z*, 

z** such that Eq. (5) holds.  The upward and downward flow 

through each side of state z is given by Eq. (6). 

 

Figure 6.  Graph of quantized DC electric machine 

system with flow definitions 

 

 
f2(z
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f2(z
**, z2
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(6) 

Next we define φin, φout, and φtotal in Eq. (7) in order to build 

probabilities.  The sum of the absolute value of all inward 

flow in defined as φin.  The sum of all outward flow is 

defined as φout. The total flow φtotal is the sum of φin and φout. 
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(7) 

The notion of probability can be interpreted as counting 

types of occurrences and then normalizing the count of each 

type by the total occurrences.  Suppose the occurrences of 

outward and inward flow defined in Eq. (6) are normalized 

by the total flow defined in Eq. (7).  For example, the 

probability to transition up will be defined as the outward 

flow through side 2, φ2
+, divided by the total flow φtotal. We 

can then define z as the state above current state z and 

define z as the state below current state z.  Equation (8) 

gives the probability to stay within the current state and the 

probability to transition up or transition down to an adjacent 

state.  Uniform probability distribution is assumed along the 

borders of each state. 
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(8) 

At each time step the probability to stay or transition up or 

transition down is calculated using the current state 

boundaries and the current input.  This information builds a 

time-varying probability transition matrix named L that can 

be constructed as shown in Table 1 for the example of 

current state z=2 at time t. 

 

Table 1:  Example of probability transition matrix L for 

current state z=2 at a time t 

4. COMPUTATIONAL COMPLEXITY 

So far, the new stochastic method has been described in the 

context of a two dimensional state space system.  The 

beauty of the new method is that it is based on the 

Divergence Theorem that already has a multi-dimensional 

framework.  This means the new method can be easily 

extended to more dimensions and states using existing 

Divergence Theorem framework.  In this section the multi-

dimensionality of the new Flow method is investigated in 

terms of computational complexity and compared to the 

GCM method.  Parameters of interest will include the 

number of states n in the system and the number of 

  Future State z’ 

  1 2 3 4 

C
u

rr
en

t 
S

ta
te
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1 0 0 0 0 

2 Pr(z ' = z- | z)  Pr(z ' = z | z)  Pr(z ' = z+ | z)  0 

3 0 0 0 0 

4 0 0 0 0 
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sampling points on a quantized edge N.  First, the 

computational complexity of the proposed Flow method is 

presented then followed by the GCM method. 

4.1. Flow Method 

Consider a system of ( , )x f x u  such that nx R and N is 

the number of sampling points on a quantized edge on a 

state and n is the number of states.  The calculation of the 

Flow method integral must be performed on each edge/face 

of a hypercube.  The number of edges/faces F on a 

hypercube are a function of states n in the system. 

 2F n  (9) 

Assume that the computational complexity for calculating 

elementary operations of ( , )x f x u  is α.  Also assume 

that the calculation of flow using divergence theorem can be 

approximated using the Euler method in Eq. (10). 
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Therefore, numerically calculating the Flow method integral 

is 1nN  .  The computational complexity for performing 

the Flow method on a n state system with N sampling points 

on the boundary of each state is given by  

 
1

(2 )( )( )
n

C n N 


  (11) 

4.2. GCM Method 

The first step in the GCM method is obtaining the image 

cell boundaries and this can be achieved through the Monte 

Carlo method.  The following analysis will show the 

computational complexity of the Monte Carlo method and 

how this first step of GCM method is already more 

computationally complex than the Flow method. 

Now consider a system of x states such that Mx R and N is 

the number of sampling points on a quantized edge on a 

state and n is the number of states.  Again, α is assumed to 

be the computational complexity for calculating one state.  

Performing Monte Carlo on this system requires choosing 

initial points x(t) and seeing where they evolve after some 

time to yield x(t+Δt). 

 ( ) ( ) ( )*x t t x t x t t     (12) 

This equation requires another addition and multiplication to 

the computational complexity after calculating (t)x  (which 

is essentially α), hence α+2 computations are needed.  This 

must also be performed inside all hypercubes in the n 

dimensional system with N sampling points on the 

boundary.  Hence, 

 ( 2)
n

C N    (13) 

4.3. Comparison of Computational Complexity 

To illustrate the computational savings of the new Flow 

method compared to the Monte Carlo method, a 3 x 3 plot is 

given in Figure 7.  Each row is number of sampling points 

N on state boundaries and each column is numbers of states 

n.  For this figure, α=6, m=3, M=100.  The y axis in each 

plot is in log scale.  Clearly the Flow method is less 

computationally burdensome than the GCM method. 

 

 

Figure 7:  Comparison of computational complexity for different methods
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5. APPLICATION EXAMPLE:  ALTERNATOR SYSTEM 

Today’s vehicles require higher electrical demands than 

ever before due to more mandated safety technology and 

popular consumer technology integrated within the vehicle.  

The purpose of the vehicle’s alternator system, also known 

as the electrical power generation storage (EPGS) system, is 

to maintain the necessary electrical power needed to start 

the vehicle and keep it running smoothly.  A healthy EPGS 

system is crucial for proper operation of a vehicle and have 

been investigated in previous literature. 

Scacchioli, Rizzoni, and Pisu (2006) proposed a fault 

isolation approach for an EPGS system using two equivalent 

alternator models.  One equivalent model for a healthy 

alternator and one equivalent model for an alternator with 

one broken diode.  Parity equations and three residuals with 

constant thresholds were used for fault isolation.  The 

approach assumed a 3000 second Federal Urban Driving 

Schedule (FUDS) cycle.   

Zhang, Uliyar, Farfan-Ramos, Zhang, and Salman (2010) 

proposed a fault isolation approach for an EPGS system 

using parity relations trained by Principal Component 

Analysis (PCA).  Three residuals with constant thresholds 

were used for isolation.  The approach assumed a staircase 

profile for both load current and alternator speed input, 

which is not a realistic scenario.   

Hashemi and Pisu (2011a) proposed a fault isolation 

approach for an EPGS system using two observers and three 

residuals.  The approach assumed a staircase profile for load 

current and a portion of the FUDS cycle for alternator 

speed.  Adaptive thresholds were used for isolation.  In 

other similar work, Hashemi and Pisu (2011b) showed the 

same approach but created a reduced order adaptive 

threshold model using Gaussian fit of data.  The second 

approach was less computationally intensive.   

Scacchioli, Rizzoni, Salman, Onori, and Zhang (2013) 

proposed a fault isolation approach for an EPGS system 

using one equivalent EPGS model that used parity equations 

to produce three residuals for fault isolation.  The approach 

used a staircase profile for both load current and alternator 

speed input. 

As stated, previous work for fault isolation in an EPGS 

system has included observers and parity relations.  The 

approaches with observers were built for linear systems that 

approximate the nonlinear behavior of the EPGS system.  

These approaches cannot be extended for direct use on the 

nonlinear system itself.  At least three residuals are required 

for all previous approaches.  It is also concerning that some 

approaches were not validated using real driving situations.  

Therefore these approaches have limited scopes. 

5.1. Model for Alternator System  

This paper analyzes the EPGS system shown in Figure 8 as 

modeled by Scacchioli et al. (2006).  It consists of a voltage 

controller, alternator, and battery.  The controller can be an 

electronic control unit or a voltage controller on the 

alternator itself.  In this paper, the controller is a part of the 

alternator to regulate field voltage.  The alternator model 

consists of an AC synchronous generator, three phase full 

bridge diode rectifier, voltage controller, and excitation 

field.   

The engine crankshaft mechanically spins the generator’s 

rotor by use of a belt and pulley.  The rotor is a ferrous 

metal wrapped with a single conductive winding.  When the 

controller applies a small field voltage to the winding, a 

small field current flows through the winding.  The flow of 

current through the winding produces a magnetic rotor with 

a north and south pole.  However, the stator is composed of 

three phase stationary windings.  As the magnetic rotor 

moves relative to the conductive stator windings, an 

electromotive force is induced in the stator windings.  If the 

stator windings are connected to an electrical load, then AC 

current will flow in each of the three stator windings.  The 

three currents are sent to a diode bridge rectifier to produce 

DC current for electrical loads or for recharging the battery.  

Therefore, the alternator takes mechanical energy of the 

engine and produces electrical energy for the battery or 

loads of the vehicle.  

 

Figure 8.  EPGS model 

 

The model for the EPGS system results in a complex 

nonlinear system but can be more easily modeled by an 

equivalent DC electric machine as described by Sacchioli et 

al. (2006).  The dashed line in Figure 8 encompasses the 

components represented by the DC model.  

The DC electric machine is modeled by the state space 

system in Eq. (14) as shown by Hashemi (2011). 
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(14) 

Equation (14) has two states z1 and z2 and inputs u1, u2, and 

u3.  The system inputs represent the alternator field voltage 

Vf, angular frequency of alternator ωe, and dc voltage of the 

battery Vdc also shown in Eq. (15).  The coefficients a12, a22 

and b11…b23 are functions of engine speed and were found 

using system identification by Hashemi (2011) using test 

data at different constant engine speeds. In this model, state 

z2 is the measurable quantity Idc which is the rectified output 

current of the alternator. 
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5.2. Possible Faults in Alternator System  

The EPGS system is important in every vehicle and faults in 

the system need to be detected and isolated as quickly as 

possible to prevent costlier damage.  This paper considers 

three common faults that occur in an EPGS system.  

Possible fault locations in EPGS system are bolded in 

Figure 9. 

1. Voltage controller fault:  This fault occurs when the 

reference voltage Vref is incorrectly raised or lowered 

by a percentage of the nominal Vref.  The fault can 

cause the alternator to overcharge or undercharge the 

battery. 

2. Diode rectifier fault.  This fault occurs when a diode in 

the diode bridge has a faulty connection.  The fault 

results in a large ripple in battery voltage Vdc and 

alternator output current Idc thereby decreasing the 

efficiency of alternator output. 

3. Belt slip fault.  This input fault occurs when the belt 

between the engine crankshaft and alternator pulley 

slips due to insufficient tension.  The belt slip causes a 

decrease in alternator rotational speed ωe and a decrease 

in alternator output voltage.  To compensate, the 

voltage controller increases the field voltage and/or the 

battery must discharge more often to meet load 

demand.  This can age the battery prematurely.  Belt 

slip can signify the belt is worn and needs to be 

replaced. 

 

Figure 9:  Possible faults in EPGS model 

5.3. Simulation Results 

Previous work by Scacchioli et al. (2006) yielded a 

complete nonlinear EPGS model.  This nonlinear model 

uses ωe, Iload, and Vref as inputs and yields Vf, Vdc, and 

battery dc current Idc as output.  Diagnostics for the belt 

fault case, diode fault case, and voltage controller fault case 

are accomplished by using the Flow method and GCM 

method.  The Flow method procedure is illustrated in Figure 

10 and the GCM method procedure is illustrated in Figure 

11.  

 

Figure 10.  EPGS model with Flow method 

 

 
Figure 11:  EPGS model with GCM method 

 

The inputs for the nonlinear EPGS Simulink model are 

provided in Mohon and Pisu (2013). 

Table 2 details the selected injection time and magnitude of 

fault relative to nominal that were injected during 

simulation.  Depending on the fault cast (i.e. persistent fault, 

intermittent fault) the time of fault injection will change.  

The faults were simulated by modifying the nominal inputs 

of the system. 
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Table 2:  Fault injection time and magnitude 

 

Output z2 range for nominal and faulty cases must be 

quantized into rectangles to find the probability transition 

matrix over time.  Output z2 is quantized into 12 states with 

names 1-12.  The same boundaries and names will be used 

for faulty cases as well. 

Given the z1 range, the quantized states, and u1, u2, and u3, 

the probability transition matrix can now be calculated using 

the f2 function from Eq. (14).   

The probability transition matrix L contains probabilities of 

certain future state transitions as shown in Table 1.  The 

largest probability will denote the most likely predicted state 

transition z’ = [Idc,predicted] and its probability P(z’ = 

[Idc,predicted]).  The most likely probability and most likely 

predicted state can be compared with the quantized output 

state [Idc] that is measured.    If there is a relatively high 

probability of a particular state transition occurring and that 

state transition does not occur, then a fault may be present.  

An example of predicted state probabilities, predicted states, 

and output states over time for belt fault case is shown in 

Figure 12 and Figure 13. 

 

Figure 12.  Belt fault outputs for Flow method 

 
Figure 13:  Belt fault outputs for GCM method 

 

5.3.1. Persistent Faults and Threshold Analysis 

Table 3 details the selected injection time and magnitude of 

fault relative to nominal that were injected during 

simulation.  Once the fault is injected, it remains for the 

duration of the simulation.  The faults are simulated by 

modifying the nominal inputs of the system. 

 

Table 3:  Persistent fault injection time and magnitude 

Disagreement between predicted and output states are clear 

after calculating the difference of quantized output state [Idc] 

and the predicted state.  This difference is defined as the 

residual r in Eq. (16).  The residual results for each fault 

case using Flow method are shown in Figure 14 through 

Figure 16.  The residual results for each fault case using 

GCM method are shown in Figure 17 through Figure 19. 

 ,[ ] [ ]dc dc predictedr I I 

 

(16) 

 

  

Fault 

Injection 

time 

(s) 

Modified 

Input 

Resulting % drop 

with respect to 

nominal 

Belt Slip Varies ωe 80 

Diode Varies Vdc 
N/A 

(faulty connection) 

Voltage 

Controller 
Varies Vref 30 

 

Fault 

Injection 

time 

(s) 

Modified 

Input 

Resulting % drop 

with respect to 

nominal 

Belt Slip 10 ωe 80 

Diode 10 Vdc 
N/A 

(faulty connection) 

Voltage 

Controller 
10 Vref 30 
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Figure 14.  Belt fault residual for Flow method 

 

Figure 15.  Diode fault residual for Flow method 

 

Figure 16.  Voltage controller fault residual for Flow 

method 

 

Figure 17:  Belt fault residual for GCM method 

 

Figure 18:  Diode fault residual for GCM method 

 

Figure 19:  Voltage controller fault residual for GCM 

method 
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Analysis of Flow Method Results All three fault cases 

using the Flow method show a short-term disagreement r  

0 between predicted and output states at time t=0.2 seconds 

but returns to agreement r = 0 immediately at t=0.3 seconds.  

The disagreement occurs before a fault is injected at time 

t=10 seconds.  This disagreement at t=0.2 could trigger a 

false alarm during fault detection.  Similar rapid switching 

behavior also occurs in the diode fault residual in Figure 15.  

To distinguish between the similar switching behavior of 

false alarms with real faults and to build confidence in the 

diagnostic algorithm, a fault will only be detected if the 

residual shows disagreement for at least 0.2 seconds.  The 

belt fault will be detected at t=38.5 seconds.  The diode fault 

will be detected at t=10.8 seconds.  The controller fault will 

be detected at 10.3 seconds. 

Isolation of a detected fault is attempted by monitoring the 

mean of the residual during a finite time window T 

following detection.  The time window T, chosen to be 10 

seconds, is further divided into 5 subwindows and the mean 

inside each subwindow is computed as shown in Figure 20.  

Then a probability density function (pdf) of the means is 

computed using Matlab function ksdensity.  This is done for 

all healthy and faulty cases.  The pdfs from ksdensity are 

used for threshold analysis, so that probability of false alarm 

and misdetection are minimized as shown in Figure 21. 

 

Figure 20:  Window T and subwindows after fault 

detection 

Figure 21 shows that the means of the controller and belt 

fault are isolatable but the diode fault is not.  The mean of 

the diode fault and healthy pdfs are too similar to draw 

conclusions.  Probabilities of false alarm and misdetection 

are tabulated in Table 4. 

Based on the Flow method approach, the belt fault will be 

isolated at t=48.5 seconds and the controller fault will be 

isolated at time t=20.3 seconds.  The diode fault will not be 

isolatable. 

 

Figure 21:  Persistent fault for Flow method with time 

window 10 seconds 

 
Table 4:  Threshold analysis for Flow method with 

persistent faults 

 

Analysis of GCM Method Results The GCM method 

residuals show similar behavior compared to the Flow 

method residuals.  The controller fault will not be detected 

or isolated because the residual never deviates from zero.  

The controller fault causes the output to transition to a 

nonadjacent cell and GCM method allows for nonadjacent 

cell transitions.  Therefore, the residual of controller fault is 

always zero. 

To distinguish between the similar switching behavior of 

false alarms with real faults and to build confidence in the 

diagnostic algorithm, a fault will only be detected if the 

residual shows disagreement for at least 0.2 seconds.  The 

belt fault will be detected at t=25.6 seconds.  The diode fault 

will be detected at t=52.6 seconds.  The controller fault will 

not be detected. 

Isolation of a detected fault is attempted by monitoring the 

mean of the residual during a finite time window T 

following detection.  The time window T, chosen to be 10 

seconds, is further divided into 5 subwindows and the mean 

inside each subwindow is computed as shown in Figure 20.  

Then a probability density function (pdf) of the means is 

computed using Matlab function ksdensity.  This is done for 

all healthy and faulty cases.  The pdfs from ksdensity are 

used for threshold analysis, so that probability of false alarm 

and misdetection are minimized as shown in Figure 22.   

 Threshold P(False Alarm) P(Misdetection) 

Belt Slip 0.2732 0.3912 0.0749 

Diode N/A N/A N/A 

Voltage 

Controller 
-0.6061 0.2610 0.3455 
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Figure 22:  Persistent fault for GCM method with time 

window 10 seconds 

 

Figure 22 shows that the means of the means of the pdfs are 

clustered on top of each other around residual value zero.  

The mean of the faulty and healthy pdfs are too similar to 

draw conclusions.  Probabilities of false alarm and 

misdetection cannot be computed as shown in Table 5. 

 
Table 5:  Threshold analysis for GCM method with 

persistent faults 

 

Based on the GCM approach, the belt fault, diode fault, and 

controller fault will not be isolated. 

5.3.2. Intermittent Faults with Noise and Threshold 

Analysis 

Table 6 details the selected injection time and magnitude of 

fault relative to nominal that were injected during 

simulation.  Intermittent faults have been considered where 

the faults are injected and then removed for a few cycles.  

The faults were injected for 10<t<20, 30<t<40, and 50<t<60 

seconds.  The faults are simulated by modifying the nominal 

inputs of the system. 

For the intermittent fault case, noise has been added to each 

fault according to Table 7. 

 

Table 6:  Fault injection time and magnitude 

 

Table 7:  Noise construction 

Disagreement between predicted and output states are clear 

after calculating the difference of quantized output state [Idc] 

and the predicted state.  This difference is defined as the 

residual r in Eq. (11).  The residual results for each fault 

case using the Flow method are shown in Figure 23 through 

Figure 25.  The residual results for each fault case using 

GCM method are shown in Figure 26 through Figure 28. 

Analysis of Flow Method Results The belt fault residual 

again shows some switching behavior.  The diode fault 

residual shows much less switching behavior compared to 

persistent fault case.  The controller fault residual square 

wave behavior once the fault is injected at 10 seconds. 

To distinguish between the similar switching behavior of 

false alarms with real faults and to build confidence in the 

diagnostic algorithm, a fault will only be detected if the 

residual shows disagreement for at least 0.2 seconds.  The 

belt fault will be detected at t=20.6 seconds.  The diode fault 

will be detected at t=52.2 seconds.  The controller fault will 

be detected at 10.3 seconds. 

Isolation of a detected fault is attempted by monitoring the 

mean of the residual during a finite time window T 

following detection.  The time window T, chosen to be 10 

seconds, is further divided into 5 subwindows and the mean 

inside each subwindow is computed as shown in Figure 20.  

Then a probability density function (pdf) of the means is 

computed using Matlab function ksdensity.  This is done for 

all healthy and faulty cases.  The pdfs from ksdensity are 

used for threshold analysis, so that probability of false alarm 

and misdetection are minimized as shown in Figure 29. 

  

-3 -2 -1 0 1 2 3
0
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GCM Method                          
Time Window: 10 sec                 

ksdensity(mean(residual subwindows))

 

 
Healthy

Controller Fault

Diode Fault

Belt Fault

 Threshold P(False Alarm) P(Misdetection) 

Belt Slip N/A N/A N/A 

Diode N/A N/A N/A 

Voltage 

Controller 
N/A N/A N/A 

 

Fault 

Injection 

times 

(s) 

Modified 

Input 

Resulting % drop 

with respect to 

nominal 

Belt Slip 

10-20,  

30-40,  

50-60 
ωe 80 

Diode 

10-20, 

30-40, 

50-60 

Vdc 
N/A 

(faulty connection) 

Voltage 

Controller 

10-20,  

30-40,  

50-60 

Vref 30 

 

Fault Input Units Mean Variance 

Belt Slip ωe (rad/sec) 0 3 

Diode Vdc (V) 0 0.03 

Voltage Controller Vref (V) 0 0.2 
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Figure 23:  Noisy intermittent belt fault residual for 

Flow method 

 
Figure 24:  Noisy intermittent diode fault residual for 

Flow method 

 
Figure 25:  Noisy intermittent voltage controller fault 

residual for Flow method 

 
Figure 26:  Noisy intermittent belt fault residual for 

GCM method 

 
Figure 27:  Noisy intermittent diode fault residual for 

GCM method 

 
Figure 28:  Noisy intermittent voltage controller fault 

residual for GCM method 
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Figure 29:  Noisy intermittent fault for Flow method 

with time window 10 seconds 

Figure 29 shows that the means of the controller and diode 

faults are isolatable but the controller fault is not.  The mean 

of the belt fault and healthy pdfs are too similar to draw 

conclusions.  Probabilities of false alarm and misdetection 

are tabulated in Table 8. 

 
Table 8:  Threshold analysis for Flow method with noisy 

intermittent faults 

Based on the Flow method approach, the diode fault will be 

isolated at t=62.2 seconds and the controller fault will be 

isolated at time t=20.3 seconds.  The belt fault will not be 

isolated. 

Analysis of GCM Method Results The belt fault residual 

shows minimal switching behavior.  The diode fault shows 

much less switching behavior compared to the persistent 

fault case.  The controller fault residual is zero similar to the 

persistent fault case. 

To distinguish between the similar switching behavior of 

false alarms with real faults and to build confidence in the 

diagnostic algorithm, a fault will only be detected if the 

residual shows disagreement for at least 0.2 seconds.  The 

belt fault will be detected at t=25.9 seconds.  The diode fault 

will be detected at t=10.2 seconds.  The controller fault will 

not be detected.  The controller fault will not be detected or 

isolated because the residual never deviates from zero.  The 

controller fault causes the output to transition to a 

nonadjacent cell and GCM method allows for nonadjacent 

cell transitions.  Therefore, the residual of controller fault is 

always zero. 

Isolation of a detected fault is attempted by monitoring the 

mean of the residual during a finite time window T 

following detection.  The time window T, chosen to be 10 

seconds, is further divided into 5 subwindows and the mean 

inside each subwindow is computed as shown in Figure 20.  

Then a probability density function (pdf) of the means is 

computed using Matlab function ksdensity.  This is done for 

all healthy and faulty cases.  The pdfs from ksdensity are 

used for threshold analysis, so that probability of false alarm 

and misdetection are minimized as shown in Figure 30. 

 

Figure 30:  Noisy intermittent fault for GCM method 

with time window 10 seconds 

Figure 30 shows that the mean of the diode fault is 

isolatable but the belt and controller fault are not.  The mean 

of the belt and controller faults and healthy pdfs are too 

similar to draw conclusions.  Probabilities of false alarm and 

misdetection are tabulated in Table 9. 

 
Table 9:  Threshold analysis for Flow method with noisy 

intermittent faults 

 

Based on the GCM method approach, the diode fault will be 

isolated at t=20.2 seconds.  The belt and controller faults 

will not be isolated. 

5.3.3. FDI Summary 

In summary, Table 10 and Table 11 list the probabilities of 

false alarm and misdetection for the three faults under 

persistent and noisy intermittent fault conditions.  The 

results show that there is a high probability of false alarm 

and misdetection for the Flow method when compared to 

the GCM method. 

 Threshold P(False Alarm) P(Misdetection) 

Belt Slip N/A N/A N/A 

Diode 0.4848 0.3019 0.3019 

Voltage 

Controller 
-0.8929 0.1885 0.0028 

 

 Threshold P(False Alarm) P(Misdetection) 

Belt Slip N/A N/A N/A 

Diode 0.2827 0.3912 0.0536 

Voltage 

Controller 
N/A N/A N/A 
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Table 10:  Threshold analysis with persistent faults 

 
Table 11:  Threshold analysis with noisy intermittent 

faults  

 

Table 12 contains the detection and isolation times for both 

Flow and GCM methods under noisy intermittent fault 

condition.  The Flow method can isolate two of the three 

faults while the GCM method cannot isolate any.  The Flow 

method can detect the controller fault while the GCM 

method cannot.  The Flow method can detect the diode fault 

faster than the GCM method.  The GCM method can detect 

the belt fault faster than the Flow method.  It is clear that the 

Flow method gives best results since more detection and 

isolation is achievable. 

 

Table 12:  Fault detection and isolation times for three 

faults under persistent fault condition 

 

Table 13 contains the detection and isolation times for both 

Flow and GCM methods under noisy intermittent fault 

condition.  The Flow method can isolate two of the three 

faults while the GCM method can only isolate one.  The 

Flow method can detect and isolate the controller fault while 

the GCM method cannot.  The Flow method can detect the 

diode fault faster than the GCM method.  The GCM method 

can detect and isolate the diode fault faster than the Flow 

method.  It is clear that the Flow method gives best results 

since more detection and isolation is achievable. 

 

 

Table 13:  Fault detection and isolation times for three 

faults under noisy intermittent fault case 

 

Different fault magnitudes might require different isolation 

thresholds.  This paper only considers three discrete fault 

modes. 

6. CONCLUSION 

This paper compares the GCM method and a new stochastic 

Flow method for calculating state transition probabilities 

within a dynamic system.  These methods are compared by 

detecting and identifying predetermined faults in a vehicle 

alternator system.  The methods vary based on 

computational complexity and the ability to isolate all faults.  

The Flow method can isolate two of the three faults (belt 

and controller faults) while the GCM method cannot isolate 

any under the persistent fault condition.  The GCM method 

could only detect but not isolate the controller reference 

fault.  The Flow method can isolate two of the three faults 

(diode and controller faults) while the GCM method can 

only isolate the diode fault under the noisy intermittent fault 

condition.  Overall, the new stochastic method is preferred 

since it can detect and isolate more than the GCM method. 
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Voltage 

Controller 
0.1885 N/A 0.0028 N/A 
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NOMENCLATURE 

ωm engine rotational speed 

ωe alternator rotational speed 

Vdc battery DC voltage 

Vf field voltage 

Vref voltage controller reference 

Idc alternator output current 

Iload vehicle load current 

IB battery charging current 

z1 first state space state 

z2 second state space state and output 

u state space input 

a(ωe) state space parameter dependent on alternator 

rotational speed 

b(ωe) state space parameter dependent on alternator 

rotational speed 

z current state 

z’ possible future state 

z1
min minimum z1 value 

z1
max maximum z1 value 

z* flow transition point on z1 axis on side 1 of state z 

z** flow transition point on z1 axis on side 2 of state z 

z2
(1) upper boundary of state z 

z2
(2) lower boundary of state z 

φ+ flow up 

φ- flow down 

f general function 

�̅� Field vector 

�̅� normal vector 

C general closed curve 

A area within curve C 

r line integral direction along curve C 

φin total flow into state z 

φout total flow out of state z 

φnet net flow for given state z 

z  state above state z 

z state below state z 

L time varying probability transition matrix 

[Idc] quantized alternator output current 

[Idc,predicted] predicted quantized alternator output current 

r residual 
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