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ABSTRACT 

This paper brings up a novel method for detecting induction 

motor stator winding faults at an early stage. The contribution 

of the work comes from the delicate handling of motor 

vibration by applying envelope analysis, which makes it 

possible to capture electrical short-circuit signature in 

mechanical signals, even if the magnitude of the fault is fairly 

incipient. Conventional induction motor condition-based 

maintenance methods usually involve current and voltage 

measurements, which could be expensive to collect, and 

vibration-based analysis is often only capable of detecting the 

fault when it is already quite significant. In contrast, the 

solution presented in this study provides a refreshing 

perspective by applying time-synchronous averaging to 

remove the discrete frequency component, and amplitude 

demodulation to further enhance the signal with the help of 

kurtogram. Experimental results on a three-phase induction 

motor show that the method is also able to distinguish 

different fault severity levels.  

1. INTRODUCTION 

In various industrial applications, such as high-speed trains, 

electric vehicles, industrial robots, and machine tools, three-

phase induction motors are always the driving force and one 

of the key machines of the whole system. Even with 

scheduled maintenance practices, unexpected failures of 

induction motors could still occur in these systems which 

would lead to excessive downtime and large losses in terms 

of maintenance cost and lost revenue. Condition-based 

maintenance (CBM) and predictive maintenance (PdM) have 

been proven to be maintenance strategies that are able to 

reduce unscheduled downtime and maintenance cost 

(Jardine, Lin and Banjevic, 2006). In CBM, maintenance 

activities are not scheduled for machines merely according to 

history of maintenance records or predefined maintenance 

rules on the basis of experience and/or expert knowledge, but 

also based on the present health status of the machines from 

sensory data, so that the waste owing to redundant 

maintenance and failures will be avoided. Such maintenance 

strategies require the integration of the following 

technologies: (a) on-line condition monitoring, (b) fault 

detection and diagnostics, and (c) prognostics.  

Before designing any CBM or PdM strategies, common 

failure modes and effects analysis need to be conducted in 

order to identify the critical components and related issues. 

Figure 1 shows an industry survey result on the statistical 

distribution of failure modes typically occurring in squirrel-

cage induction motors (Bell, McWilliams, O'Donnell, Singh 

and Wells, 1985). It can be seen that rolling-element bearing 
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and stator winding failures due to insulation degradation 

contributes to almost 80% of the causes for unexpected 

breakdown in induction motors (Jover Rodríguez & Arkkio, 

2008). For rotary machinery in general, condition 

monitoring, diagnostics and prognostics for rolling-element 

bearings have been well studied during the past four decades 

due to its wide applications in almost all the rotary machinery 

(Lin & Qu, 2000; Randall & Antoni, 2011; Siegel, Al-Atat, 

Shauche, Liao, Snyder and Lee, 2012; Siegel, Ly and Lee, 

2012). 

For induction motor bearings in particular, vibration-based 

and motor current signature analysis based monitoring 

methods for rolling-element bearings in induction motors 

have been widely published in literature (Kliman & Stein, 

1992; Nandi, Toliyat and Li, 2005). However, the condition 

monitoring for winding insulation faults, especially 

vibration-based diagnostic and prognostic methods remain 

limited.  

Winding faults due to stator coil degradation can be classified 

into four categories (Ukil, Chen and Andenna, 2011), namely 

(a) inter-turn short of the same phase, (b) short between coils 

of same phase, (c) short between two phases, and (d) short 

between phase to earth. Among them, inter-turn faults are 

considered to be the most challenging type of winding faults 

to be detected in induction motors. The online condition 

monitoring methods for motor winding fault detection are 

summarized in Figure 2. Most of the online monitoring 

methods are based on current and voltage signals, among 

which the symmetric component current balance monitoring 

(Furfari & Brittain, 2002; Eftekhari, Moallem, Sadri and 

Hsieh, 2013; Ompusunggu, Liu, Ardakani, Jin, Petre and Lee, 

2014), negative sequence impedance detector (Kliman, 

Premerlani, Koegl and Hoeweler, 1996; Kohler, Sottile and 

Trutt, 2002), voltage mismatch (Sottile, Trutt and Kohler, 

2000; Trutt, Sottile and Kohler, 2002), and Parks vector 

(Cardoso, Cruz and Fonseca, 1999) are the most widely 

referred methods. Nevertheless, these methods require the 

measurements of 3-phase current or voltage signal from 

induction motors, which involves expensive sensors and data 

acquisition (DAQ) hardware. Furthermore, direct 

measurements of 3-phase voltages from motor windings are 

not feasible for online application, and the voltage 

measurements from the frequency-inverter drive are usually 

pulse-width modulation (PWM) signals that need additional 

signal processing efforts.  

Compared with the current and voltage-based winding fault 

monitoring, vibration-based methods have the advantages of 

(a) requiring less expensive sensors, (b) requiring less 

channels for the DAQ system, and (c) monitoring mechanical 

failures at the same time.  

As a result, vibration-based monitoring for induction motors 

has been gaining popularity. Similar to mechanical faults, 

induction motor stator winding faults also generate  
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Figure 2. Online condition monitoring methods for motor 

winding fault (Sin, Soong and Ertugrul, 2003) 

 

additional magnetomotive forces that change the pattern of 

motor vibration. Lamin et al (2014) found that these pattern 

changes are usually reflected in the frequency domain at 

harmonics of slot frequency and supply frequency. 

Nevertheless, these features are not significant enough to be 

detected unless the faulty turns are around 5% of the total 

windings (Lamim, Brito, Silva and Pederiva, 2013). Besides, 

it is required that not just vibration signals but also magnetic 

flux signals as an essential complement to determine the 

diagnostic frequencies. 

Djurović et al (2014) proposed a method that utilizes a torque 

signal physical model to locate the interested frequencies and 

detect the faults at the same frequency ranges in the vibration 

data. The method was able to differentiate unbalanced supply 

from stator winding faults. Yet it still requires torque signals 

for the physical modeling process to determine the 

characteristic frequencies and detect the winding faults in the 

stator. 

Seshadrinath et al (2014) used complex wavelets to extract 

vibration signatures that were able to distinguish inter-turn 

faults from mechanical faults such as bearing damage. The 

performance was proved to be better than the traditional 

discrete wavelet transform. However, wavelet transform is 

relatively computationally expensive, and the correct setting 

of the number of levels to decompose usually calls for tuning. 

This paper proposes a combination of different signal 

processing techniques to mine and amplify the motor winding 

fault related features solely based on vibration signals and 

tachometer signals. The advantages of the proposed method 

include: 

 The method does not require torque signal or 

magnetomotive flux signal to build a physical model to 

determine diagnostic frequency of the vibration signal.  
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 The fault detection process can be much more automated 

and can be applied by users with minimum domain 

knowledge.  

 As a data-driven method, there is also less parameters to 

tune and less computationally complex compared to 

other peer methods.  

The focus of this research was neither to differentiate winding 

faults from mechanical faults, nor tell the difference between 

unbalanced stator winding from unbalanced supply, but to 

explore the possibility of detecting stator inter-turn faults at a 

very early stage, and try to find an automatic way to 

determine the frequency ranges that contain diagnostic 

information. Time synchronous averaging, spectral kurtosis 

filtering, and envelope analysis have been implemented in the 

signal processing process. As will be discussed in the results 

section, the first order of envelope spectrum shows 

monotonically increasing trend as the level of winding 

insulation degradation increases.  

The remaining part of the paper is organized as follows: 

Section 2 discusses about the methodology development and 

theoretical background of the signal processing techniques 

applied to the motor vibration signals; Section 3 briefly 

introduces the experimental setup and the test procedure for 

data generation; Section 4 demonstrates the effectiveness of 

the proposed vibration signal processing methods and the 

selected features through the experimental data analysis; and 

Section 5 summarizes the important findings obtained in this 

study.  

2. METHODOLOGY DEVELOPMENT 

2.1. Method Overview 

Vibration-based signal processing has long been favored for 

the diagnostics and prognostics of mechanical faults in rotary 

machinery, such as rolling-element bearings and gearboxes 

(Al-Atat, Siegel and Lee, 2011; Randall & Antoni, 2011). 

Depending on the physics of faults, some mechanical faults 

such as unbalance and gear eccentricity manifest periodic 

vibration signature. Other type of faults assume that the 

concerned fault would lead to transients and impulses in 

vibration signals, which do not occur in the nominal state. 

Inspired by the rolling-element bearing fault diagnosis 

(Randall & Antoni, 2011), this paper addresses the issue of 

detecting induction motor stator inter-turn faults when they 

are still preliminary. Detection of the impulses hidden in the 

smearing and noise calls for appropriate signal processing 

techniques to diminish the effect of deterministic vibration 

patterns generated by mechanical structure, and emphasize 

the faulty characteristics buried in the remaining random part 

(Randall & Antoni, 2011). It is assumed that stator winding 

fault will cause disturbance in the magnetic field which might 

be taken as random variation in regular frequency analyses of 

the raw signal. The induction motor vibration signal is then 

assumed to be cyclostationary and the winding fault 

diagnostic information can be detected using envelop 

analysis. As shown in Figure 3, the first step of signal 

processing is to check the quality of the vibration data 

(Jabłoński, Barszcz and Bielecka, 2011; Jablonski & Barszcz, 

2013) to guarantee data integrity. A list of statistics including 

mean and root-mean-square is calculated and compared with 

a set of predefined thresholds. Then, the vibration data that 

have passed the data quality check will go through a low-pass 

filter to exclude the high frequency noise (In this study, the 

cut-off frequency was set to be one half of Nyquist frequency, 

which is 12800 Hz for the vibration signal, and 10 Hz for the 

tachometer signal, since the ratio of tachometer is 1/4.) The 

cut-off frequency of the vibration signal is determined based 

on visual inspection of the vibration signal spectrum. Up to 

0.8 of Nyquist frequency was checked, and neither 

characteristic peaks nor resonance peaks were observed at 

higher frequency range. The peaks at higher frequencies were 

not very consistent which made us believe that they are more 

like noise of DAQ and should be filtered. After the 

aforementioned pre-processing steps, time synchronous 

averaging is performed to calculate the discrete frequency 

component (Randall & Antoni, 2011) caused mainly by 

motor pulley. This deterministic component in the signal is 

then subtracted from the raw signal, and the remaining 

residual signal will only contain the random part, which carry 

the features from electrical faults. Furthermore, the resonance 

frequency band that amplifies the fault will be located via 

spectral kurtosis analysis and kurtogram. The output center 

frequency and bandwidth will be referred to for the 

subsequent envelope analysis. Eventually, the first order 

component of the envelope spectrum is found to be an 

effective health index. 

The following sub-sections will introduce the theory of the 

tools and techniques utilized in this work and explaining why 

they are effective in detecting stator inter-turn faults in 

induction motors. For each technique introduced, some of the 

results from the later experimental research will be presented 

accordingly for a better explanation and clarity. 

2.2. Theoretical Background 

Instead of going through the calculation of magnetic forces, 

the induction motor winding fault detection strategy is 

formulated from the perspective of vibration signal 

processing. 

To state mathematically, the problem is to extract the stator 

inter-turn faulty signal x(t) buried in the noise η(t). And the 

actual raw signal s(t) collected from the motor is the 

combination of the two, which is (Antoni & Randall, 2006) 

 ( )( ) ( )s t x t t    (1) 

Under this problem statement, the following assumptions for 

this research are proposed: 
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Figure 3. Flowchart of inter-turn fault detection for three-

phase induction motors using vibration signal. 

 

1. The inter-turn faulty signal x(t) has transients and 

contains impulses, which do not occur, or follow a 

different pattern in the healthy conditions; 

2. The noise η(t) refers to not only the stationary 

measurement noise, but also the discrete frequency 

component, namely the vibration influence from the 

mechanical elements such as shaft and geared 

pulley. 

2.2.1. Time synchronous averaging 

Time synchronous averaging (TSA) is an essential tool for 

rotating machines that extracts periodic waveforms from 

noisy data. TSA is performed with respect to a certain shaft 

according to the tachometer signal as angular position 

reference. Vibration signals that went through TSA process 

will have an integer number of orders of the fundamental 

harmonic (shaft frequency) retained, and other non-

synchronous vibration components weakened. If the 

synchronous-averaged signal is subtracted from the original 

signal, the residual signal with the harmonics of the shaft 

frequency removed will be obtained. Both the synchronous-

averaged signal and residual signal contain diagnostic 

information of different failure mode (Al-Atat et al., 2011). 

While there are many different techniques for TSA, zero 

crossing-based technique is the most widely used method. 

Zero crossing-based TSA resamples the vibration signal to 

angular domain where the samples recorded in one shaft 

rotation are interpolated into a fixed number of data points 

for each revolution. The number of points per revolution N is 

derived from Eq. (2): 

 2(log m )ax( )
2

ceiling n
N    (2) 

where n is the number of points between two subsequent zero 

crossing indices of the tachometer signal (Bechhoefer & 

Kingsley, 2009), and “ceiling” represents the process of 

rounding toward positive infinity.  

However, it should be noted that resampling from time 

domain to angular domain will cause problems for the 

following signal processing steps since the kernel functions 

of kurtogram, filtering, and envelope analysis have a constant 

frequency (Δt) instead of constant angle (Δθ). Hence the 

synchronous-averaged signal should be interpolated back to 

its original time-based sampling mechanism before 

calculating the residual signal.  

The procedure of obtaining the residual signal from TSA is 

summarized as follows: 

(1) Find zero-crossing indices in the tachometer signal 

and calculate the zero crossing time (ZCT) with 

interpolation.  

(2) For each ZCT, calculate the time between ZTCk and 

ZCTk+1, namely, dZCTk, where k is the crossing 

point index. 

(3) Calculate the resampled time interval: dZCT/N, 

where N is given by Eq. (2). Interpolate the signal to 

the newly resampled time and accumulate the 

resampled data.   

(4) Save the original time stamps for each revolution. 

(5) Repeat step (2) through (4) for all the revolutions, 

and then divide the accumulated N point vector by 

number of revolutions.  

(6) Interpolate the N point vector (TSA signal) back to 

the original time stamps for each revolution, and 

combine the interpolated TSA signal to get the same 

length of vector as the original data. 

 

Figure 4. Time domain signal result for TSA analysis. (a) 

time domain raw signal with kurtosis of 2.3262, (b) time 

domain TSA signal, (c) time domain residual signal with 

kurtosis of 3.0590. The induction motor was running at 

approximately 2000 rpm and an inter-turn fault was induced. 
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Figure 5. Power spectrum density comparison between raw 

signal, TSA signal, and residual signal of the TSA analysis. 

The induction motor was running at approximately 2000 rpm 

(33.3 Hz) with inter-turn fault induced. The number of teeth 

on the pulley attached to the motor is 30. The circled peak in 

PSD plot is located at around 983.2 Hz. 

 

(7) Subtract the combined vector from the original data 

to get the residual signal.  

An example of TSA analysis is shown in Figure 4 and Figure 

5. In Figure 4, it could be hard to tell the difference between 

the residual signal and the original one, except that the 

amplitude level seem to be decreased. Nevertheless, if we 

compare the kurtosis of the original signal, which is 2.3262, 

with the kurtosis of the residual signal, which is 3.0690, it is 

evident that the transients in the signal has been amplified. 

To reason the mechanism of TSA analysis, power spectrum 

density (PSD) plot is provided in Figure 5. It can be observed 

that the main component (highest peak) of TSA signal PSD 

locates at around 983.2 Hz, which is approximately 30 times 

of the revolutionary frequency of the induction motor rotating 

at 2000 rpm. This coincides with the fact that the motor has a 

30-teech pulley as its component. This confirms the success 

of our intension to remove the contamination of deterministic 

component generated by mechanical components. 

2.2.2. Spectral kurtosis and kurtogram 

Kurtosis as a statistical feature is well-known as a global 

value to detect the peakiness in a signal. It is defined as 

 

  

  

4

2
2

( ) ( )

( ) ( )

E x t E x t
k

E x t E x t

 
 
 
 

  (3) 

where E[●] indicates the statistical expectation. Spectral 

kurtosis is an extension of kurtosis to a function of frequency, 

and is known for identifying the impulsiveness in the 

frequency spectrum for rotary machinery fault diagnosis. It is 

calculated based on the short-time-Fourier-transform X(t,f) of 

the original signal. As mentioned by Randall & Antoni in 

(Randall & Antoni, 2011), spectral kurtosis is defined as 

 

  

  

4

2
2

( , ) ( , )
( ) 2

( , ) ( , )

E X t f E X t f
K f

E X t f E X t f

 
  
 
 

  (4) 

The benefit of spectral kurtosis analysis is that it is able to 

find a frequency band that contains fault characteristics 

without requiring a large number of history data. Yet it is then 

of vital importance that an appropriate window length be 

chosen for the short-time-Fourier-transform. In order to find 

the optimal window length, or equivalently bandwidth, more 

efficiently, fast kurtogram was adopted to plot spectral 

kurtosis against level and frequency. Fast kurtogram is a 

“suboptimal” version of kurtogram with poorer resolution but 

much less computational pressure. Similar to discrete wavelet 

packet transform, starting from the largest bandwidth 

(spectrum), it iteratively divides the spectrum into two equal 

parts and form a tree-structure at the end (Antoni, 2007). 

Another task for kurtogram is to find the center frequency 

with the highest spectral kurtosis value, which is related to 

the resonance frequency of the motor. The incipient vibration 

that was caused by stator winding fault will be amplified at 

this resonance frequency. It can be observed in Figure 6 that 

the color in the fast kurtogram indicates the value of kurtosis, 

and in this particular example the highest kurtosis exists at 

Level 5.5 with a center frequency of around 12000 Hz. Even 

though the fast kurtogram computes automatically the center 

frequency and the bandwidth, the original power spectrum 

density still needs to be taken into consideration to finalize 

the spectrum section that needs to be demodulated later. This 

part will be shown with graphical explanation in the 

following sub-section. 

2.2.3. Envelope Analysis 

Often, the spectrum of raw vibration signal for rotary 

machinery gives little insight on faulty characteristics due to 

excessive environmental and structure noise. As mentioned 

in previous sections, winding faults at early stage would 

induce mechanical impacts that are amplified at the 

resonance frequency of the induction motor system. With 

kurtogram analysis, envelope analysis will further improve 

the signal to noise ratio and enhance the transients, so that the 

fault signature can become more pronounced. 

The procedure for envelope analysis in this research is 

described in Figure 7, where the residual signal estimation  
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Figure 6. Kutogram of inter-turn fault residual signal at 2000 

rpm. The highest kurtosis is 0.4 at Level 5.5 with a center 

frequency of 12000 Hz. 

 

from the TSA process is the input and the envelope spectrum 

is the output. First, a band-pass filter is designed based on the 

center frequency and bandwidth determined from fast 

kurtogram. 

Then the resulting band-passed residual signal is modulated 

with a carrier frequency the same as the center frequency. 

Specifically, it is calculated by following Eq. (5).  

( ) ( ) exp( 2 )cy t r t j tf      (5) 

where r(t) is the band-passed residual signal estimation 

calculated from the TSA, 𝑗 = √−1, fc is the center frequency, 

and y(t) is the modulated signal. The purpose of the first step 

is to shift the interested frequency band to the DC frequency, 

with fc overlapping with the DC component. Afterwards, the 

modulated signal is processed through a low-pass filter with 

half of the bandwidth as the cutoff frequency. The obtained 

narrow-band complex signal is represented by �̃�(t), whose 

amplitude is the estimated envelope. Eventually, �̃�(t) will be 

multiplied by its complex conjugate �̃�∗(t) to get the squared 

envelope, which is calculated by following Eq. (6): 

 
*( ) ( ) ( )e t y t y t    (6) 

where e(t) represents the squared envelope signal. 

The result of demodulation can be found in Figure 8. In the 

time domain, the emphasis of impulsiveness in the faulty 

signal can be recognized even by observation. Quantitatively, 

the kurtosis of the signal has increased from 3.0590 to 4.2691. 

In the frequency domain, one can clearly see in Figure 8 (b) 

that the peaky section centered at approx. 12000 Hz with a 

bandwidth of around 800 Hz is highlighted. This is where the 

high frequency band that contains the faulty information 

locates. It was picked up by  
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kurtogram and moved to lower frequency band after 

demodulation. Discussion on the result of envelope signal 

and envelope spectrum will be formulated in Section 4. 

3. EXPERIMENTAL SETUP 

For conducting this research, a dedicated induction motor 

test-bed was designed and developed (Ompusunggu et al., 

2014). The test-bed is designed such that one is able to 

simulate the winding faults with different levels of severity 

and collect vibration, current, voltage and torque signals from 

the motor. The winding faults that could be induced in the 

system include (i) inter-turn and (ii) turn-to-earth faults. The 

test-bed was also designed to run at different speed regimes 

and load conditions for multi-regime data collection and 

analysis. The following sections will briefly describe the test-

bed design, the procedure for inducing winding faults and the 

experiments with different fault conditions. 

3.1.  Test Setup 

The test-bed consisted of an 11KW, 19.7A, 400V 3-phase 

induction motor driven by a variable frequency drive. The 

rotational speed of the motor could be varied from 0 to 3000 

RPM with both stationary and transient modes available. A 

magnetic brake was connected to the output shaft of the 

motor through a timing-belt and pulley mechanism. The 

mechanism allowed the brake shaft to rotate at half of the 

speed of the motor shaft. By controlling the input current of 

the brake, an external load varying from 0 to 50 Nm could be 
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applied to the motor. A PC with LabVIEW programs was 

used to send the control signals to the variable frequency 

drive and magnetic brake controller. A variable resistor with 

the range of 0-580 Ω was used to simulate different levels of 

severities in the shorted turns in inter-turn faults.  A tri-axial 

accelerometer was mounted on the top of the housing of the 

motor to collect the vibration of the motor. A tachometer 

based on a proximity probe was used to measure the 

rotational speed of the motor. The head of the tachometer was 

put towards a 4-tooth flywheel connected to the motor shaft 

generating 4 pulses per revolution. The experimental setup 

and the schematic view of the test-bed are shown in Figure 9 

and Figure 10. 

3.2.  Fault Simulation 

The winding of the motor used in the test-bed is random-

wound (Figure 11). The winding was modified by connecting 

three shielded wires to the coil of phase w at three locations 

and the other ends of the wires were brought outside as 

schematically shown in Figure 12. The inter-turn faults were 

simulated by connecting the other ends of the wires to a 

variable resistor. 

For healthy state simulation, the ends of the three wires were 

left unconnected. The inter-turn faults were simulated under 

two different scenarios referred to as inter-turn I and II. In 

inter-turn I, wires 1 (in orange) and 2 (in green) were 

connected through a variable resistor. Similarly for inter-turn 

II, wire 1 was shorted to wire 3 (black) through a variable 

resistor. By adjusting the resistance to 580 and 300 Ω, two 

levels of severity for both inter-turn I and II were simulated, 

as summarized in Table 1. These values were set up based on 

our third-party motor manufacturer’s experience of typical 

resistance of inter-turn faults for such a motor. 

State Resistance [Ω] Comment 

F1 580 Lowest level 

F2 300 Moderate level 

Table 1. Different fault levels for induction motor 

3.3.  Test Procedure 

The test was performed at the constant speed of 2000 RPM 

and constant brake torque of 12 Nm for all the winding 

conditions. At each level of winding faults, the current il 

flowing through the variable resistor was measured and the 

corresponding dissipated power Pd was calculated as 

summarized in Table 2. The exact same test settings were 

repeated in order to check the consistency. 

 

 
Figure 8. Comparison of time domain and frequency domain signal before and after demodulation: (a) time domain TSA 

residual signal estimate with kurtosis 3.0590, (b) Welch estimate power spectrum density of TSA residual with high-frequency 

band highlighted in dark red, (c) power spectrum density after band-pass filtering the selected resonance frequency band, (d) 

time domain envelope TSA residual signal with kurtosis 4.2691, (e) Welch estimate power spectrum density of the demodulated 

TSA residual, (f) power spectrum density after modulating the band-pass filtered signal with the center frequency Fc. The signal 

comes from the condition of inter-turn fault. Note that the scales of plots are different. 
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Figure 9. Photograph of the induction motor test bed. 

 

Figure 10. Schematic view of the motor test bed. 

 

Prior to digitizing the signals, each measured signal was 

passed through a low-pass and an anti-aliasing filter 

embedded in each channel of the NI data acquisition system. 

Doing the tests in this way ensures that the potential aliasing 

problems caused by high frequency noise can be avoided. 

Depending on the sampling frequency, the cut-off frequency 

of the anti-aliasing filter was automatically adjusted. The 

vibration signals were sampled at the rate of 51.2 KHz with 

the duration of four seconds. The duration of the signal 

mainly depends on the following two aspects: (a) the 

rotational speed of the motor (longer signal length at lower 

speeds); and (b) level of noise due to environmental, 

structural, and DAQ condition. Thus, there is no universal 

cutoff threshold for the duration, yet it is suggested that the 

data samples collected to be above 211 to guarantee sufficient 

Fourier transform resolution. The digitized data was stored in 

the PC and analyzed off-line in MATLAB software. 

 

 

Figure 11. Disassembled motor exposing random would 

stator winding. 

 

Figure 12. Schematic winding diagram with three taps on the 

phase w winding for different inter-turn fault scenarios. 

 

State Inter-turn I Inter-turn II 

il [mA] Pd [W] il [mA] Pd [W] 

F1 265 40.7 86 4.3 

F2 297 26.5 155 7.2 

Table 2. Current and dissipated power through the variable 

resistor at different states 

4. RESULTS AND DISCUSSION 

Under varying fault severity levels, squared envelope signal 

estimation was calculated by following the procedure 

introduced in Section 2.2.3. The result for healthy state, Inter-

turn I and Inter-turn II in Test 1 are presented in Figure 13, 

respectively. Compared with the healthy state, it is obvious 

that the pattern of vibration of the induction motor has 

changed in time domain for inter-turn fault. The period of one 

cycle of vibration for the healthy case is  
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Figure 13. Time domain envelope signals for F1 in Test 1: (1) 

time domain envelope signal for healthy state with period of 

approx. 0.0456 s, (2) time domain envelope signal for Inter-

Turn I with period of approx. 0.0300 s, (3) time domain 

envelope signal for Inter-Turn II with period of approx. 

0.0304 s.  

 

approximately 0.0456 s, and the period for both of the inter-

turn cases is approximately 0.0300 s, namely 33.3 Hz which 

is about the same with the rotational speed (2000 RPM/60 s= 

33.3 Hz). This is because inter-turn fault has changed the 

magnetic flux distribution of the induction motor and the 

faulty characteristic is related to the rotating speed. It is also 

noticeable that the amplitude of the faulty characteristic 

increases as the fault becomes more severe. 

After obtaining the envelope signal, fast Fourier transform 

was applied with the DC component removed. For the 

purpose of comparing between different scenarios, 

amplitudes of the spectrum were “normalized” according to 

the DC component amplitude of each signal after Fourier 

transform, whose value should be dominant and the 

maximum in the whole spectrum; and the frequency domain 

was also transferred to order domain to emphasize the 

relationship of the harmonics and the rotational speed. In 

Figure 14, it is evident that at the first order there is a 

harmonic component for inter-turn faults. And by comparing 

(3) with (2) in Figure 14, the severity of the fault is also 

successfully revealed, with the more severe case possessing 

a higher value.  

Furthermore, a bar plot was generated for all the conditions 

at different severity levels for both of the tests, which is 

shown in Figure 15. As one can observe, within one test, there 

is a clear difference between healthy state and inter-turn 

faults in terms of bar height. In terms of severity, for Inter-

turn I and Inter-turn II respectively, amplitudes at F2 for Test 

1 in (b) is larger than those for Test 1 in (a) of Figure 15. 

Besides, Inter-turn II has a larger value than  

 
Figure 14. Envelope spectra in order domain for F1 in Test 1: 

(1) envelope spectrum for healthy state with no harmonic at 

the first order, (2) envelope spectrum for Inter-turn I with a 

peak valued at 0.09403 at the first order, (3) envelope 

spectrum for Inter-turn II with a peak valued at 0.14737 at the 

first order. 

 

 

Figure 15. Amplitudes of first order component in envelope 

spectrum for different conditions and severity levels in the 

two tests: (a) amplitudes for all three conditions at severity 

level F1 of Test 1 and Test 2, (b) amplitudes for all three 

conditions at severity level F2 of Test 1 and Test 2. The three 

colors represent healthy state, Inter-turn I, and Inter-turn II, 

respectively, which are consistent with previous figures. 

 

Inter-turn I, which once again reveals the severity of fault 

successfully. Since the values of the order domain were 

normalized between 0 and 1, it can be considered as a metric 

called hazard value (HV) to quantify inter-turn fault in 

induction motors. The result is shown in Table 3. 
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F1 F2 F1 F2 

1 0.0359 0.0940 0.2385 0.1474 0.2574 

2 0.0237 0.0822 0.2549 0.2064 0.3445 

Table 3. Hazard value (HV) of different conditions and 

severities 

 Healthy Inter-turn I Inter-turn II 

F1 F2 F1 F2 

Difference 

(%) 
34.0 12.6 6.9 40.0 33.8 

Table 4. Consistency of tests. The percentage is calculated 

based on the differences between HVs in the two tests under 

the same condition. 

 

Test 1  

(%) 

Healthy Inter-turn I Inter-turn II 

F1 F2 F1 F2 

Healthy 0 161.8 564.3 310.6 617.0 

Inter-turn I- 

F1 
- 0 617.0 56.8 173.8 

Inter-turn I- 

F2 
- - 0 - 7.9 

Inter-turn II- 

F1 
- - - 0 74.6 

Inter-turn II- 

F2 
- - - - 0 

Table 5. Difference percentage between different conditions 

in Test 1. Compare the percentage increase in HV when the 

fault is getting more severe. 

 

Test 2  

(%) 

Healthy Inter-turn I Inter-turn II 

F1 F2 F1 F2 

Healthy 
0 246.8 975.5 770.9 

1353.

6 

Inter-turn I- 

F1 
- 0 210.1 151.1 319.1 

Inter-turn I- 

F2 
- - 0 - 35.2 

Inter-turn II- 

F1 
- - - 0 67.0 

Inter-turn II- 

F2 
- - - - 0 

Table 6. Difference percentage between different conditions 

in Test 2. Compare the percentage increase in HV when the 

fault is getting more severe. 

 

In order to check the consistency and robustness of the result, 

comparisons of HVs between Test 1 and Test 2 are 

summarized in Table 4, Table 5, and Table 6. In Table 4, it 

can be seen that under the same experimental setting, the HV 

value can be different up to 40% from the previous test. This 

suggests that the robustness in the HV metric needs further 

improvement and the value might not serve as a universal 

measure for stator inter-turn faults. Nevertheless, we argue 

that the increasing trend of the feature when the fault is 

getting worse is more important than the value itself. From 

both Table 5 and Table 6, it can be seen that each test provides 

a very distinctive HV for every faulty condition against the 

healthy state; and when the faulty level increases, HV also 

increases with it. This indicates the method still has the ability 

of detecting induction motor stator inter-turn faults, and 

measuring the degree of severity. 

5. CONCLUSION 

This paper proposes a vibration-based method to detect inter-

turn winding fault, which is known to be the hardest to detect 

even with current and voltage signal. The method was 

divided into two stages, namely signal pre-processing stage 

and signal enhancement stage. In the pre-processing stage, 

data quality check and a low-pass filter were applied on both 

vibration signal and tachometer signal. In the signal 

enhancement stage, several techniques were adopted. Time 

synchronous averaging was used to remove the discrete 

frequency component noise, and then the residual signal was 

demodulated at the center frequency and bandwidth selected 

with the help of kurtogram. The resulting normalized 

envelope spectrum was converted into order domain, and the 

component at the first order was able to distinguish the inter-

turn fault state from the healthy state, and at the same time 

reflect the severity.  

There is certainly space for improvement when looking at the 

robustness and generality of the method. This method is 

applied at a constant speed and constant load condition. 

Whether or not the method could be applied at transient 

circumstances needs further study and validation. Besides, 

the proposed HV might not be able to serve as a general 

measure for stator inter-turn fault severity, because the 

variations might be high and nonlinear. Instead, it is 

suggested that the HVs be used as “features” that are able to 

distinguish healthy states from faulty and capture the trendy 

change of the inter-turn fault development. Then the features 

can be fed into other more advanced machine learning 

algorithms to determine the condition of the motor. 

In terms of removing the discrete frequency component, TSA 

is somewhat a computationally expensive method. To 

achieve similar effects, cepstrum analysis can serve as 

another option (Randall & Sawalhi, 2011). Cepstrum usually 

would be applied to separate the transmission noise from the 

sources, and is easier to implement since it is based on the 

computation of fast Fourier transform, which is very 

efficient. The only drawback of cepstrum analysis is that the 

deterministic component frequencies need to be known a 

prior. So in cases of enough domain knowledge about the 

induction motor, cepstrum could be a superior choice. 
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