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ABSTRACT

Nowadays, determining faults in non-stationary environment

and that can deal with the problems of fuzziness imprecise-

ness and subjectivity is a challenging task in complex systems

such as nuclear center, or wind turbines, etc. Our objective in

this paper is to develop models based on fuzzy finite state

automaton with fuzzy variables describing the industrial pro-

cess in order to detect anomalies in real time and possibly in

anticipation. A diagnosis method has for goal to alert actors

responsible for managing operations and resources, able to

adapt to the emergence of new procedures or improvisation

in the case of unexpected situations. The diagnoser module

use the outputs events and membership values of each active

state of the model as input events.

1. INTRODUCTION

A great number of systems can be naturally viewed as dis-

crete event systems, that why the failure diagnosis problem

has been investigated via discrete event system approach. A

discrete event system is a dynamic system whose behavior is

governed by occurrence of physical events that cause abrupt

changes in the state of the system (Liu & Qiu, 2009), (Cassandras

& Lafortune, 1999), (Sayed-Mouchaweh & Billaudel, 2012),

(Traore, Sayed-Mouchaweh, & Billaudel, 2014). Discrete

event system theory, particularly on modeling and fault di-

agnosis, has been successful employed in many areas such as

concurrent monitoring and control of complex system (Cao &

Ying, 2005), (Kilic, 2008), (Kwong & Yonge-Mallo, 2011),

(Lin & Ying, 2002), (Luo, Li, Sun, & Liu, 2012). Usually,

a discrete event system is modeled by Automata (Dzelme-

Berzina, 2009), (Mukherjee & Ray, 2014) or Petri Net (Patela
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& Joshi, 2013). Automata (or more precisely a finite state

automaton) are the prime example of general computational

systems over discrete spaces and have a long history both in

theory and application (Thomas, 1990), (Moghari, Zahedi, &

Ameri, 2011). A finite state automaton is an appropriate tool

for modeling systems and applications which can be realized

as finite set of states and transition between them depend-

ing on some input strings (Doostfatemeh & Kremer, 2004).

Thus, the behavior of discrete event system modeled by an

automaton is described by the language generated by the au-

tomaton. However, sometimes one may need to model sys-

tems that cannot be modeled by the current discrete event

system modeling methods due to the uncertain and vague-

ness in the definition of the state and/or transitions. In order

to overcome these difficulties, the concepts of the fuzzy states

and fuzzy transitions can be used. Every fuzzy transition is

associated with a possibility degree, called in the following

membership value. This latter can be defined as the possi-

bility of the transition from current (active) state to the next

state. The main advantage of fuzzy finite state automaton is

that their fuzziness allows them to handle imprecise and un-

certain data, which is inherent to real-world phenomena, in

the form of fuzzy states and transitions. One of the inter-

esting characteristics of fuzzy automaton is the possibility of

several transitions from different current fuzzy states lead to

the same next fuzzy state simultaneously, and also the possi-

bility of several transitions from one current fuzzy state lead

to the different next fuzzy states simultaneously and conse-

quently several output label can be activated at the same time

(Doostfatemeh & Kremer, 2005). For this reason, fuzzy dis-

crete event is very adapted to resolve the ambiguity (or degree

of fault) in a fault diagnosis problem especially in the case of

multiple faults.

Fault diagnosis in fuzzy discrete event systems is a research

area that has received a lot of attention in the recent years and
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has been motivated by the practical need of ensuring the cor-

rect and safe functioning of large complex systems (Cabasino

& Alessandro Giua, 2010) or multiple collaboration (like cri-

sis situation) (Traore, Chatelet, Soulier, & Gabbar, 2014).

Hence, the use of fuzzy finite state automaton in fault diag-

nosis tasks has gained particular attention in the case of fuzzy

discrete event dynamic systems (Gerasimos, 2009; Traore,

Chatelet, et al., 2014). Although, most of the approaches pro-

posed in literature for fault diagnosis of fuzzy discrete event

systems require a complete and accurate model of the system

to be diagnosed. However, the fuzzy discrete event model

may have arisen from abstraction and simplification of a con-

tinuous time system or through model building from input-

output data. As such, it may not capture the dynamic be-

havior of the system completely. Therefore, in this paper, we

attempt to develop models based on fuzzy finite state automa-

ton with fuzzy variables describing also the industrial process

in order to detect anomalies (eg, critical drifts process that

could endanger people) in real time and possibly in anticipa-

tion. A diagnosis was developed to alert actors responsible

for managing operations and resources, able to adapt to the

emergence of new procedures or improvisation in case of un-

expected situations.

The diagnoser module use the outputs events and membership

values of each active state of the model as its input events.

The membership value of the current state is obtained by us-

ing the propagation of the membership of the predecessor of

the current state. A fault diagnosis approach based on fuzzy

automaton is presented in (Rigatos, 2009; Doostfatemeh &

Kremer, 2005) and in this paper the propagation (update) ap-

proach of the membership of current state is did by using

fuzzy roles min, max functions. And a approach based on the

conjunctions of the membership of the predecessor of the cur-

rent state is presented in (Gonzalo & Gracin, 2010). Thus, a

propagation approach of the membership based on the sum of

the normalized memebreship is proposed in (Wang, Ji, Dong,

& Sun, 2013). However all the new approaches proposed in

(Rigatos, 2009; Doostfatemeh & Kremer, 2005; Gonzalo &

Gracin, 2010; Wang et al., 2013) use only a single member-

ship (weight) for each transition. In our work, we proposed

a new approach that use a vector for membership value and

a new propagation approach of the membership value is pro-

posed in this paper.

The rest of the paper is organized as follows. In section 2 ,

we present the required background of fuzzy discrete event

system and we introduces the concept of single membership

value. A new definition of fuzzy state and how the mem-

bership value is attributed to each active state are presented

in section 3. In section 4, the propagation technique of the

membership value is explained. A diagnosis approach using

incomplete model is presented in section 5. In section 7 we

present the algorithm of our approach.2 An application exam-

ple is presented in section 7.

2. FUZZY DISCRETE EVENT SYSTEM DECISION MODEL

Fuzzy discrete event system as a generalization of crisp dis-

crete event system may better deal with the problems of fuzzi-

ness, impreciseness and subjectivity. In fuzzy discrete event

system, the states are fuzzy and every state transition is as-

sociated with a possibility degree (i.e,. membership value).

In this paper, the fuzzy discrete event system theory are ap-

plied to develop an innovative model for systems operating

in non-stationary environment , specifically for the diagnosis

and prognosis (or prediction) to identify and detect possible

problems.

A Fuzzy Finite state Automaton (FFA) G̃ is a 5-tuple denoted

as:

G̃ = {X ,Σ,δ ,Y,x0,F} ,

where

• X = {x0, · · · ,xn} is the sequence states set

• Σ = {σ0, · · · ,σm} is set of input symbols,

• The fuzzy subset δ : X × Σ× X → [0 1] is a function,

called fuzzy transition function. A transition from cur-

rent state xi to the next state x j upon σk with the weight

ωi, j is denoted as: δ (xi,σk,x j) = ωi, j.

• Y = {y0, · · · ,yl} is the set non-empty finite set of output,

• x0 ∈ X is the set of initial fuzzy states,

• F is the (non-empty) set of accepting (or terminating)

states.

In the following, we introduce the notion of membership value

(mv) associated to each active state. Let the value µ t(xi) be

the mv associated to the state active xi, and ωi, j represents

the weight of transition from state xi (current state) to state x j

(next state) upon σk.

With FFA, there is the possibility of several transitions from

different active states lead to the same next state simultane-

ously as shown in Figure 1.(a). Thus, the possibility of sev-

eral transitions from one active state lead to the different next

states simultaneously as shown in Figure 1.(b), and conse-

quently several output label can be activated at the same time

(Doostfatemeh & Kremer, 2005). Thus, with FFA it is possi-

ble to have more than one start state. For this reason, fuzzy

discrete event system concept is more convenient in the in-

vestigation of the problems of multiple faults.

When an input σk occurs at time t, all active state at this time,
are those states to which there is at least one transition on the
input event σk. Then, the fuzzy set of all active state at time t
is called active state set at time t. The active state set denoted
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x1/y1

x8/y8

x13/y13

x3/y3

x5/y5
x14/y14

x7/y7

x10/y10

µ t1(x1) = 0.01

µ t1 (x8) = 0.5

µ t1(x13) = 0.02

µ t2(x3) = [0.2 0.4 0.05]

µ t3 (x5) = 0.4 µ t4(x14) = 0.6

µ t4(x7) = 0.25

µ t4(x10) = 0.5

1/0.2

1/0.05

1/0.3

0/0.8

0/0.1

0/0.6

1/0.58

(a) (b)

event

weight

Figure 1. A example of a part of FFA.

Xact consists of the state and their mv′s and given by:

Xact(t) =
{
(x j,µ

t(x j))|∃(xi ∈ Ax j
,σk ∈ Σ)∧ x j ∈ Xsucc(xi,σk)

}
,

Ax j
= Xpred(x j, t) =

{
xi | ∃ σ ′k s.t x j ∈ ϕ1(xi,σ

′
k) and x j ∈ Xact(t)

}
,

Xsucc(xi,σk) =
{

x j | x j ∈ ϕ1(xi,σk)
}
,

δ (xi,σk,x j) = ωi, j.

where ϕ1 (and ϕ2) is the extension of the transition function

ϕ : X×Σ→ of the crisp discrete event system as presented in

(Traore, Sayed-Mouchaweh, & Billaudel, 2014). The func-

tion ϕ1 gives the state reached from a state xi ∈ X and a given

input σk ∈ Σ and ϕ2 defines the output sequence from state xi

when the input σk occurs.

The relation of ϕ1 and ϕ2 are given by

ϕ1(xi,σk) =
{

x j | ∃ y j such that (x j,y j) ∈ ϕ(xi,σk)
}
,

ϕ2(x j,σk) =
{

y j | ∃ x j such that (x j,y j) ∈ ϕ(xi,σk)
}
,

where y j ∈ Y .

For example in Figure 1.(a)

ϕ1(x1,1) = ϕ1(x8,1) = ϕ1(x13,1) = x3 and ϕ2(x3,1) = y3.

The state xi is the state at time t− 1 and x j is the active state

at time t and µ t(x j) is the membership of the state x j at time

t. The state set in Xpred(x j, t) is all predecessors state set of

the active state x j and Xsucc(x j,σk) is all successors set of the

state x j on input symbol σk. The successor Xsucc(x j,σk) is

the set of all x j which will be reached via transition function

ϕ1(x j,σk).

In the following, all successors set of x j is denoted by

Xsucc(x j,
all
→), when the next states depend to the occurrence

of different input events.

We use the same notation for the active state, when the upon

entrance is a string Γ ∈ Σ∗ . The active state set of the string

Γ is given by:

Xact(Γ) = Xact(t0 + |Γ|),

where |Γ| represent the length of Γ.

For example in Figure 1.(a), at time t1, the active state set is

Xact(t1) = {x1, x8, x13} and

Xsucc(x1,1) = {x3},

Xsucc(x8,1) = {x3} and

Xsucc(x13,1) = {x3},

At time time t2, the active state set is Xact(t2) = {x3} and

Xpred(x3, t2) = {x1, x8, x13}, that mean the state x3 is forced

to take several different mv at time t2, when the input 1 is red

(occurred). Hence, x3 is a state with multi-membership, that

we will call in the following multi-membership state.

In Figure 1.(b), each mv µ t(x j) j=7,10,14 of the state x j at time

t is computed by using the function Ψ1, named augmentation

transition function. The function Ψ1 should satisfy the two

following axioms.

1. 0≤Ψ1(µ
t(xi),δ (xi,σk,x j))≤ 1,

2. Ψ1(0,0) = 0 and Ψ1(1,1) = 1

To compute µ t(x j), the function Ψ1 use two parameters: µ t−1(xi)
at time t− 1 and the weight ωi, j = δ (xi,σk,x j) of the transi-

tion.

Same examples of Ψ1 are:

• Arithmetic Mean

−µ t(x j) = Ψ1(µ
t−1(xi),δ (xi,σk,x j)),

= Mean(µ t−1(xi),ωi, j),

=
µ t−1(xi)+ωi, j

2
,

• Geometric Mean

−µ t(x j) = Ψ1(µ
t−1(xi),δ (xi,σk,x j)),

= GMean(µ t−1(xi),ωi, j),

=
√

µ t−1(xi)×ωi, j,

where µ t−1(xi) is the mv of the corresponding predecessor of

x j.

The mv of each active state is used as the level of activation of

each active state and the active state can be multi-membership

state. However, each active state must be a single mv to use

the function Ψ1. For this reason, the function Ψ2 is intro-

duced to compute the single mv corresponding to the state

that was forced to take several mv by these predecessors. The

single membership value µ t(x j) of each multi-membership

state given by:

−µ t(x j) =
m

Ψ2
i=1

[Ψ1(µ
t−1(xi),ωi, j)],

where m is the number of simultaneous transitions from states

3
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xi, · · · ,xm to state x j prior to time t.

The function Ψ2 should satisfy the minimum requirements

following axioms:

1. 0≤
m

Ψ2
i=1

[Ψ1(µ
t−1(xi),ωi, j)]≤ 1,

2. Ψ(φ) = 0,

3.
m

Ψ2
i=1

[Ψ1(µ
t−1(xi),ωi, j)] = ν , if ∀(Ψ1(µ

t−1(xi),ωi, j) = ν).

Same examples of Ψ2 are:

• Maximum multi-membership resolution

− µ t(x j) = Max
i=1 to m

[Ψ1(µ
t−1(xi),ωi, j)],

• Arithmetic mean multi-membership resolution

− µ t(x j) =

[
m

∑
i=1

Ψ1(µ
t−1(xi),ωi, j)

]

m
.

The problems of diagnosis via fuzzy discrete event system in

non-stationary environment can be deal with to imprecise or

uncertain factors. For that, we introduce a new definition of

the state xi to deal with to imprecise and/or uncertain factors.

In the following, the state xi is defined by a fuzzy state x̃i that

can take into account the imprecise or uncertain factors. The

definition of the fuzzy state x̃i is presented in the next section.

3. MODELING METHOD DUE TO THE VAGUENESS IN NON-

STATIONARY ENVIRONMENT

To take into account to the fuzziness and impreciseness, the

new definition of the fuzzy state is defined as:

x̃i =
{
(s1,µ

t
x̃(s1)), · · · ,(sp,µ

t
x̃(sp))

}
and sp ∈ S,

S is the linguistic value set (label) represented as fuzzy subset

of the respective universes of discourse ω . The linguistic val-

ues are associated to the fuzzy state x̃i ∈ X . Figure 2 shown

an example of this association:

S = {s1,s2,s3} .

1

µ(sk)

Moderate(s2)Low(s1) High(s3)

Universe of Discourse (base variable ω)

Figure 2. Fuzzy variable

When the entered input prior at time t has been σk, all active

states at this time, are those states to which there is at least

one transition on the input event σk (Doostfatemeh & Kremer,

2005). The new definition of active state Xact is given by:

Xact(t) =
{
(x̃ j,V

t
x̃ j
) | ∃ (x̃i ∈ Ai,σk ∈ Σ)∧ x̃ j ∈ B j

}
and,

V t
x̃i
=
[
µ t

x̃i
(s1) · · · µ t

x̃i
(sk) · · · µ t

x̃i
(sp)

]
,

Xact(t) =
{(

x̃ j,
[

µ t
x̃i
(s1) · · · µ t

x̃i
(sk) · · · µ t

x̃i
(sp)

])}
,

with Ai = Xpred(x̃ j, t) and B j = Xsucc(x̃i,σk) and

{
Xpred(x̃ j, t) =

{
x̃i | ∃ σk s.t x̃ j ∈ ϕ1(x̃i,σk) & x̃ j ∈ Xact(t)

}
,

Xsucc(x̃i,σk) =
{

x̃ j | x̃ j ∈ ϕ1(x̃i,σk)
}
,

where δ (x̃i,σk, x̃ j) = ω⊤i, j (vector) and x̃i, x̃ j ∈ X and σk ∈
Σ. In the following, the membership degree associated to the

state x̃i at time t is denoted as:

µ t
x̃i
(sk)

.

4. PROPAGATION APPROACH OF THE MEMBERSHIP VAL-

UES AFTER OCCURRENCE OF A EVENT

To compute the membership degree, we will use the length

of the predecessors of each single active state x̃ j to know if

the current state has been forced to take multi-membership or

to take only a single membership value. If the length of the

predecessors of the active state x j, i.e., |Xpred(x̃ j, t)|, at time

t is ′′0′′ or ′′1′′ that mean the active state is not forced to take

multi-membership. Hence each mv µ t
x̃ j
(sk) of the active state

x j is estimated by the following relation:





µ t
x̃ j
(sk) = max

l=1 to |S|

(
R

sl

k,l(x̃i)
)
, sk ∈ S and,

R
sl

k,l(x̃i) = min
(

µ t−1
x̃i

(sl),µ
t
ωi, j

(sk)
)

and,

ωi, j =
[
µ t

ωi, j
(s1) · · · µ t

ωi, j
(sp)

]⊤
,

U t+1
x j

=




R
s1
1,1(x̃i) R

s2
1,2(x̃i) · · · R

sp

1,p(x̃i)

R
s1
2,1(x̃i)

. . .
...

...
. . . R

sp

p−1,p(x̃i)

R
s1
p,1(x̃i) · · · R

sp−1

p,p−1(x̃i) R
sp
p,p(x̃i)




where |S| is the length of S and R
sl

k,l(x̃i) is the propagation

function for the linguistic variable sl (k = 1 to |S|) for the

state x̃i.

In Figure 3.(b) we can see how the mv µ t
x̃ j
(sk) is estimated

4
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(computed) by using the mv µ t−1
x̃i

(sk) of the predecessor of

the state x̃ j and the propagation function and the fuzzy vector

(weight) ωi, j =
[

µ t+1
ωi, j

(s1) · · ·µ
t+1
ωi, j

(sk) · · ·µ
t+1
ωi, j

(sp)
]⊤

.

Example 1 in Figure 3.(a):

• Suppose at time t the active state is:





Xact(t) =
{
(x̃ j,V

t
x̃ j
)
}
,

V t
x̃ j
=
[
µ t

x̃ j
(s1) · · · µ t

x̃ j
(sk) · · · µ t

x̃ j
(sp)

]
,

• Predecessor of x̃ j






Xpred(x̃ j, t) = {x̃i} ,

V t−1
x̃i

=
[
µ t−1

x̃i
(s1) · · · µ t−1

x̃i
(sk) · · · µ t−1

x̃i
(sp)

]
,

Xact(t− 1) =
{
(x̃i,V

t−1
x̃i

)
}
,

However, if the active state x̃ j is forced,

i.e |Xpred(x̃ j, t)| > 1, to take several membership value, then

the mv µ t
x̃ j
(sk) of the state x̃ j at time t is computed by using

a new function Ψ
x̃ j
sk

, named augmentation transition function.

But the function Ψ
x̃ j
sk

should satisfy the two following axioms.

1. 0≤Ψ
x̃ j
sτ

(
µτ

x̃i
(sτ ), · · · ,µ

τ
x̃i′
(sτ)

)
≤ 1,

2. Ψ
x̃ j
sk
(0, · · · ,0) = 0 and Ψ

x̃ j
sk
(1, · · · ,1) = 1,

where x̃i and x̃i′ are the predecessors of x̃ j.

For instance, the function Ψ
x̃ j
sk

can be:

• Arithmetic mean multi-membership resolution

µ t
x̃ j
(sτ) = Ψ

x̃ j
sk

(
µτ

x̃i
(sτ ), · · · ,µ

τ
x̃i′
(sτ)

)
,

= Mean

(
µτ

x̃i
(sτ ), · · · ,µ

τ
x̃i′
(sτ )

)
,

example in Figure 5

µ t
x̃ j
(sτ ) = Ψ

x̃ j
sk

(
µτ

x̃i
(sτ ),µ

τ
x̃i′
(sτ )

)
,

µτ
x̃ j
(sτ ) = max

l=1 to |S|

(
R

sl

τ,l(x̃i)
)
,

R
sl

τ,l(x̃i) = min
(

µ t−1
x̃i

(sl),µ
t
ωi, j

(sτ)
)
,

• Maximum multi-membership resolution

µ t
x̃ j
(sτ ) = Ψ

x̃ j
sk

(
µτ

x̃i
(sτ), · · · ,µ

τ
x̃i′
(sτ )

)
,

= Max
(

µτ
x̃i
(sτ), · · · ,µ

τ
x̃i′
(sτ )

)
,

Example 2, in Figure 4, we assume that, at time t − 1 the

active states are x̃i and x̃i′ , i.e, . Xact(t− 1) = {x̃i, x̃i′} and we

(a)

(b)

s1

s1

s1

sk

sk

sp

sp

sp

s1

sp

input σk

σk/ωi, j
x̃i/yi

x̃ j/y j

x̃i =
{(

s1,µ
t−1
x̃i

(s1)
)
, · · · ,

(
sp,µ

t−1
x̃i

(sp)
)}

x̃ j =
{(

s1,µ
t
x̃ j
(s1)

)
, · · · ,

(
sp,µ

t
x̃ j
(sp)

)}

(
µ t−1

x̃i
(s1)

)

(
µ t−1

x̃i
(sp)

)

(
µ t

x̃ j
(s1)

)

(
µ t

x̃k
(sp)

)

(Rs1
1,1(x̃i))

(R
sk
1,k(x̃i))

(R
sp

1,p(x̃i))

(Rs1
p,1(x̃i))

(R
sk
p,k(x̃i))

(R
sp
p,p(x̃i))

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..
.

.

..

µ t
ωi, j

(s1)

µ t
ωi, j

(s1)

µ t
ωi, j

(sk)

µ t
ωi, j

(sk)

µ t
ωi, j

(sp)

µ t
ωi, j

(sp)

Figure 3. Membership assignment: Estimation of mv µ t
x̃ j
(sk)

for the next state x̃ j at time t.

suppose the next input is ”σr”, then the active state at time t

is x j, i.e., Xact(t) =
{

x̃ j

}
. Hence, the active state x̃ j at time t

is forced to take several membership.

x̃i/yi

x̃i′/yi′

x̃ j/y j

σr/ωi, j

σr/ωi′, j

Figure 4. Example of FFA with an active state that forced to
take multi-membership.
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x̃i =
{(

s1,µ
t−1
x̃i

(s1)
)
, · · · ,

(
sp,µ

t−1
x̃i

(sp)
)}

,

x̃i′ =
{(

s1,µ
t−1
x̃i′

(s1)
)
, · · · ,

(
sp,µ

t−1
x̃i′

(sp)
)}

.

then, at time t, the states x̃i and x̃i′ are the predecessors of x̃ j.

In Figure 5, we can see the propagation of mv of the states x̃i

and x̃i′ for the estimation of the active state’s mv that has been

forced to take multi-membership (i.e., state x̃ j) as shown in

Figure 4. The active state at time t is given by:

x̃ j =
{(

s1,µ
t
x̃ j
(s1)

)
, · · · ,

(
sp,µ

t
x̃ j
(sp)

)}
.

s1

s1

s1

s1

s1

s1
s1

s1

s1

sk

sk
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sk
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sp

sp
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sp
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...
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...
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x̃i
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)
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(sp)

)
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(R
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p,1(xi))

(R
sk
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sp
pp(xi))

(
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x̃i′
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)

(
µ t−1

x̃i′
(sp)

)
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1,1(xi′ ))

(R
sk
1,k(xi′ ))

(R
sp

1,p(xi′ ))

(R
s1
p,1(xi′ ))

(R
sk
p,k(xi′ ))

(R
sp
p,p(xi′ ))

(
µ1

x̃i
(s1)

)

(
µ

p

x̃i
(sp)

)

(
µ1

x̃i′
(s1)

)

(
µ

p

x̃i′
(sp)

)

(
µ t

x̃ j
(s1)

)

(
µ t

x̃ j
(sp)

)

Ψ
x j
s1

(
µ1

x̃i
(s1),µ

1
x̃i′
(s1)

)
=

Ψ
x j
sp

(
µ

p

x̃i
(sp),µ

p

x̃i′
(sp)

)
=

µ t
ωi, j

(s1)

µ t
ωi, j

(s1)

µ t
ωi, j

(sk)

µ t
ωi, j

(sk)

µ t
ωi, j

(sp)

µ t
ωi, j

(sp)

µ t
ωi′ , j

(s1)

µ t
ωi′ , j

(s1)

µ t
ωi′ , j

(sk)

µ t
ωi′ , j

(sk)

µ t
ωi′ , j

(sp)

µ t
ωi′ , j

(sp)

input σr

Figure 5. Membership assignment, i.e,. the mv of a state that
has been forced to take multi-membership

The active state at time t is x̃ j, then the active output at this

time is y j.

The active output set is the fuzzy set of all active output (i.e.,

output labels together with their mv′s) at time t denoted as

Yact(t), is called the active output set at time t and Yact(t) is

given by:

Yact(t) =
{(

y j,V
t
x̃ j

)}
and Yact(Γ) = Yact(t0 + |Γ|),

where V t
x̃ j

is the grade membership of the state x̃ j at time t.

Our diagnosis approach use the fuzzy set of output events of

the model as input events of the diagnoser module and the

diagnoser output are membership degrees of fault related to

the faulty component of the system. This is accomplished by

using the defuzzification.

5. DIAGNOSIS USING INCOMPLETE MODEL

The research on the fault diagnosis problem for such sys-

tem with fuzziness is interesting and an important challenge.

Furthermore, the transition from one state to another is also

vague. The goal of the diagnoser for fuzzy discrete system is

to detect and identify the occurrence of a specific behavior of

the system.

In this paper, a standard diagnoser is a Finite State Automata

(FSA) built to detect the occurrence of a specific behavior of

G̃.

Let G̃ = {X ,Σ,δ ,Y, x̃0,F} be the fuzzy discrete event model

for a dynamical system that we want supervise. The set Y ={(
y0,V

t0
x̃0

)
, · · · ,

(
y j,V

t
x̃ j

)}
is the fuzzy output of G̃.

G̃ = {X ,Σ,δ ,Y, x̃0,F} D
G̃
= (Z,Y,ζ ,λ , z̃0,Ω)X = {x̃0, x̃1, x̃2, x̃3, · · ·}

x̃0 = {x0,1}
Y = {y0,y1,y2,y3, · · ·}

Z = {z̃0, z̃1, z̃2, · · ·}

Ω =
{

N,F1,F2, · · · ,Fp

}

Output sequence of G̃

y0y1 · · ·yl−1yl

and degrees

Fault types

Membership degrees

V t+1
xl

=
{

µ t+1
x̃l

(s1) · · · µ t+1
x̃l

(sp)
}

Figure 6. Diagnoser using output model constituted of a fuzzy
set as input events.

The standard diagnoser that we use here, is a FSA that takes

the output sequence ∆
G̃
= y1y2 · · · of G̃ as its input as shown

in Figure 6, with λ : the operating condition of the system that

can be normal or abnormal mode.

The diagnoser D
G̃

of the model G̃ is given by:

D
G̃
= (Z,Y,ζ ,λ , z̃0,Ω),

with

• Z is the set of standard diagnoser state,

6



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

• Y is the set of standard diagnoser input,

we recall, Y is the output of model G̃,

• λ is the set of standard diagnoser output,

• ζ : Z×Y×→ Z×λ is the standard diagnoser state tran-

sition function,

• z̃0 is the start state set of the standard diagnoser,

• Ω ∈ Z is the (non-empty) set of terminal states

Let ζ1 and ζ2 be the two projections of ζ of D
G̃

, with ζ1 and

ζ2 are given by

{
ζ1(z̃k,yk+1) = {z̃k+1 | ∃ λi∧ (z̃k+1,λi) ∈ ζ (z̃k,yk+1)} ,

ζ2(z̃k,yk+1) = {λi | ∃ z̃k+1∧ (z̃k+1,λi) ∈ ζ (z̃k,yk+1)} .

with λi = λ (z̃k+1) and z̃k ⊆ Z is the estimate state of D
G̃

at

time k.

The diagnoser state transition is given by





(z̃k+1,λ (z̃k+1)) = ζ (z̃k,yk+1),

λ (z̃k+1) = ζ2(z̃k,yk+1),

z̃k+1 = ζ1(z̃k,yk+1),

= Xsucc(z̃k,
all
→)∩ζ1(z̃k,yk+1),

If the properties of the system are not sufficiently known, a

learning diagnoser is used for the fault diagnosis of the sys-

tem. A learning diagnoser is a standard diagnosis that tol-

erates missing information (i.e., transitions and states) about

the system to be diagnosed. The learning diagnoser must be

able to learn the true model of the system G̃, when missing

information about the system are presented.

Let D
G̃n

be the nominal diagnoser created from the nominal

model G̃n of the system. Suppose that we have the nominal

model G̃n and the output sequence (y0y1y2 · · · ). Then, G̃n is

consistent with the output sequence if

z̃k+1 = Xsucc(z̃k,
all
→)∩ζ1(z̃k,yk+1) 6= /0 ∀k≥ 1. Otherwise, G̃n

is inconsistent with the output sequence. When G̃n is incon-

sistent with the output sequence, then

Xsucc(z̃k,
all
→)∩ ζ1(z̃k,yk+1) = /0 for some k, causing the diag-

noser to fail.

Let σnew be a new event detected and not found in Σ of G̃n,

then the new set of input events of G̃n is given by

Σnew = Σ∪{σnew}.

A transition xi

σnew/ωi, j
−→ x j is ordered pair of state denoting a

transition from the state xi to the state x j. Let ϕ ′ be the extend

function transition of ϕnew of the system G̃n such that

ϕnew(xi,σi) =






x j if σi = σnew &






Σ : Σ← σnew,

and

X : X ← x j if x j /∈ X ,

ϕ1(xi,σi) otherwise,

Let be a dynamic model G̃′ of G̃n defines as

G̃′ = extend(G̃n,X
′,Π) = (X ∪X ′,Σ∪Π,Y,ϕnew, x̃0),

and G̃′ is called the extension of G̃n by X ′ and Π, with X ′

is the set containing all new states and Π is the set contain-

ing all new transitions found. The weight ωi, j for the new

transition detected is estimated by the expert of the system.

The set transition Π is empty, if the model G̃ of the system is

consistent with the output sequence.

The output of a fuzzy system should be defuzzified in an ap-

propriate way to be usable by the environment.

6. ALGORITHM OF A LEARNING DIAGNOSER

The algorithm presented in (Algorithm 1) is a learning algo-

rithm that allows to add new transitions and/or states. All

the new transition and state are validated by an expert of the

system. The newly proposed diagnoser approach in the algo-

rithm allows us to deal with the problem of failure diagnosis

for fuzzy discrete event system, which many better deal with

the problem of fuzziness, impreciseness and uncertainness in

fault diagnosis. Before the presentation of the algorithm we

are going to give the definition of each step.

Let σk be the event red by the system at time t, then






x̃ j = ϕ1(x̃i,σk),

y j = yk+1

= ϕ2(x̃i,σk),

From these two above relations Xsucc(x̃i,σk+1) and Xpred(x̃ j, t)
are computed by:

{
Xsucc(x̃i,σk+1) = {∀ x̃s ∈ X | x̃s ∈ ϕ1(x̃i,σk+1)}

Xpred(x̃ j, t) =
{
∀ x̃i ∈ X | x̃ j ∈ ϕ1(x̃i,σk)

}

If the intersection Xsucc(x̃i,σk)∩ζ1(zk,yk+1) is not empty, that

means, in the model the transition from state x̃i to x̃ j. Other-

wise the diagnoser detect a new transition and/or state when

the intersection Xsucc(x̃i,σk)∩ζ1(zk,yk+1) is empty. The def-

inition of Xsucc(x̃i,σk) and ζ1(zk,yk+1) are given respectively

in section 2 and 5. When we are in the case where

Xsucc(x̃i,σk)∩ ζ1(zk,yk+1) 6= /0, the number of the states in

Xpred(x̃ j, t), i.e, . Xact(t− 1) is used to estimate the member-

ship degree of the active states as explained in section 4. The
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complexity of this algorithm is that we can have a explosion

of the transitions and/or state if the nominal model is not well

estimated (build).

7. APPLICATION TO CRISIS MANAGEMENT

Crisis management is a special type of collaboration involv-

ing several different groups and actors. The challenge is how

to handle the coordination and interactions between these dif-

ferent involved groups and actors during the crisis manage-

ment and to detect abnormalities (e.g., critical process devia-

tions, evolution towards dangerous or blocked situations, etc.)

on-line or to predict the evolution of the current situation to-

wards a dangerous or critical state.

During the crisis management, the capacity to take fast and

efficient decisions is a very important challenge for a better

exit of crisis. Because, the context and characteristics of cri-

sis such as extent of actors and roles, the management be-

comes more difficult in order to take efficient decisions, but

also to exchange information or to coordinate different groups

involved. The difficult to take a decision can be also due to

random factors, such as stress, emotional impact, road condi-

tions, weather conditions, etc. For this reason, it is important

to integrate these factors in the model of crisis management

for decision-making. The FFA presented above is used to

takes into account the stress of the actors involved in the cri-

sis management.

7.1. FFA model of crisis management

Here, we propose a model (no generic model) applied on

the team SAMU 1 from Hospital of Troyes in France, during

T EAN 2 exercise.

The team of SAMU is composed of the following actors:

• Rear Base 3 (RB): Operations Coordination,

• Communication Center (CC): collecting information and

sharing with RB,

• First Team: first intervention, sending the first evaluation

(result) about the crisis to the CC,

• Advanced Medical Post (AMP): Intervention and evacu-

ation of victims, sending the complete evaluation to the

CC.

The FSA of the T EAN exercise is shown in Figure 7.

The discrete event model showed in Figure 7 for T EAN ex-

ercise, allows one hand to monitor the communication and

coordination between various groups involved in crisis man-

agement, and also to supervise some specific behaviors that

1SAMU is Service emergency medical assistance.
2TEAN is the name of the exercise.
3Other word, Rear Base is decision makers

while input is σk and active state time t− 1 is xi do
read symbol σk;

x̃ j = ϕ1(x̃i,σk);
y j = yk+1 = ϕ2(x̃i,σk);
Xsucc(x̃i,σk+1) = {∀ x̃s ∈ X | x̃s ∈ ϕ1(x̃i,σk+1)} ;
if x̃i is the start state, i.e x̃0 then

Xpred(x̃ j, t) = /0;
else

Xpred(x̃ j, t) =
{
∀ x̃i ∈ X | x̃ j ∈ ϕ1(x̃i,σk)

}
;

end

if (Xsucc(x̃i,σk)∩ζ1(zk,yk+1) 6= /0) then
if (|Xpred(x̃ j, t)|= /0) then

Xact = x̃0;

Xsucc(x̃0,ak) =
{
∀ x̃s ∈ X | x̃s ∈ ϕ1(x̃ j,ak)

}
;

else if (|Xpred(x̃ j, t)|= 1) then
µ t

x̃ j
(sk) = maxl=1 to |S| (rlk(x̃i)) and

rl,k(x̃i) = min
(

µ t−1
x̃i

(sl),µ
t
ωi, j

(sk)
)

;

V t
x̃ j
=
[
µ t

x̃ j
(s1) · · · µ t

x̃ j
(sp)

]
;

Xact =
{(

x̃ j,V
t
x̃ j

)}
and

Xsucc(x̃ j,ak) =
{
∀ x̃s ∈ X | x̃s ∈ ϕ1(x̃ j,ak)

}
;

else
active state have been forced to take different
several mv ;

µ t+1
x̃ j

(sτ) = Ψ
x̃ j
sk

(
µτ

x̃i
(sτ ), · · · ,µ

τ
x̃i′
(sτ)

)
;

Xact =
{
(x̃ j,V

t(x̃ j)
}

;

Xsucc(x̃ j,ak) =
{
∀ x̃s ∈ X | x̃s ∈ ϕ1(x̃ j,ak)

}
;

end
Diagnoser method ;
the active diagnoser state is: zk ∈ Dk;

else
go to inconsistency;
detection of new transition and/or state;

Xsucc(x̃i,σk)∩ζ1(zk,yk+1) = /0;
we suppose for all new transition;

δ (x̃i,σk, x̃ j) = 0;
if (x̃ j ∈ X & σk ∈ Σ) then

new transition between x̃i(past state) to x̃ j

(active state) ;

else if x̃ j ∈ X & σk /∈ Σ then
update Σ;
Σ← σk ;

else
update X and Σ;
X ← x̃ j ;
Σ← σk ;

end
end

end
Algorithm 1: Algorithm of a learning diagnoser.
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x̃0/y0

x̃1/y1 x̃2/y2

x̃3/y3

x̃4/y4

x̃5/y5

x̃6/y6

x̃7/y7

a/ω0,1

c/ω1,2

c/ω1,3

b/ω3,6

h/ω6,2

d/ω2,4 b/ω4,6

d/ω2,5 b/ω5,6

e/ω6,2

g/ω6,0

f/ω6,7

Figure 7. A example of modelisation of a scenario of crisis
with finite state automaton and the weight corresponds to the
stress of actors involved.

are critical situations. Thus, the factor’s stress of the actors

involved is estimated for decision-making.

Consider the FFA in Figure 7 with several transition overlaps

and several output labels. It is specified as:

G̃n = (X ,Σ,δ ,Y, x̃0,F),

The dashed line in Figure 7, between states 6 and 7 represents

a critical event. The occurrence of event ′′ f ′′ bring the system

in a critical mode corresponding to state x̃7 and ωi, j is the

stress of actors involved in crisis management.

In this example:

X = {x̃0, x̃1, · · · , x̃7} , the set of fuzzy states,

Σ = {a,b,c,d,e, f ,g,h} , set of input symbols,

Y = {y1,y2,y3,y4,y6,y7} , set of output events,

x̃0 =
{
(L,µ

t0
x̃0
(L)),(M,µ

t0
x̃0
(M)),(H,µ

t0
x̃0
(H))

}
, starting state,

S = {Low(L), Moderate(M), High(H)} , Stress of actors,

λ (x̃i) =

{
F1, if i=7,

N, otherwise.

and the definitions of the states x̃i, output yi and the events are

given respectively in tables 1, 2 and 3.

States Definition

x0 No crisis

x1 Onset Crisis

x2 Communication center (CC)

x3 Police men

x4 Emergency department

x5 Advanced Medical Post (AMP)

x6 Accident area

x7 The model is unpredictable for this crisis situation

Table 1. List and definition of states.

Output labels Definition

y0 No coming call

y1 Accident is happen

y2 Information arrived to CC

y3 Information arrived to police office

y4 Preparation of the Intervention Team

y5 Preparation of the AMP agent

y6 New Actors arrived in the accident area

y7 uncontrolled situations (conditions)

Table 2. List and definition of outputs.

events Definition

a A call from (or about) a accident

b Sending Team to the accident site

c Sending information to CC and police office

d Sending information to Emergency

e Sending the first evaluation to CC

h Sending final evaluation to CC

f End of crisis management without success

g End of crisis management with success

Table 3. List and definition of the transitions (events).

we suppose at the beginning µ
t0
x̃0
(L) =0.5, µ

t0
x̃0
(M) = 0.65,

µ
t0
x̃0
(H) = 0.9, that mean the stress level estimated at time

t0 associated to x̃0 = {(L,0.5),(M,0.65),(H,0.9)} may be

”Low” with possibility 0.5, and ”Medium” with possibility

0.65, and ”High” with possibility 0.9. Thus, all the other mv

are computed by using approaches presented in section 2.

Assuming that G̃n starts operating at time t0 and the next three

input are ”a” respectively (one at a time), active states and

their mv′s at each time step are as follows.

• at time t0
Xact(t0) = {(x̃0,V

t0(x̃0)} with

V
t0
x̃0
=
[
µ

t0
x̃0
(L) µ

t0
x̃0
(M) µ

t0
x̃0
(H)

]
,

{
Xsucc(x̃0,a) = x̃1,

Xsucc(x̃0,
all
→) = {x̃1} .

(1)

Xsucc(x̃ j,
all
→) is the set of all successors of state x̃ j,

• at time t1, input is ”a”

Xact(t1) =
{(

x̃1,V
t1
x̃1

)}
,

Yact(t1) =
{
(y1,V

t1
z̃1
)
}

, and here V
t1
z̃1
=V

t1
x̃1

Xpred(x̃1, t1) = x̃0, and |Xpred(x̃1, t1)| is the number of pre-

decessors of active state x̃1. |Xpred(x̃ j, t)| = 1, then, the

active state x̃1 is not forced to take multi-membership.

Hence, the mv of the active state x̃1 is computed by:





µ
t1
x̃1
(sk) = max

l=1 to 3
(rlk(x̃i)) , s1 = L, s2 = M, s3 = H and,

rl,k(x̃i) = min
(

µ t
x̃i
(sl),µ

t+1(sk)
)

& µ t(s j) ∈ ωi, j, and,

ω0,1 = [0.75 0.3 0.2]⊤ , stress factor at time t1

9
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L

L

L

LL

M

M

M

MM

H

H

H

HH

x̃0 x̃1

(0.9)

(0.65)

(0.25)

0.75

0.75

0.75

0.3

0.3

0.3

0.2

0.2

0.2

(0.75)

(0.3)

(0.2)

(0.65)

(0.3)

(0.2)

(0.25)

(0.25)

(0.2)

(0.75)

(0.3)

(0.2)

input a

Figure 8. Propagation of membership value of the state x̃0

After the propagation of V
t0
x̃0

shown in figure 8, we get

x̃1 = {(L,0.75) ,(M,0.3) ,(H,0.2)}

Xsucc(x̃1,c) = {x̃2, x̃3} ,

7.2. Diagnoser model of T EAN exercise

The standard diagnoser for the fuzzy discrete event system of

crisis management model illustrated in Figure 7 is shown in

Figure 9, with z̃0 = {x̃0}. Each state of the diagnoser D
G̃n

,

shown as a rounded box in Figure 9, is a set of states of

the system. An output symbol corresponding to the oper-

ating condition of the system is associated with each diag-

noser state. For example, to see the importance of having

a complete model for the diagnoser, we suppose at time t1
the output sequence ′′y0y′′1 (see Figure 7) is observed, then

the state estimate is z̃1 = {x̃1} and the operating condition

from z̃0 is λ (z̃1) = N. The successors of state estimate z̃1 is:

Zsucc(z̃1) = {z̃2, z̃3}= {x̃2, x̃3}. If the next output symbol yt+1

is anything other than y2 and y3, we get

Zsucc(z̃1) = Xsucc(z̃1,
all
→)∩ζ1(z̃1,yt+1) = /0,

that means the observation generated after yk is inconsistent

with the model dynamic and the diagnoser cannot proceed.

When the output sequence is inconsistent with the system’s

model, then we have to revise the model of G̃n by adding new

state(s) and/or new transition(s) respectively in X and Σ, that

we believe are missing in the nominal model. This situation

may be interpreted as a normal or abnormal situation, because

we add new states and/or transitions. Detecting and adding

new states and/or transitions in X and/or in Σ of G is called

learning diagnoser.

Dk

yk/τ t(z̃k)

z̃k

λ(z̃k)

y0/τ t(z̃0)

x̃0

N

y1/τ t(z̃1)

x̃1

N

y3/τ t(z̃3)

x̃3

N

y2/τ t(z̃2)

x̃2

N

y4/τ t(z̃4)

x̃4

N

y4/τ t(z̃5)

x̃5

N

y6/τ t(z̃6)

x̃6

N

y7/τ t(z̃7)

x̃7

F1

Figure 9. Diagnoser of fuzzy discrete event system model
shown in Figure 7.

8. CONCLUSION AND PERSPECTIVES

In this paper, we have presented the definition of a fuzzy dis-

crete event system and we presented the main advantage of

fuzzy automaton, to handle imprecise and uncertain data in

non-stationary environment. Our approach uses the fuzzy set

of output events of the model as the input events of the di-

agnoser. We have formalized the construction of the learning

diagnoser based on evolving fuzzy finite state automaton that

are used to perform fuzzy diagnosis. In particular, we have

proposed a learning diagnoser approach based on evolving

fuzzy finite state automaton that allows to add new transitions

and states. The newly proposed diagnoser approach allows

us to deal with the problem of failure diagnosis for fuzzy dis-

crete event system, which many better deal with the problem

of fuzziness, impreciseness and uncertainness in the failure

diagnosis. The approach presented in this paper has been to

real case of crisis management.

Future research will focus on the development of fault diag-

nosis by using fuzzy finite automaton, that takes more than

one random factor. Thus, in our future work we will con-

sider the diagnoser with partial observability about the input

events.
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