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ABSTRACT 

This paper presents an effective health assessment and 

predictive maintenance technique for industrial assets. The 

technique and algorithms applied to data sets provided by 

the Prognostics and Health Management Society 2014 Data 

Challenge. The data contains usage and part consumption 

for three years. In short, the usage data contains a parameter 

that roughly measures asset usage, and the part consumption 

data includes information regarding part replacement and 

maintenance actions. The first two years of data are 

considered as "Training" data and the third year is 

considered as "Testing" data. The proposed method built on 

the probability of the failure risk during training dataset. 

The main objective is to develop a model based on first two 

years data set (training) and determine the high risk and low 

risk times of failure for each individual asset for the third 

year. 

Training data shows many maintenance activities with 14 

different codes. The principle difficulty is to detect the 

Preventive Maintenance (PM) in the training data. The 

paper presents the method in three main steps: the first step 

is to recognize the PM pattern based on time and type of 

maintenance activity via the training data. The second step 

is to determine the high-risk time intervals based on PM 

times by checking the frequency of the failures at specific 

times between each PM. The third step is to predict the high 

risk time intervals in the testing data using the information 

acquired from the training data. The score predicted by this 

probabilistic risk assessment method won the first place in 

the PHM Data Challenge Competition.  

1. INTRODUCTION 

Failures occur as materials and machines are continuously 

used. When a small failure occurs due to a subsystem, an 

entire system may fail and require maintenance. This may 

cause an extended downtime to occur when an unpredicted 

failure happens; however, this can be avoided by performing 

maintenance tasks and part replacement before failure 

occurs (Endrenyi et al, 2001). Failure data plays an 

important role in optimization of the maintenance schedules 

for machinery. Moreover, each maintenance activity 

contains abundant raw data that shows some aspects of the 

asset health. Appropriate analysis on assets failure and 

maintenance data can help to improve the reliability of the 

engineering assets. 

 

Classical maintenance practices can be divided into two 

main categories a) Preventive Maintenance and b) 

Corrective Maintenance (Arunraj & Maiti, 2007). 

Preventive Maintenance (PM) is a periodical planned 

downtime, in which a clear set of action items such as part 

replacement, lubrication and inspection is performed 

(Ebeling, 1997). Corrective Maintenance (CM) is performed 

after failure occurs to restore the equipment or machine to 

the operational condition in which it can perform its planned 

function (Ebeling, 1997).  In recent years, risk evaluation of 

system or machine failure, referred to as risk-based 

maintenance, presents a more practical modeling of 

equipment failure and estimation of expected consequences 

(Khan & Haddara, 2003). In a work proposed by Lin, Ming, 

and Richard, (2001) the analysis and optimization of PMs is 

studied for repairable machines with two failure modes 

classes, namely the maintainable and non-maintainable 

failure modes. Only the system failure rate matching to the 

maintainable failure mode is changed whenever PM actions 

are executed. A similar work to that presented by El-Ferik 

and Ben-Daya  (2006) to build up degradation based fusion 
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model for PM for repairable machines. In (El-Ferik & Ben-

Daya, 2006), an analysis is performed to establish the 

existence and distinctiveness of optimal PM strategy. 

Statistical modeling is the main approach that has been 

applied in the literature.  

 

The NSF I/UCRC on Intelligent Maintenance Systems 

(IMS) mission is to develop intelligent techniques to 

improve reliability, productivity, and asset utilization. In 

support of this vision, the IMS Center at the Univ. of 

Cincinnati participated in the Data Challenge competition 

that is part of the annual conference of the Prognostics and 

Health Management Society held in 2014. This year’s data 

challenge focused on asset health calculation, an industry 

problem found in remote monitoring and diagnostics. The 

paper is prearranged in the following sections: after the 

introduction, Section 2 discusses the problem statement for 

the 2014 Prognostics and Health Management Society Data 

Challenge. Section 3 describes the general methodology of 

risk assessment based on maintenance activities. This is 

followed in section 4, where the model development as well 

as feature extraction method is explained. Section 5 

describes the prediction algorithm to forecast the high risk 

and low risk time intervals for each asset during the testing 

period. Section 6 presents an evaluation metric for this data 

challenge and measures the performance of predicted 

results.  Lastly, conclusions and future works are discussed 

in Section 7 and Section 8 respectively. 

2. PROBLEM STATEMENT AND CHALLENGES 

The objective of the data challenge is to design an algorithm 

that would evaluate whether or not a system would fail in 

the next three days after a given sample time. The dataset 

consisted of three training datasets and two test datasets. 

The training data sets included part consumption, usage and 

failures. The test data sets included part consumption and 

usage. The part consumption data contained a record of 

what parts were replaced on an asset, the time that the part 

were replaced, the reason the asset was being worked on, 

and the quantity of parts that were replaced. For example, 

the structure of a small portion of the part consumption data 

for asset ID 18997 is shown in Table 1.  

Asset 

ID 

Time Reason 

code 

Part 

Number 

Number of 

Parts 

18997 727 707 133495 1 

18997 727 707 133495 1 

18997 727 707 133495 1 

18997 727 707 396485 11 

18997 727 707 396485 1 

18997 728 707 2198 1 

18997 728 707 366285 3 

18997 729 707 201954 1 

Table 1. Sample of part consumption data structure 

The usage file contained a record of a parameter that 

roughly measures asset usage and the time that 

measurement was taken. The main objective was to 

determine if the equipment was going to fail within 3 time 

units using certain times within the testing data (Garvey, 

2014).  

2.1. Data description 

The range of time in the entire training data set (part 

consumption, usage, and failure) is between 0 and 730 and 

for testing, is between 731 and 1095. Based on this 

information we assumed there were 3 years of data, the first 

two years were training and the third year for testing. To 

better understand the training data set Figure 1 shows a 

sample of maintenance tasks for asset ID 6787.  The 'x' axis 

shows the time in days for three years. The blue dashed line 

separates the testing part from the training part at the end of 

the second year.  

The 'y' axis shows the repeated number of part numbers 

replaced (RNPNR) in the maintenance time period with 

green color indicating replacement during training time and 

yellow color indicating replacement during testing time.  

The RNPNR means how many times part numbers have 

been repeated at each maintenance time in the part 

consumption regardless of the unique number of part 

numbers. For example, in Table 1 for the asset at time 727 

the RNPNR would be 5 and at time 728 it would be 2.  

 

Figure 1. Example of maintenance tasks  

The digit at each maintenance action shows the reason that 

asset was worked on (column 3 of Table 1). An asset would 

be worked on for 14 different reason categories. These 

categories have been coded with two or three digit numbers. 

Table 2 shows the list of all reasons. In Figure 1, the failure 

time is depicted with a red asterisk during the training. 'Test 

time', showing with pink circle, is the time during the testing 

period that has been asked to identify if there is any failure 
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in the next 3 days (time units). Even if there are  some 

maintenance tasks after the test time, the method needs to 

define the risk level of the test time just by looking at data 

before 'Test time'.  

No Code No Code 

1 44 8 446 

2 64 9 565 

3 119 10 575 

4 193 11 606 

5 364 12 707 

6 396 13 782 

7 417 14 783 

Table 2. 14 reasons that maintenance performed on assets 

 

Figure 2. Example of usage data 

Figure 2 illustrates the usage in training (dark blue) and 

testing part (light blue). Red asterisks have indicated the 

time when the two failures occurred and the test time is 

marked by a pink circle. The unit of usage is unknown; 

however, the PHM 2014 mentioned it is similar to an 

odometer. The usage measurement is irregular and not same 

as the time the maintenance action takes place. Moreover, 

the amount the usage is increasing at each time intervals is 

not linear. This can be interpreted that the asset might be in 

rest, downtime, or standby for several days or months. The 

range of the usage for all assets is between 25000 and 

39000.  

2.2. Challenges and Pre-processing 

The subsequent processing steps in the risk assessment 

algorithms for this data set depend on quality data inputs. 

For all inputs, data filtering is performed to remove 

erroneous data samples and provide a more suitable data set 

for further processing. 

 

The first issue is that the unique number of asset IDs in 

"Test Instances" are 1866 that is needed to identify at least 1 

test time; however, just 1738 of these assets has "Train Part 

Consumption" information. Therefore there are 128 unique 

assets IDs with no train part information. Moreover, the 

training data can be varied from complete two years up to 

just several days at the end of the second year. Other assets, 

which are not being considered in the testing data, are not 

included in this analysis.  

The second issue is the number of parts replaced for each 

part number. Logically the number of parts should be an 

integer positive value. Consequently, after sorting the Train 

number of part replacements in ascending order, those with 

values lower than one has been removed from the analysis. 

 

Figure 3. Q-Q plot on usage to remove outlier and define 

usage distribution 

The third challenge is outlier detection and removal. In this 

paper, the Grubb's test is used to detect outliers before any 

further analysis occurs. Figure 3 illustrates an example of 

outlier detected by Grubb's test and verified by the Q-Q 

plot. The Q-Q plot is a graphical method for comparing 

usage distributions and normal distribution by plotting their 

quintiles against each other. The graph clearly detects an 

outlier in the usage and removing the outlier declares the 

distribution of usage is close to normal. 

The performance of a risk prediction method for the test 

cases evaluates based on the Eq. (1). The PHM Data 

Challenge Competition gives the following scoring metric: 

       
 

 
   

 

 
  (1) 

where N is the number of samples for each type "low risk" 

and "high risk"; so the number of samples from "low risk" 

and "high risk" are equal. L is the number of correct low 

risk samples and H is the number of correct high risk 

samples. 
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3. RISK ASSESSMENT METHODOLOGY 

The overall approach for assessing the low risk or high risk 

time intervals for this specific case study consists of a series 

of algorithmic processing steps. A flow chart of the health 

assessment algorithm for this study is provided in Figure 4. 

These steps include data pre-processing, feature extraction, 

risk assessment in training data and risk prediction in testing 

data. The risk assessment algorithms developed for this data 

set follow that step by step processing methodology.  

 

Section 3.1 presents an overview of the classical 

maintenance risk assessment based on Mean Time between 

Repair (MTBR) and bathtub curve. Before our method can 

be explained, it is important to have a solid foundation of 

these concepts. Section 3.2 explains how this classical 

method can be used in this specific case study to estimate 

the high risk time intervals for each asset. More specific 

details of each processing module along with intermediate 

results from each step are shown in the subsequent sections 

to further illustrate this risk assessment method. 

 
Figure 4. Risk assessment algorithm flowchart 

3.1.  Preventive maintenance background   

Usually PMs are designed based on time or usage to reduce 

the risk of failure in the time ahead. In other words, 

maintenance tasks are based on elapsed time or days of 

operation that are founded on statistical or historical data for 

specific types of machine or system. Figure 5 a) illustrates 

an example of the statistical life of a system or equipment. 

The Mean Time Between Failure (MTBF) or bathtub curve 

indicates that the probability of failure during the first few 

time units of operation is high for new equipment, typically 

caused by manufacturing or installation problems. The first 

period, called infant mortality, is characterized by a 

decreasing failure rate (Wang, Hsua & Liub, 2002). 

Following this first period, the chance of failure is low for 

an extended period. Following this regular system life 

period, the probability of failure increases promptly with 

elapsed time of operation. In preventive maintenance 

management, machine inspections, replacement, repairs or 

rebuilds are scheduled based on the MTBF statistic (Klutke, 

Kiessler & Wortman, 2003). 

 
Figure 5 a). General Bathtub curve of industrial machines  

3.2. Proposed methodology 

Dealing with complex reparable systems, PMs usually are 

executed on the wear out section to reduce hazard rate.  

Such PM operations when performed bring the system to 

operate close to new state (Rezvanizaniani, Barabady, 

Valibeigloo, Asghari & Kumar, 2009). The next PM will be 

performed when the hazard rate reaches the maximum 

acceptable level. Figure 5 b) illustrates the location of PMs 

and their affect on decreasing hazard rate. The time between 

two PMs referred is time between repairs (TBR). In the 

proposed method it is important to identify, the PM exact 

time during maintenance activates to define the value of 

TBR. In this case, the probability of failure before TBR is 

higher because of a larger hazard rate.  

On the other hand, after each maintenance activity there is a 

short period of high hazard rate same as the infant mortality 

in the Figure 5 b). These maintenance actions can be 

preventive maintenance with large number of parts replaced 

or even corrective maintenance (CM) with a few parts 

replacement. The main difference is that for PMs the higher 

failure rate is before the PM occurs, however, for CMs it is 

after that. The proposed methodology uses both techniques 

and builds a model that infers high risk before the PMs and 

after CMs. Section 4 elaborates these techniques in details.  

 

Figure 5 b). PM affect on decreasing hazard rate 
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4. MODEL DEVELOPMENT 

4.1. Feature extraction & selection 

Referring to the bathtub curve in Figures 5 a) and 5 b), the 

higher probability of failure occurs during the wear out 

section where the PMs should be performed. Therefore, the 

time PM are scheduled can play an important role in 

defining the high risk failure for each asset. To deal with 

this problem the three features of part consumption 

including time of part replacement, reason the asset was 

worked on and number of parts replaced are used.  

 

Figure 6. Histogram of repeated part number replaced 

Figure 6 shows the histogram of repeated number of part 

numbers replaced (RNPNR) at each maintenance time. The 

frequency decreases when the quantity of repeated part 

numbers increases. A jump of frequency occurs in three 

locations. The first jump happens at 8 RNPNR and the 

second and third happens at 21 and 31 respectively. These 

higher quantity part usages can determine specific 

maintenance tasks. To identify these tasks, the maintenance 

tasks with lower than 8 RNPNR have been removed. For 

each asset, the time between each repair was calculated. 

Figure 7 a) illustrates the measurement of time between 

Repair for one sample. Figure 7 b) demonstrates the 

histogram distribution of time between repair for all assets 

with higher than 8 repeated part number replacements.  

The figure 7 b) shows very important information about 

maintenance activities. There is a peak at TBR near to 183. 

It means that the maintenance activities, which take place 

after 183 days of the previous maintenance, has higher 

occurrence. The distribution of the peak seems symmetric 

usually the planned maintenance activities need replace lots 

of parts and they might take several days so that can be a 

reason of symmetric shape of the peak. The peaks has been 

shown in the green rounded rectangular and it will be 

zoomed later in Figure 9.  

 

Figure 7 a) Measurement of Time between Repair for one 

asset ID with RNPNR greater than 8 

 

Figure 7 b) Time between Repair histogram for more than 8 

RNPNR  

By increasing the RNPNR threshold from 8 to 21 some 

TBRs are merged together and create larger TBR. This fact 

has shown in Figure 8 a) match up to Figure 7 a). The 

histogram graphs can help us to find where the maximum 

frequency of maintenance tasks takes place and what the 

maximum TBR is. The same analysis can be performed for 

repeated parts more than 31 as shown on Figure 8 b). 

Although the numbers of maintenance actions with more 

than 21 repeated part numbers are very low, the mode of 

distribution happens at approximately every 183 days.    
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Figure 8 a) Measurement of Time between Repair for one 

asset ID with RNPNR greater than 21 

 

Figure 8 b) Time between Repair histogram for RNPNR 

higher than 21 and higher than 31 

Filtering the RNPNR shows that with higher than 31 

replacements it is possible to have 550 days in between two 

repair times; however, the statistical mode of these time 

between repairs just happens at 183 days. In Figures 7 b) 

and 8 b), the mode of Time between Repair distribution, 

shows approximate estimation of PM location. Even the 

graphs can give approximate understanding of TBR. 

However, to identify the PM locations, deep understanding 

of PM distributions is necessary. To better understand the 

distribution of time between repair in figures 7 b) and 8 b), 

the last mode (peak) of the graph, which has been 

highlighted with the green rounded rectangular, has been 

zoomed separately in Fig. 9. Figure 9 shows the distribution 

of time between repair for the part replacement greater than 

8, 21 and 31 respectively. The distribution is considered as 

normal and the mean and standard deviation is shown in 

Table 3.  

 

Figure 9. Distribution of time between repair for RNPNR 

greater than 8, 21 and 31  

RNPNR mean std 

>8 182.94 5.07 

>21 368.26 4.50 

>31 551.09 3.99 

Table 3. Distribution characteristics of three distributions 

Equation (2) shows the tolerance interval for the normal 

distribution:  

                      
 

  
           (2) 

where μ is the mean and σ is the standard deviation and erf 

is the error function, which is twice the integral of the 

Gaussian distribution with 0 mean and variance of 0.5. 

Equation (3) shows the error function: 

        
 

  
     

   
 

  

          (3) 

Based on these equations the probability of PM located at 

the range of      is 68.2%.  

4.2. Data-driven approach for PM detection 

The crucial step in this analysis is to define the location of 

PMs based on the extracted features. According to the above 

analysis, the PM features can be summarized as: 

1. RNPNR greater than 8  

2. The MTBR is 183 days +/- 5 days  
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Based on the above conditions, the flowchart in Figure 10 

has been designed to detect the PMs during two years 

training data set.  

 

Figure 10. Flow chart of "PM detection algorithm" 

The algorithm at first divide the training part time to four 

equal sections and defines all maintenance activities with 

RNPNR greater than 8. Then, the Euclidian distance matrix 

for all detected points calculated based on Eq. (4): 

             

 
          (4) 

where x is the maintenance time and i or j = 1,...N, 

individually addresses all the maintenance detected. To find 

the closest maintenance time to PM all dij subtracted from 

Mean Time between Repair (MTBR): 

                          (5) 

The minimum Dij value within each section is considered as 

the PM location. If there is not at least one maintenance 

action with greater than 8 RNPNR in a section, then the 

algorithm detects PMs in other sections to estimate the time 

of missing PM. This is done by finding the range of 

MTBR+/-σ in the section without a detected PM. Within the 

newly found range, the maintenance with largest RNPNR is 

considered as a PM. If a PM is still not found, the range is 

slowly increased to 2σ until maintenance falls within this 

range.  Otherwise, we estimate where a PM would fall and 

create a simulated PM at that location. For those assets, 

which their training part is less than two years, the PMs are 

less than four. Table 4 shows the summary of PM detection 

for all 14 reasons. Totally, 5995 PMs were detected in 

which 4502 of them are with the reason 707.  More than 

97% of the maintenances classified as PMs have a reason 

code of 417, 565 or 707; therefore, we classified those 

reasons as PMs and considered the other reasons for 

maintenances as CMs. 

Reasons Number of PMs Maintenance type 

44 0 CM 

64 1 CM 

119 25 CM 

193 73 CM 

364 21 CM 

396 1 CM 

417 338 PM 

446 38 CM 

565 985 PM 

575 3 CM 

606 5 CM 

707 4502 PM 

782 0 CM 

783 3 CM 

Total 5995   

Table 4. Results of PM detection 

The set of Figures numbered 11 illustrate the four examples 

of PM detection using this technique. Each figure selected 

to discuss some aspects of PM detection. The blue triangles 

show the time of PM, which labeled in order from PM1 to 

PM4.  The orange dashed line is the threshold for 8 RNPNR. 

Figure 11 a) shows the correct performance of the algorithm 

since all PMs have a distance close to MTBR from each 

other. Close to the time of PM1 there are several other 

maintenance activities with same reason which represent the 

PM tasks might take several days.  

 

Figure 11 a) Example of PM detection  

Figure 11 b) is an example that "PM detection algorithm" is 

robust enough to distinguish the PM action event he 

RNPNR is lower than 8. Therefore, the algorithm at first 

selects PM2 to PM4 and then estimates the location of PM1 

based on MTBR+/-σ with RNPNR lower than 8 and 

searches for a maintenance task with higher RNPNR. The 

selected PM1 has a code of 707, which verifies based on the 

results of Table 4. Figure 11 c) shows one of the samples 

which does not have a complete two years of data. In this 
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case, the "PM detection algorithm" assign zero value to PM1 

and PM2 and the other PMs are detected properly. 

 

Figure 11 b) Example of PM detection 

 

Figure 11 c) Example of PM detection 

 

Figure 11 d) Example of PM detection 

The most significant issue is observed in Figure 11 d) at 

PM2 where the maintenance with reason 707 has RNPNR 

lower than 8, but there is a very close CM with reason 193 

that the algorithm detects as the PM. 

4.3. Probabilistic risk assessment  

There are two approaches to define the high risk time 

intervals in this algorithm.  The first approach uses PMs as 

the main feature and detects the probability of failure 

between two PMs. The second approach uses CMs to 

evaluate the correlation between CM reasons and the 

probability of failure in the first few days after the CM is 

performed. In other words, these two approaches can be 

summarized as follows:  

1- Building a model that infers risk based on 

Preventive Maintenance  

2- Building a model that infers risk by looking for 

high risk Corrective Maintenance  

The first approach is to define the failure rate during each 

MTBR. For this approach, the amount of failures in the four 

MTBR sections for all assets has been calculated and added 

together. The histogram of failure rate is shown on Figure 

12 where each bar represents the accumulation of the 

number of failures in a three day time interval. 

In addition to having a failure rate, it is also necessary to 

have a corresponding threshold for alerting high risk time 

intervals (Siegel & Lee, 2011). A more appropriate way of 

handling this aspect for threshold setting is to use 

Chebyshev’s inequality since that relationship is appropriate 

for any distribution. For an unknown distribution, 

Chebyshev’s inequality is given by the following expression 

provided in Eq. (6), in which μ is the mean of the failures at 

each bar time, σ is the standard deviation, and k is a 

parameter that is directly related to the false alarm rate  

(Siegel, 2013).  Effectively, the false alarm rate is given 

by
 

  , in which a large value of k would mean a lower false 

alarm rate and a threshold that is more standard deviations 

away from the mean. 

               
 

  
 (6) 

In this study, a threshold that is approximately 1.5 standard 

deviations greater than the mean of failure rate was selected. 

Therefore, the threshold set to 160 and indicates three high 

risk time intervals that are highlighted on Figure 12.  

 

The graph shows that the probability of failure is lowest 

immediately after the PM and the probability of failure is 

the highest 8 days before the PM. Based on the classical 

bathtub curve, the highest failure rate is expected close to 

the next PM. However, the graph also shows some periodic 

high and low failure rates which might associate to a time of 

a year, environmental condition or other physical aspects of 
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the system. Besides the 8 days before the PM, the failures 

higher than the threshold take place approximately at 12 and 

42 days after PM.  

 

Figure 12. Histogram of failure rate in union of four TBR 

The second approach is to evaluate the probability of failure 

after CMs. Table 5 shows the summary of all maintenance 

actions classified based on their reason. The second column 

shows total number of maintenance actions in the entire 

train data set for each reason. The third column represents 

the number of failures that occur after the maintenance 

reason before any other maintenance activities take place. 

Therefore, the rate of number of failures over total 

maintenance actions can represent the probability of failure 

for each reason. 

Reasons 

Total 

maintenance 

actions 

Number of 

failures 

after 

maintenance 

Pr 

(failure) 

first 

quantile 

    
 
 
 

 
 

44 172 86 50.00% 10.28 

64 5 0 0.00% NaN 

119 567 129 22.75% 11.22 

193 9578 2324 24.26% 9.58 

364 2447 789 32.24% 11.29 

396 2 1 50.00% 31.65 

417 1370 271 19.78% 12.07 

446 2927 646 22.07% 10.40 

565 7263 864 11.90% 13.45 

575 99 33 33.33% 10.47 

606 69 10 14.49% 0.29 

707 11399 2347 20.59% 16.75 

782 0 0 0.00% NaN 

783 668 259 38.77% 10.64 

Total 36566 7759   

Table 5. Summary of CMs and thresholds 

 

Equation (7) represents probability of failure: 

             
                   

                             
 (7) 

Except for reason 396 that has a very low number of 

maintenance actions, there is a high probability of failure 

after a few reasons. However, this high probability needs to 

be checked based on the number of days after the 

maintenance action takes place and a failure occurs. Figure 

13 shows the histogram of the failure after four high ranked 

failure CMs.  

 

Figure 13. Histogram of failure after CMs 

To define the best fitted distribution, the distributions are 

ordered by the Kolmogorov-Smirnov test statistic, and the 

best fitting distribution selected as exponential. Equation (8) 

shows probability distribution function for exponential 

distribution: 

                    (8) 

where N is the number of time to failure observations, ω is 

the class interval width, λ is a hazard rate and λ
-1

 is the mean 

of distribution. Figure 14 illustrates the cumulative 

distribution function (CDF) of failures after CM 193. Using 

Tukey's criterion (Kotz & Seier, 2009) the CDF can be split 

into four parts where the quantiles can be reached based on 

Eqs (9) to (11). The first quantile represents 25% of failures 

and the second quantile (median) represent 50% of failures.  

                
    

 
 
 

 
 

(9) 

        
      

 
      (10) 
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 (11) 

The first quantile and the median calculated for all 14 

reasons and represented in the Table 5. The first quantile is 

considered as the threshold for the high risk time interval 

after each CM reason. 

 

Figure 14. CDF for CM 193 and high risk indication based 

on Tukey criterion  

5. PREDICTION OF HIGH FAILURE RATE  

Similar to the risk assessment part, there are two approaches 

for prediction as well. The first approach is to define the 

high risk time intervals after the last PM. In this approach 

according to Figure 12 there are several high risk areas 

between two PMs. High risk test times should be detected 3 

time units (days) before failure happens, so the thresholds is 

shifted 3 days before the high risk time intervals initiate. 

The three high risk time intervals highlighted by light 

orange color on Figure 12 and the start and end points 

summarized on the Table 6. 

 T1 T2 T3 

Th [3       12] [36       42] [173     183] 

Th σ _ _ [168     188] 

Table 6. High risk time intervals after last PM 

According to the normal distribution of PM times, the mean 

value +/- the standard deviation is used to predict the next 

PM. Therefore, the T3 time interval has been set to Th σ. 

The process of prediction is shown by Eq.  (12): 

                          

                                        
(12) 

where PMlast is the last PM during training or the first PM 

before the test time, T1, T2 and T3 are the high risk intervals 

from Table 6 and σ is the standard deviation (   5 form 

Table 3). The second approach is to define the high risk 

days after each CM based on the reason of the CM. 

According to Table 5, the range of first quantile is 

considered as the high risk time interval after each reason. 

Figure 15 shows the prediction algorithm in the flow chart 

steps: 

 

Figure 15. Flowchart of high risk prediction 

The algorithm starts by reading the first Test Time for each 

asset and insert all part consumption data and features from 

Test Part Consumption before the Test Time. Then 

according to the PMs features the last PM is selected that 

can be PM4 in train section or even PM5 or PM6 in test part 

depends on the value of the Test Time. Using Eq. (12) to 

define the high risk time intervals based on PM and Table 5 

to define the high risk time interval after each CM. The Test 

Time is considered high risk if it is located in the union of 

the high risk time interval for both PM and CM. Then 

continue the process until the Test Times of each of the 

assets are determined to be high or low risk. 

An example of prediction process is shown in Figure 16. 

The upper plot shows the Test Time (1) at time 944 in pink 

color and the maintenance action with reason 782 detected 

as PM5 as a last PM. The high risk time intervals are shown 

by vertical orange dashed lines. The Test Time is located in 

the range of the high risk time interval where the estimation 

of PM6 is predicted. Consequently, the Test Time (1) is 

considered as high risk. The lower plot shows the Test Time 

(2) for the same asset at time 993. By moving the test time, 

ahead more data before the new test time pull out from Test 
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Part Consumption, which reveals new maintenance action 

with reason 417. For this reason, the last PM location 

changed from PM5 to PM6 with reason 417 and the high risk 

time intervals updated based on PM6. Since Test Time (2) is 

not located inside, any high risk time intervals it is consider 

as low risk.  

Figure 16. Example of risk assessment and prediction for 

two test times 

6. EVALUATION AND RESULTS 

Evaluation is the most important step to obtain feedback 

about goodness of the method. Usually in the competitions, 

this feedback can be acquired by submitting the results; 

however, the number of submissions is restricted. Therefore, 

it is better to have an evaluation method to determine if the 

method works well.  

To evaluate the proposed method, we divided the training 

data into two sections; section one is the first year and 

section two is the second year. We trained the model based 

on section one and tested by section two. To assess how the 

results generalize to independent failures and avoid over-

fitting the cross validation technique used. There are totally 

4870 failures in the second year of the training data set. 

These failures randomly classified into five groups. Each 

group contains 974 failure targets which distributed 

uniformly over second year. A uniform random numbers 

generated in a way that 50% of the random numbers 

represent the failures in each group. Because according to 

Eq. (1) the number of "low risk" and "high risk" is equal. 

Thus, in each group there are 1948 targets that 50% of them 

are real failures. 

The number of failures that has been predicted correctly in 

each section is considered as the correct high risk (cH). 

Based on this method, we measure the effectiveness of the 

prediction by the ratio of cH over the number of failures in 

each section (Hn). The closer the value of cH to the number 

of failures in each section (Hn), the better the result is. The 

same process has been applied for Low risk (or non-failure) 

sample times as well. Because for each section the 

algorithm selects less than 974 sample times as high risk 

other sample times consider as low risk, therefore the 

probability to have better accuracy on low risk is higher. In 

other words, low risk is assigned to the majority of given 

times.  To converge the results this process applied several 

times. Table 7 summarizes the results from one of the 

iterations.  

Sect. 

Number 

of 

failures 

in 2nd 

year 

Failures 

in each 

section 

(Hn) 

Correct 

predicted 

failures 

(cH) 

Eff. 

cH 

(%)  

Correct 

predicted 

Non 

failures 

(cL) 

Eff. 

cL 

(%)  

1 4870 974 222 0.23 836 0.86 

2 4870 974 213 0.22 782 0.80 

3 4870 974 207 0.21 893 0.92 

4 4870 974 234 0.24 891 0.91 

5 4870 974 201 0.21 863 0.89 

Mean       0.22   0.88 

Table 7. Prediction accuracy of evaluation technique 

The results show the accuracy for High risk is about 22% of 

failure prediction and for Low risk is about 88%. According 

to Eq. (1) the evaluation criteria can be obtained by sum of 

cH and cL. Although this method gives some hints about the 

accuracy of the prediction, still has an uncertainty. For some 

assets, there is not enough data for the first year, which 

causes building poor model.  

7. CONCLUSION 

The health assessment of the data from the PHM 2014 data 

challenge was completed through the analysis of the 

Preventive and Corrective Maintenances.  The preliminary 

processes of the data analysis included the removal of 

outliers, feature extraction selection methods. After those 

methods were completed, a health assessment rating was 

given to the asset ID’s at specified times to determine if that 

specific asset was at high risk. 

 

Pre-Processing functions, included data observation, sorting 

and irregularities in the usage data, were used to eliminate 

data that does not have the quality required to accurately 

determine features. The concept of a bathtub curve was used 

to extract and select features on how soon after a 

maintenance a failure would occur during the training data, 

which was then applied to the testing data to provide an 

accurate health assessment rating and therefore determine if 

the asset was at high risk. A crucial part of using the bathtub 

curve is determining where the preventative maintenances 

fall in the data we were given. Through observation and 
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analysis of the repeated number of part numbers replaced, 

and MTBR, function were used to determine where the 

preventative maintenances fell, which provided most of the 

information needed to determine the heath risk of assets in 

the given data set. 

 

The other approach is to use the corrective maintenances to 

evaluate the correlation between corrective measures and 

the probability of failure afterword. Using the number of 

failures immediately after maintenance actions in the testing 

data, the probability of failure after maintenance actions was 

calculated. 

8. SUGGESTIONS FOR FUTURE WORK 

The proposed risk assessment algorithm provided 

encouraging results but there are several refinements to be 

considered for future work. The first idea is to implement 

usage data in the analysis. The usage measurements can be 

considered for estimating more precise period for the PM 

location; however, usage measurements are not exactly at 

the maintenance actions times. In addition, it needed to be 

synchronized based on usage per day or the slope of usage 

for each asset.  

 

 
 

Figure 17. Asset clusters based on usage features (mean and 

standard deviation) 

 

The second thought is to classify the assets into different 

clusters based on the usage features. We did some works in 

this area and extracted two main statistical features from 

train usage data including mean and standard deviation. 

Figure 17 upper plot shows the histogram of average usage 

of each asset. The high and low frequency of average value 

inspire some cluster existing based on usage. Figure 17 

lower plot demonstrates standard deviation of usage versus 

mean of usage for each asset using K-means technique to 

classify them and using mean of Silhouette value as a 

criterion of the optimal number of clustering. The work was 

not completed because of the lack of time for this 

competition. However, the probability of failure in each 

cluster would provide more extension to the proposed 

framework and would provide a way of detecting high risk 

assets based on usage.  

 

The third suggestion is deep analysis of the unique part 

numbers and the number of parts replaced (the fifth column 

of part consumption). The RNPNR in this analysis just 

measures the repeated number of parts replaced and for 

example does not make any differentiation between part 

number 5566684 and part number 953340. The correlation 

between the number and time of failures occurred and the 

exact part numbers can depict more information on the 

higher risk of some parts because of their material quality, 

different work condition, installation affect or higher human 

error on their maintenance.  
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