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ABSTRACT 

Hydraulic brakes in automobiles play a vital role for the 

safety on the road; therefore vital components in the brake 

system should be monitored through condition monitoring 

techniques. Condition monitoring of brake components can 

be carried out by using the vibration characteristics. The 

vibration signals for the different fault conditions of the 

brake were acquired from the fabricated hydraulic brake test 

setup using a piezoelectric accelerometer and a data 

acquisition system. Condition monitoring of brakes was 

studied using machine learning approaches. Through a 

feature extraction technique, descriptive statistical features 

were extracted from the acquired vibration signals. Feature 

classification was carried out using nested dichotomy, data 

near balanced nested dichotomy and class balanced nested 

dichotomy classifiers. A Random forest tree algorithm was 

used as a base classifier for the nested dichotomy (ND) 

classifiers. The effectiveness of the suggested techniques 

was studied and compared. Amongst them, class balanced 

nested dichotomy (CBND) with the statistical features gives 

better accuracy of 98.91% for the problem concerned. 

1. INTRODUCTION 

Fault diagnosis is an important process in preventive 

maintenance, as it avoids serious damage during operation. 

Early detection of the defects can prevent the system from 

malfunction which leads to damage of the entire system or 

accident. Therefore, a condition monitoring system can be 

effectively used as a decision support tool to identify 

failures. The brake system in an automobile is such an 

essential component which must be monitored continuously 

to avoid serious damage. Hence the malfunction of the 

brake system can be identified through its symptoms or 

some warning sign. Miller et al., proposed a method for 

monitoring the applications of the brakes in aircrafts. This 

device comprises a chart recorder with traces driven by a 

transducer for measuring the brake force (Miller, Marshall, 

Aexander Baiey & Griffin, 2004). Reinecke (1988) 

developed an apparatus for measuring and / or regulating a 

braking force using sensors. In both the cases, the sensors 

have been used to measure some parameters like brake 

temperature, friction force and braking force. No such 

system has been proposed to measure brake pad wear, 

mechanical fade, reservoir leak, etc. The brake faults like 

brake pad wear, mechanical fade of drum brake, reservoir 

leak can alter the characteristics of the vibration signals. It 

may not be possible to accurately measure the amount of 

wear / fade; however, one can capture some identification of 

them for the purpose of fault diagnosis. Hence the vibration 

based fault diagnosis approach has been attempted in the 

present study to monitor the condition of a brake system. In 

condition monitoring of rotating machine components, 

vibration and acoustic emission (AE) signals are widely 

used to identify faults (Nowicki, Slowinski & Stefanowski, 

1992). The AE signal is complex and stochastic in nature. It 

can be used for applications with a very high frequency 

range (20 kHz – 100 MHz). Because of its high frequency 

content, AE techniques require much higher sampling rates 

than vibration based techniques. It needs more time to 

acquire the signal. Hence the cost of the sensors and the data 

acquisition will be more. Moreover the vibration signals are 

considerably less complex in nature, more comprehensive, 

and convenient to analyze. Hence it was used for identifying 

brake faults. The nature of the vibration signal arising from 

the brake system is periodic and random. Due to wear and 

tear, the vibration signals obtained from an automobile 

brake system will not be a stationary one. Data modeling 

through machine learning approach can solve such problems 

to a greater extent (Shen Yin, Ding, Haghani, Hao & Zhang, 

2012).  

The machine learning approach can be implemented through 

the following sequential steps. Feature extraction, feature 

selection, and feature classification. There are many features 
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available, namely, statistical features (Sugumaran & 

Ramachandran 2007; Jegadeeshwaran & Sugumaran 2013, 

2014), histogram features (Sakthivel, Indira, Nair, & 

Sugumaran, 2011) and wavelet features (Muralidharan & 

Sugumaran, 2012) (Soman & Ramachandran 2005). The 

present study focuses on statistical features. The required 

statistical features were extracted from the vibration signals 

through feature extraction technique. 

For feature selection, many techniques are available. Some 

of them are principal component analysis (PCA) (Suykens, 

Van Gestel, Vandewalle & De Moor, 2003), genetic 

algorithm (GA) (Samanta, Al-balushi & Al-araim 2003), 

decision tree (DT) (Sakthivel, Sugumaran & 

Babudevasenapathy 2010) (Sugumaran & Ramachandran 

2011).  In the present study attribute evaluator has been used 

for feature selection. 

Number of classifiers has been already reported in literature 

for solving problems like bearing fault diagnosis, tool 

condition monitoring, condition monitoring of centrifugal 

pumps, etc. The condition monitoring problem in rotating 

systems has been treated as a classification problem using 

artificial neural network (ANN) based on the training 

pattern (Rajakarunakaran, Venkumar, Devaraj & Surya 

Prakasa Rao, 2008). However the traditional ANN has 

limitations on convergence. Support vector machines 

(SVM) and Proximal support vector machines (PSVM) 

were reported for the fault classification of bearings 

(Sugumaran, Muralidharan & Ramachandran 2007). As the 

size of the patterns increases, the training time increases, 

thereby, the computational complexity also increases in 

PSVM. SVM has high classification accuracy and good 

generalization capabilities only for crisp data (Burgess, 

1998) (Jack & Nandi, 2000). Fault classification of mono 

block centrifugal pump using Naïve Bayes (NB) (Addin & 

sapuan, 2008) (Huang, 2009) and Bayes Net (BN) 

(Muralidharan & Sugumaran, 2012) were reported. 

However, NB and BN may not be suitable for many 

applications; since, it often fails to produce a good estimate 

of correct class probabilities. 

Fuzzy classifier was used to classify the statistical features 

extracted from the vibration signals of the faulty gear box 

(Saravanan, Cholairajan & Ramachandran 2009). Moreover, 

the computation time involved in fuzzy classifier is less 

compared to ANN and SVM (Sakthivel, Sugumaran & Nair 

2010). C4.5 decision tree and best first tree algorithm have 

been reported for the brake related study (Jegadeeshwaran 

& Sugumaran 2013). Each multiclass classifier has its own 

demerits on the fault classification problems.  Hence it is 

very important to find a suitable method to classify faults 

with high accuracy. 

Ensemble methods are often able to generate more accurate 

classifiers than the individual multiclass classifiers. They 

may be very slow or difficult to implement. As an 

alternative, it is common practice to transform multiclass 

problems into multiple two-class ones. The dataset is 

decomposed into several two-class problems, the algorithm 

is run on each one, and the outputs of the resulting 

classifiers are combined. Ensemble of Nested Dichotomy 

(END) is one such important technique which can be used 

as a learning algorithm to deal with multiclass problems 

directly. In multi class problems, it is possible to obtain an 

ensemble, by combining binary classifiers. Lin Dong et al., 

developed a method to improve runtime for multi class 

problems using Ensembles of Balanced Nested Dichotomies 

(Dong, Frank & Kramer 2005). Another study reported a 

method to improve the classification accuracy further using 

forests of nested dichotomies (Rodríguez, Osorio & Maudes 

2010).  

 

Figure 1. Flow chart of brake fault diagnosis using ND / 

CBND / DNBND algorithm  
 

Nested dichotomy (ND) is a method for dealing with 

multiclass classification problems using binary classifiers. A 

nested dichotomy organizes the classes in a tree; each 

internal node has a binary classifier. A set of classes can be 
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organized in different ways in a nested dichotomy. An END 

is formed by several nested dichotomies. This paper studies 

the use of the method, in conjunction with ensembles of 

decision trees (random forests). Empirical experiments show 

that this approach yields accurate multiclass classifiers and 

is able to improve predictive performance even in the case 

of classifiers, such as decision trees, that can deal with 

multiclass problems directly. However, classification of 

faults in hydraulic brake system using nested dichotomy 

classifiers has not been studied. Hence an attempt has been 

made, in the present study to classify the faults in hydraulic 

brake system using ensembles of ND classifier. The flow 

chart of the fault diagnostic system is shown in Figure 1.  

Contributions in the present work are as follows: 

1. Different fault conditions were simulated. Vibration 

signals for different simulated fault conditions were 

acquired  

2. Relevant statistical features were extracted from the 

vibration signal.  

3. The required number of features was selected to get 

good classification accuracy.  

4. Feature classification using different types of Nested 

dichotomy classifier. 

2. EXPERIMENTAL STUDIES 

The main objective of the study is to monitor the condition 

of the brake system. This paper focuses on the use of ND 

classifier for fault classification of the hydraulic brake set 

up. Referring to Figure 2, the hydraulic brake system test rig 

and data acquisition system is discussed in the following 

topics under experimental setup and experimental 

procedure, respectively. 

2.1. Experimental set up 

A commercial passenger car’s (Maruti Swift) hydraulic 

brake system (Figuer. 2) was used to fabricate the brake test 

setup. The test setup consists of disc and rear drum brake 

coupled together by a shaft. The shaft is in turn run by a DC 

motor (1HP) coupled to a belt drive system. A lever is 

placed at the top of the motor which is connected to the 

accelerator pedal providing variable speeds up to 2500rpm. 

The brake pedal is provided in the left side of the accelerator 

pedal. It is attached to the piston in the master cylinder via a 

push rod. Master cylinder, the most important part of 

hydraulic brake is provided with pistons to move along the 

bore. Since hydraulic brakes are prominent brake system in 

medium motor vehicle like cars, in order to experiment with 

the components used in the real world, branded vehicles 

(cars) parts were considered. The dimension of test rig is 

80cm x 80cm x 40cm. 

Vibration signal was acquired using piezoelectric 

transducers (accelerometer). Accelerometers have the large 

frequency response and it can detect very small vibrations 

without being damaged by large vibrations; output is 

proportional to forces which are the cause of internal 

damage, and high-frequency sensitivity for detecting faults. 

Due to these reasons the accelerometers are widely used for 

fault classification. An uni-axial accelerometer (50g range, 

100mV/g sensitivity, and resonant frequency 40 Hz) was 

mounted on the drive shaft cover near the brake drum (and 

brake disc) using a direct adhesive mounting technique. It 

was connected to the DAQ (Model NI USB 4432) system 

through a cable. The card has 5 analog input channels with a 

sampling rate and resolution of 102.4 kilo samples per 

second and 24-bit respectively. The accelerometer is 

connected to the signal-conditioning unit, where the signal 

goes through the charge amplifier and an analogue-to digital 

converter (ADC). The vibration signal in digital form is 

input to the computer through an USB port. NI – Lab VIEW 

was used to interface between transducer signal and the 

system (PC). 

 

Figure 2.  Experimental setup – Brake fault diagnosis 

2.2. Experimental Procedure 

Initially the test rig was assumed to be in good condition. 

(All components were brand new). The vibration signals 

were measured from the hydraulic brake system working 

under braking conditions. (Original Speed 667 RPM, Brake 

load 68.9 N). The vibration signal from an accelerometer 

mounted on the brake shaft was taken with the following 

settings:  

1. Sample length: The sample length was chosen 

arbitrarily as 1024.  

2. Sampling frequency: As per Nyquist sampling 

theorem, the sampling frequency should be at least 

twice the highest frequency contained in the signal. 

By using this theorem sampling frequency was 

calculated as 24 kHz.  

3. Number of samples: Minimum of 55 trials was taken 

for each condition of the hydraulic braking system, 

and vibration signals were stored in the data files.  
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Data acquisition is the process of sampling signals that 

measure real world physical conditions and converting the 

resulting samples into digital numeric values that can be 

manipulated by a computer. Data Acquisition Card (DAC) 

hardware is used here to interface between the sensor signal 

and a Personal computer (PC). The faults were simulated 

one at a time while all other components remain in good 

condition and the corresponding vibration signals were 

acquired. The simulated faults are as follows. air in the 

brake fluid (AE) , brake oil spill on disc brake (BO), drum 

brake pad wear (DRPW), disc brake pad wear (even) – inner 

(DPWI), disc brake pad wear (even) – inner and outer 

(DPWIO), disc brake pad wear (uneven) (UDPWI) – inner, 

disc brake pad wear (uneven) – inner and outer (UDPWIO), 

reservoir leak (RL), drum brake mechanical fade (DRMF) 

(Jegadeeshwaran & Sugumaran, 2013). Once the faults were 

simulated, the vibration signals were recorded and feature 

extraction and feature selection were carried out using these 

vibration signals. 

3. FEATURE EXTRACTION AND FEATURE SELECTION  

In pattern recognition feature extraction is a special form of 

dimensionality reduction. When the input data is expected to 

be large, then the input data will be transformed into a 

reduced representation set of features. Transforming the 

input data into the set of features is called feature extraction. 

Feature extraction involves simplifying the amount of 

resources required to describe a large set of data accurately. 

Feature extraction is a general term for methods of 

constructing combinations of the variables to get around 

these problems while still describing the data with sufficient 

accuracy. The definition and process of extracting statistical 

features were described for brake by Reference 

(Jegadeeshwaran & Sugumaran 2013). The following set of 

statistical parameters, namely, minimum, skewness, mean, 

standard error, maximum, sample variance, standard 

deviation, count, kurtosis, mode, sum and median were 

extracted as the basic features for the study. In machine 

learning, feature selection (attribute selection) is the process 

of selecting a subset of relevant features that are used in 

model construction. Feature selection is carried out when 

the data set contains many redundant or irrelevant features. 

Redundant features do not provide any information, and 

irrelevant features provide no useful information in any 

context. The best number of features was selected using 

attribute evaluator (Jegadeeshwaran & Sugumaran, 2015). 

The classification accuracy with selected number of features 

were given in Tale 1. Referring Table 1, the number of 

features required for classification, was found.  

4. FEATURE CLASSIFICATION 

Next step after feature selection is feature classification. The 

selected features are to be classified using the Nested 

Dichotomy classifier.  

 4.1. Nested dichotomy (ND) 

A simple way to improve the classification accuracy for 

problems with a small number of classes is to cache two-

class models and re-use them in different members of an 

ensemble of nested dichotomies. A system of nested 

dichotomies is a statistical model that is used to decompose 

a multi-class problem into multiple two-class problems. The 

decomposition can be represented as a binary tree. Each 

node of the tree stores a set of class labels, the 

corresponding training data and a binary classifier. At the 

very beginning, the root node contains the whole set of the 

original class labels corresponding to the multi-class 

classification problem. This set is then split into two 

subsets. These two subsets of class labels are treated as two 

“meta” classes and a binary classifier is learned for 

predicting them (Dong, Frank & Kramer 2005).  

The training dataset is split into two subsets corresponding 

to the two meta classes and one subset of training data is 

regarded as the positive examples while the other subset of 

testing data is regarded as the negative examples. The two 

successor nodes of the root inherit the two subsets of the 

original class labels with their corresponding training 

datasets and a tree is built by applying this process 

recursively. The process finally reaches a leaf node if the 

node contains only one class label. It is obvious that for any 

given c-class problem, the tree contains c leaf nodes (one for 

each class) and (c−1) internal nodes. Each internal node 

contains a binary classifier. A nice feature of using a system 

of nested dichotomies for multi-class problems is that it 

yields class probability estimates in a straightforward 

fashion Frank and Kramer (2004) sampled randomly from 

the space of all possible trees by considering each tree with 

equal probability. The selection of the tree structure will 

influence the classification results. It makes sense to use all 

possible nested dichotomies for a given problem and 

average their probability estimates to yield accurate 

predictions. For a c-class problem, the number of possible 

systems of nested dichotomies is (2c − 3)!! (Frank & 

Kramer, 2004). Hence, using all possible nested 

dichotomies is infeasible.  

In the absence of prior knowledge, any sampling scheme 

that does not give preferential treatment to a particular class 

can be considered for a suitable candidate. The problem 

with random sampling based on a uniform distribution over 

trees is that the tree depth is only limited by the number of 

classes, and deep trees can take a long time to build (Dong, 

Frank & Kramer 2005).  

4.2. Class-balanced nested dichotomies (CBND) 

The Class-balanced nested dichotomy (CBND) method is 

based on balancing the number of classes at each node. 

Instead of sampling from the space of all possible trees (as 

in nested dichotomy), it is sampled from the space of all 

balanced trees. The advantage of this method is that the 
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depth of the tree is guaranteed to be logarithmic in the 

number of classes. The number of possible class-balanced 

nested dichotomies is obviously smaller than the total 

number of nested dichotomies. The following recurrence 

relation defines the number of possible class-balanced trees:  

       
 

 
  
                                   

 
         

   

 
   

   

 
               

        (1) 

Table 1 shows the number of possible systems of nested 

dichotomies for up to 12 classes for the class-balanced 

(CBND) and the unconstrained case (ND). At each node the 

set of classes is split into equal size subsets (of course, if the 

number of classes is odd, the size will not be exactly equal), 

and the base learning algorithm is applied to the data 

corresponding to these two subsets. The algorithm then 

recurses until only one class is left. It is applied repeatedly 

with different random number seeds to generate a 

committee of trees. It shows that a non-trivial number of 

CBNDs can be generated for classification problems with 

five or more classes. There is a further opportunity to 

improve the training time for ensembles of nested 

dichotomies. This is an added advantages of the class 

balanced nested dichotomy. 

There is a drawback with the class balanced approach. Some 

multi-class problems are very unbalanced and some classes 

are much more populous than others. In that case a class-

balanced tree does not imply that it is also data balanced. 

This can negatively affect runtime if the base learning 

algorithm has time complexity worse than linear in the 

number of instances  The pseudo code for the class balanced 

nested dichotomy algorithm has been given below. (Dong, 

Frank & Kramer, 2005). 

if |C| = 1 then return 

 P = subset of C, randomly chosen from all subsets 

 of size [|C|/2] 

N = C \ P 

Dp = all instances in D apart from those pertaining to classes 

in P 

 buildClassBalancedNestedDichotomies (Dp, P) 

Dn = all instances in D apart from those pertaining to classes 

in N 

 buildClassBalancedNestedDichotomies (Dn, N) 

D  = a two-class version of D created based on N and P 

 classifierForNode = buildClassifier (D’) 

 

4.3. Data Near Balanced Nested Dichotomy (DNBND) 
A simple algorithm called data near balanced nested 

dichotomy (NDBND) can be used as a alternate for the class 

balanced nested dichotomy. Since this method violates the 

condition that the sampling scheme should not be biased 

towards a particular class. It randomly assigns classes to two 

subsets until the size of the training data in one of the 

subsets exceeds half the total amount of training data at the 

node. It is very essential to maintain a degree of randomness 

in the assignment of classes to subsets in order to preserve 

diversity in the committee of randomly generated systems of 

nested dichotomies. In the case of a skewed class 

distribution the base nested dichotomy algorithm’s runtime 

is worse than linear. In that case, the number of instances is 

divided as evenly as possible at each node, so as to reduce 

the maximum amount of data considered at a node as 

quickly as possible. The pseudo code for the data near 

balanced nested dichotomy algorithm has been given below 

(Dong, Frank and Kramer 2005). 

if |C| = 1 then return 

 C = random permutation of C 

 Dp = ∅, Dn = ∅ 

do 

 if (|C| > 1) then 

add all instances from D pertaining to first class in C to Dp 

add all instances from D pertaining to last class in C to Dn 

 remove first and last class from C 

else 

add all instances from D pertaining to remaining class in C 

to Dp 

 remove remaining class from C 

while (|Dp| < [|D|/2]) and (|Dn| < [|D|/2]) 

if ((|Dp| ≥ [|D|/2]) then 

add instances from D pertaining to remaining classes in C to 

Dn 

else 

add instances from D pertaining to remaining classes in C to 

Dp 

 P = all classes present in Dp,  

 N = all classes present in Dn 

buildDataBalancedNestedDichotomies(Dp, P) 

buildDataBalancedNestedDichotomies(Dn, N) 

 D’ = a two-class version of D created based on N 

  and P 

classifierForNode = classifier learned by base learner from 

 D’ 

5. RESULTS AND DISCUSSION 
The experiment was carried on the brake setup for the 

different simulated fault conditions. Machine learning 

approach was used with statistical feature for fault 

classification. The obtained results are discussed below.  

5.1. Effect of number of features on classification 

accuracy 

Twelve statistical features, namely, mean, standard error, 

median, standard deviation, variance, kurtosis, skewness, 

range, minimum, maximum, sum and count were extracted 

from the acquired vibration signal. The effect of number of 

features on classification accuracy was found and is given in 

Table 1. It shows that when the number of features is 8 in 

each class, the classifier gives good accuracy. In the present 

study, minimal computation time strategy was used because 
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the on board processors on vehicle have limited 

computational resources. 

No. of 
features 

Classification accuracy (%) 

ND
a
 CBND

b
  DNBND

c
 

1 44.55 43.94 43.27 

2 90.00 88.91 89.45 

3 89.45 90.00 90.18 

4 96.18 95.64 95.82 

5 97.27 96.73 96.55 

6 97.45 97.82 97.64 

7 97.45 98.36 98.18 

8 98.00 98.91 98.73 

9 98.00 97.82 98.18 

10 97.82 97.27 97.63 

11 98.36 98.73 98 

12 98.00 97.82 97.82 

a
GND = Nested dichotomy, 

b
CBND = Class balanced nested 

dichotomy, 
c
DNBND = Data near balanced nested 

dichotomy 

Table 1. Effect of number of features on classification 

accuracy 

5.2. Statistical features using Nested Dichotomy (ND) 

algorithm  

Referring Table 1, among the twelve extracted features, top 

eight features were selected for classification.  

The general procedure for reading and understanding the 

confusion matrix is as follows. It looks in the form of a 

square matrix. Referring to Table 2, the first element in the 

first row represents the total number of data points 

corresponding to air in the brake fluid (AE). In the first row, 

out of 55 data sets, all are correctly classified as (AE). There 

is no misclassification. Hence all other elements in the first 

row are zero. In second row, second element represents the 

total number of data points related to brake oil spill (BO) 

condition. The total in the second row elements (out of 55 

data sets), 54 data sets was correctly classified as brake oil 

spill (BO). One data set was misclassified as disc brake pad 

wear uneven inner & outer (UDPWIO).  

As discussed above, misclassification details of classifier 

with the statistical features can be illustrated in a better way 

using the confusion matrix. From the confusion matrix, one 

can understand that 55 samples were considered for each 

condition of the brake system. All the diagonal elements of 

the confusion matrix represent the number of correctly 

classified data points and the non-diagonal elements 

represent the incorrectly classified data points. In this 

fashion, the classification accuracies were found and 

compared.  

Total number of instances        550      

 Correctly classified instances          539 (98 %) 

 Incorrectly classified instances  11 (2 %) 

 Kappa statistic                  0.9778 

Mean absolute error         0.0075 

Root mean squared error          0.0547 

 

Category 1 2 3 4 5 6 7 8 9 10 

1 55 0 0 0 0 0 0 0 0 0 

2 0 54 0 0 0 1 0 0 0 0 

3 0 0 52 0 1 1 0 0 1 0 

4 0 0 0 55 0 0 0 0 0 0 

5 0 0 0 0 55 0 0 0 0 0 

6 0 0 0 0 0 55 0 0 0 0 

7 0 0 0 0 0 1 53 0 0 1 

8 1 0 0 0 0 1 1 52 0 0 

9 0 0 0 0 0 0 0 0 55 0 

10 0 0 0 0 0 0 2 0 0 53 

1 = AE : Air in brake fluid; 2 = BO : Brake oil spill; 3 = DPWI : Disc 

brake pad wear – Inner; 4 = DPWIO : Disc brake pad wear Inner & outer; 
5 = UDPWI : Uneven disc pad wear ( Inner); 6 = UDPWIO : Uneven disc 

pad wear ( Inner & Outer); 7 = DRMF : Drum brake mechanical fade; 8 = 

DRPW : Drum brake pad wear; 9 = GOOD : Brake without any fault;10 = 

RL : Reservoir leak. 

Table 2. Confusion matrix for ND classifier 

In this case, none of the good condition data points have 

been misclassified and hence the fault detection accuracy is 

close to 100%. None of the fault conditions were also 

misclassified as a GOOD condition. However, there were 

some misclassification amongst the fault conditions and 

hence classification accuracy for decision tree was found to 

be 98 %. 

Table 3 shows the detailed accuracy by class of nested 

dichotomy classifier. True positive rate (TP rate) should be 

ideally 1. TP (True positive) rate means the number of items 

correctly labeled as belonging to the positive class. FP (false 

positive) is a result that indicates a given condition has been 

fulfilled, when it actually has not been fulfilled.  

In the first row, TP rate for the condition “AE” is 1 and FP 

rate is 0.002; precision which means the fraction of 

retrieved instances that are relevant is 0.981. One data point 

relevant to DRPW has been misclassified as AE. Hence the 

precision value is less. The recall (fraction of relevant 

instances that are retrieved) is 1. Since none of the AE data 

points were misclassified as other fault condition. Both 

recall and precision value should be ideal.  As discussed 

above the detailed accuracy by class were calculated for all 
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classes. Twelve statistical features namely, mean, standard 

error, median, standard deviation, variance, kurtosis, 

skewness, range, minimum, maximum and sum, count were 

extracted from the acquired vibration signal. 

TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 

ROC 

Area 
Class 

1 0.002 0.982 1 0.991 1 1 

0.982 0 1 0.982 0.991 1 2 

0.945 0 1 0.945 0.972 1 3 

1 0 1 1 1 1 4 

1 0.002 0.982 1 0.991 1 5 

1 0.008 0.932 1 0.965 1 6 

0.964 0.006 0.946 0.964 0.955 0.999 7 

0.945 0 1 0.945 0.972 1 8 

1 
 

0.002 0.982 1 0.991 9 

0.964 0.002 0.981 0.964 0.972 1 10 

 
1 = AE : Air in brake fluid; 2 = BO : Brake oil spill; 3 = DPWI : Disc 

brake pad wear – Inner; 4 = DPWIO : Disc brake pad wear Inner & outer; 

5 = UDPWI : Uneven disc pad wear ( Inner); 6 = UDPWIO : Uneven disc 
pad wear ( Inner & Outer); 7 = DRMF : Drum brake mechanical fade; 8 = 

DRPW : Drum brake pad wear; 9 = GOOD : Brake without any fault;10 = 

RL : Reservoir leak. 

 

Table 3. Detailed accuracy by class for ND Classifier 

5.3. Statistical features using Class balanced nested 

dichotomy (CBND) algorithm  

The effect of number of features on classification accuracy 

classification accuracy is given in Table 1. The classifier 

gives maximum accuracy when the number of features is 

equal to 8. Referring Table 1, the classification accuracy of 

class balanced nested dichotomy classifier algorithm was 

calculated as 98.91 %. The misclassification details are 

presented in Table 4. 

Category 1 2 3 4 5 6 7 8 9 10 

1 55 0 0 0 0 0 0 0 0 0 

2 0 55 0 0 0 0 0 0 0 0 

3 0 0 55 0 0 0 0 0 0 0 

4 0 0 0 55 0 0 0 0 0 0 

5 0 0 0 0 55 0 0 0 0 0 

6 0 0 0 0 0 55 0 0 0 0 

7 0 1 0 0 0 0 53 0 0 1 

8 1 0 0 0 0 0 0 53 0 1 

9 0 0 0 0 0 0 0 0 55 0 

10 0 0 0 0 0 0 2 0 0 53 

 

Table 4. Confusion matrix for CBND 

 

TP 
Rate 

FP 
Rate 

Precision Recall 
F-

Measure 
ROC 
Area 

Class 

1 0.002 0.982 1 0.991 0.999 1 

1 0.002 0.982 1 0.991 1 2 

1 0 1 1 1 1 3 

1 0 1 1 1 1 4 

1 0 1 1 1 1 5 

1 0 1 1 1 1 6 

0.964 0.004 0.964 0.964 0.999 0.99 7 

0.964 0 1 0.964 0.981 0.99 8 

1 0 1 1 1 1 9 

0.964 0.004 0.964 0.964 0.964 1 10 

1 = AE : Air in brake fluid; 2 = BO : Brake oil spill; 3 = DPWI : Disc 

brake pad wear – Inner; 4 = DPWIO : Disc brake pad wear Inner & outer; 
5 = UDPWI : Uneven disc pad wear ( Inner); 6 = UDPWIO : Uneven disc 

pad wear ( Inner & Outer); 7 = DRMF : Drum brake mechanical fade; 8 = 

DRPW : Drum brake pad wear; 9 = GOOD : Brake without any fault;10 = 
RL : Reservoir leak. 

 

Table 5. Detailed accuracy by class for CBND 

 

None of the faulty conditions in CBND, was misclassified 

as ‘GOOD’. Hence the overall classification accuracy is 

98.91 %, which is higher than ND, and hence CBND stands 

one step forward.  Table 5. shows the detailed accuracy by 

class for CBND classifier. The TP rate, precision and F-

measure values for the data sets belongs to DPWI, DPWIO, 

DRMF, DRPW and GOOD condition, has the unit value 1. 

Hence it is having maximum classification accuracy. 

5.4. Feature classification using Data Near balanced 

nested dichotomy (DNBND) algorithm  

The effect of number of features on classification accuracy 

was found using Data near balanced nested dichotomy 

(DNBND) algorithm is given in Table 1. In the present 

study, eight statistical features, namely, minimum value, 

standard error, sample variance, kurtosis, skewness, mean, 

median and mode were used for classification to reduce the 

computation time. The Data near balanced nested 

dichotomy (DNBND) algorithm was trained using a selected 

number of statistical features of vibration signals and the 

classification results are tabulated as a confusion matrix 

shown in table 6.  

Total number of instances               550      

Correctly classified instances          543 (98.73 %) 

Incorrectly classified instances         6 (1.27 %) 

Kappa statistic                                   0.9859 

Mean absolute error                    0.0075 

Root mean squared error        0.0538 

The Data near balanced nested dichotomy (DNBND) 

algorithm was trained using selected number of statistical 

features of vibration signals and the classification results are 

tabulated Referring the above discussion, the maximum 
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classification accuracy for DNBND algorithm for selected 

number of features was calculated as 98.73 %. As in CBND 

algorithm, none of the ‘GOOD’ condition data points were 

misclassified as other fault conditions; and none of the fault 

condition data points were misclassified as ‘GOOD’ 

condition.  The overall classification accuracy was found to 

be 98.73 %. Table 7. Shows the detailed accuracy by class 

for DNBND classifier. Except few conditions, all other fault 

conditions are having a small misclassification detail. 

Compared to CBND, the DNBND has less classification 

accuracy. 

Category 1 2 3 4 5 6 7 8 9 10 

1 55 0 0 0 0 0 0 0 0 0 

2 0 55 0 0 0 0 0 0 0 0 

3 0 0 55 0 0 0 0 0 0 0 

4 0 0 0 55 0 0 0 0 0 0 

5 0 0 0 0 55 0 0 0 0 0 

6 0 0 0 0 0 55 0 0 0 0 

7 0 1 0 0 0 0 52 0 0 1 

8 1 0 0 0 0 0 0 53 0 1 

9 0 0 0 0 0 0 0 0 55 0 

10 0 0 0 0 0 0 2 0 0 53 

 

Table 6: Confusion matrix for DNBND 

 

TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 

ROC 

Area 
Class 

1 0.002 0.982 1 0.991 1 1 

1 0.002 0.982 1 0.991 1 2 

1 0.002 0.982 1 0.991 1 3 

1 0 1 1 1 1 4 

0.982 0 1 0.982 0.991 1 5 

1 0 1 1 1 1 6 

0.945 0.004 0.963 0.945 0.954 0.99 7 

0.964 0 1 0.964 0.981 0.991 8 

1 0 1 1 1 1 9 

0.982 0.004 0.964 0.982 0.973 0.999 10 

1 = AE : Air in brake fluid; 2 = BO : Brake oil spill; 3 = DPWI : Disc 

brake pad wear – Inner; 4 = DPWIO : Disc brake pad wear Inner & outer; 

5 = UDPWI : Uneven disc pad wear ( Inner); 6 = UDPWIO : Uneven disc 
pad wear ( Inner & Outer); 7 = DRMF : Drum brake mechanical fade; 8 = 

DRPW : Drum brake pad wear; 9 = GOOD : Brake without any fault;10 = 

RL : Reservoir leak. 

 

Table 7. Detailed accuracy by class for DNBND 

5.5. Comparative Study 

Table 1 shows the estimated accuracy for NDs, CBNDs, and 

DNBNDs on the given datasets. It is evident that there is no 

dataset with a significant difference in accuracy for 

DNBNDs and CBNDs. This is the desired outcome. For 

NDs, there is some dataset where the accuracy is 

significantly reduced compared to CBNDs. This is due to 

the diversity of the ensembles on the data set. The diversity 

of ensembles on this dataset can be measured using the 

kappa statistic. This statistic can be used to measure 

agreement between pairs of ensemble members (Frank & 

Kramer, 2004). For CBNDs, the mean kappa value over all 

pairs, measured on the training data, was 0.9879, which was 

indeed higher than the mean kappa values for DNBNDs and 

NDs (0.9859 and 0.9776 respectively). This indicates that 

reduction in diversity is the reason for the drop in 

performance. The mean absolute error (MAE) measures the 

average magnitude of the errors in a set of forecasts, without 

considering their direction. It measures accuracy for 

continuous variables. The MAE is a linear score which 

means that all the individual differences are weighted 

equally in the average. The root mean squared value 

(RMSV) is a quadratic scoring rule which measures the 

average magnitude of the error. The difference between 

forecast and corresponding observed values are each 

squared and then averaged over the sample. Finally, the 

square root of the average is taken. Since the errors are 

squared before they are averaged, the RMSE gives a 

relatively high weight to large errors. This means the RMSE 

is most useful when large errors are particularly undesirable. 

The MAE and the RMSE can be used together to diagnose 

the variation in the errors in a set of forecasts. The RMSE 

will always be larger or equal to the MAE; the greater 

difference between them, the greater the variance in the 

individual errors in the sample. If the RMSE=MAE, then all 

the errors are of the same magnitude. Both the MAE and 

RMSE can range from 0 to ∞. They are negatively-oriented 

scores: Lower values are better. MAE values for all the 

three types of NDs are approximately near to zero (0.007). 

When compared to ND (0.0075) and DNBND (0.0075), the 

CBND algorithm is having less value (0.007). Hence it 

gives maximum accuracy compared to other two. Fig. 3 

show the comparative results between different types of 

Nested dichotomy algorithms.  

 

Figure 3. Number of features Vs Classification accuracy 
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The ND, CBND, DNBND algorithm results have been 

compared with other machine learning classifiers, namely, 

decision tree and support vector machine (SVM). Table 8 

shows the overall classification accuracy of the different 

machine learning algorithms such as decision tree, support 

vector machine (Jegadeeshwaran & Sugumaran 2015), 

nested dichotomy algorithms. It indicates that the class 

balanced nested dichotomy (CBND) algorithm gives the 

maximum classification accuracy for the problem 

concerned. 

S. 

No. 
Name of the Classifier 

Classification 

Accuracy (%) 

1 Decision tree 97.45 

2 Support Vector Machine 98.36 

3 Nested dichotomy 98.00 

4 Class balanced nested 

dichotomy 
98.91 

5 Data near balanced nested 
dichotomy 

98.73 

 

Table 8. Comparative study 

6. CONCLUSION 

Nested dichotomy algorithm has recently been shown to be 

a very promising meta learning scheme for multi-class 

problems. They yield class probability estimates in a natural 

way and produce accurate classification result. In this paper 

a meta learning scheme was presented to improve the 

classification accuracy in brake fault diagnosis. It deals with 

vibration based fault diagnosis of automobile hydraulic 

brake system. Nine classical fault conditions were simulated 

and were tested on a hydraulic brake setup. For each fault 

condition, the vibration signal was acquired using a piezo 

electric transducer. Set of statistical features were extracted 

from the vibration signal using feature extraction 

techniques. Feature selection was then carried out. The 

selected features ware classified using ensemble algorithm 

techniques such as ND, CBND and DNBND. For all the 

above algorithms, random forest tree was taken as base 

algorithm. Referring Table 4, the vibration signals relevant 

to seven fault condition, namely, air in brake fluid, brake oil 

spill, disc brake pad wear – Inner, disc brake pad wear inner 

& outer, uneven disc pad wear (inner) and good condition 

have been correctly classified by the CBND model. In the 

remaining three classes, the misclassification accuracy is 

only 1.09 %. Moreover, all the misclassified data points 

were classified as other fault conditions and none of the 

fault condition data points have been misclassified as good 

condition. algorithms were compared. From the above 

results one can confidently say that statistical features with 

class balanced nested dichotomy (CBND) algorithm were 

found to be good candidate and it can be used for practical 

applications of fault diagnosis of hydraulic brake system. As 

the results are encouraging one, future study can also be 

possible by conducting the experiment on real vehicle with 

real road conditions with the above feature – classifier 

combination.  

NOMENCLATURE 

DT  decision tree 

ND  nested dichotomy 

CBND  class balanced nested dichotomy 

DNBND  Data near balanced nested dichotomy 
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