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ABSTRACT

Six years and more than seventy publications later this paper
looks back and analyzes the development of prognostic algo-
rithms using C-MAPSS datasets generated and disseminated
by the prognostic center of excellence at NASA Ames Re-
search Center. Among those datasets are five run-to-failure C-
MAPSS datasets that have been popular due to various char-
acteristics applicable to prognostics. The C-MAPSS datasets
pose several challenges that are inherent to general prognos-
tics applications. In particular, management of high vari-
ability due to sensor noise, effects of operating conditions,
and presence of multiple simultaneous fault modes are some
factors that have great impact on the generalization capabil-
ities of prognostics algorithms. More than seventy publica-
tions have used the C-MAPSS datasets for developing data-
driven prognostic algorithms. However, in the absence of per-
formance benchmarking results and due to common misun-
derstandings in interpreting the relationships between these
datasets, it has been difficult for the users to suitably compare
their results. In addition to identifying differentiating char-
acteristics in these datasets, this paper also provides perfor-
mance results for the PHM’08 data challenge wining entries
to serve as performance baseline. This paper summarizes var-
ious prognostic modeling efforts that used C-MAPSS datasets
and provides guidelines and references to further usage of
these datasets in a manner that allows clear and consistent
comparison between different approaches.

1. INTRODUCTION

Run-to-failure datasets from a turbofan engine simulation
model were first published by NASA’s Prognostics Center
of Excellence (PCoE) in 2008. This dataset was originally
used in a data challenge competition in PHM’08 conference,
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where PHM researchers were invited to develop prognostic
methods as part of the competition. The competition was
well received with a good set of winning methods. These
data were further made available following the competition
through NASA PCoE data repository (Saxena & Goebel,
2008) so that researchers can use them to build, test, bench-
mark, and compare data-driven prognostic methods. Since
then, these datasets have been widely used by researchers
around the world and results published in over 70 publica-
tions. This paper reviews these approaches, published in the
last five years and analyzes them to understand why some ap-
proaches worked better than others, how did researchers use
these datasets to compare their methods, and what were the
difficulties faced so necessary improvements can be made to
these datasets to make them more useful.

1.1. Background

Prognostics has gained significant attention for its promise to
improve systems health management through advance warn-
ings about performance degradation and impending failures.
Predicting with confidence, however, has posed its own chal-
lenges due to various uncertainties involved in the process.
Several government and industry supported programs have
helped push the thrust in prognostics technology development
all round the globe. The science of prognostics has fairly
matured and the general understanding of health prediction
problem and its applications has greatly improved in the past
decade. Both data-driven and physics based methods have
been shown to possess unique advantages that are specific to
application contexts. However, until very recently, a com-
mon bottleneck in development of data-driven methods was
the lack of availability of run-to-failure data sets. In most
cases real-world data contain fault signatures for a growing
fault at various severity levels but no or little data capture
fault evolution all the way through failure. Procuring actual
system fault progression data is typically time consuming and
expensive. Fielded systems are, most of the time, not prop-
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erly instrumented for collection of relevant data or are unable
to distribute such data due to proprietary constraints. The lack
of common data sets, which researchers can use to compare
their approaches, has been an impediment to progress in the
field of prognostics. To tackle this problem, several datasets
have been published on a prognostics data repository (Saxena
& Goebel, 2008), which have been used by many researchers.
Among these datasets are five datasets from a turbofan engine
simulation model - C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) (Frederick, DeCastro, & Litt,
2007). By simulating a variety of operational conditions and
injecting faults of varying degree degradation, datasets were
generated for prognostics development (Saxena, Goebel, Si-
mon, & Eklund, 2008a). One of the first datasets was used
for a prognostics data challenge at the PHM’08 conference. A
subsequent set was then released later with varying degrees of
complexity. These datasets have since been used very widely
in publications for benchmarking prognostics algorithms.

1.2. Motivation

The turbofan degradation datasets have received over seven
thousand unique downloads in the last five years and yielded
about seventy publications with various algorithms. How-
ever, results obtained by those algorithms can generally not
be compared due to confusions and inconsistencies in how
these datasets have been interpreted and used. Therefore, this
paper intends to analyze various approaches that researchers
have taken to implement prognostics using turbofan datasets.
Some unique characteristics of these datasets are also iden-
tified that led to use certain methods more often than oth-
ers. Specifically, various differences among these datasets
are pointed out. A commentary is provided on how these ap-
proaches fared compared to the winners of the data challenge.
Furthermore, this paper also attempts to clear several issues
so that researchers, in the future, can take these factors into
account in comparing their approaches with the benchmarks.

The paper is organised as follows. In Section 2, the C-
MAPSS datasets are presented. Section 3 is dedicated to the
literature review. Section 4 presents a taxonomy of prognos-
tics approaches for C-MAPSS datasets. Finally, Section 5
provides some guidelines to give a hand to future users in de-
veloping new prognostic algorithms applied to these datasets
and in facilitating algorithms benchmarking.

2. TURBOFAN SIMULATION DATASETS

C-MAPSS is a tool, coded in the MATLAB-Simulink ® en-
vironment for simulating engine model of the 90,000 Ib thrust
class (Frederick et al., 2007). Using a number of editable in-
put parameters, it is possible to specify operational profile,
closed-loop controllers, environmental conditions (various al-
titudes and temperatures), etc. Additionally, there are provi-
sions to modify some efficiency parameters to simulate vari-

ous degradations in different sections of the engine system.

2.1. Datasets characteristics

Using this simulation environment, five datasets were gen-
erated. By creating a custom code wrapper, as described
in (Saxena, Goebel, et al., 2008a), selected fault injection
parameters were varied to simulate continuous degradation
trends. Data from various parts of the system were collected
to record effects of degradations on sensor measurements and
provide time series exhibiting degradation behaviors in mul-
tiple units. These datasets possess unique characteristics that
make them very useful and suitable for developing prognostic
algorithms:

1. Data represent a multi-dimensional response from a
complex non-linear system from a high fidelity simula-
tion that very closely models a real system.

2. These simulations incorporated high levels of noise in-
troduced at various stages to accommodate the nature of
variability generally encountered.

3. The effects of faults are masked due to operational con-
ditions, which is yet another common trait of most oper-
ational systems.

4. Data from plenty of units is provided to allow algorithms
to extract trends and build associations for learning sys-
tem behavior useful for predicting RULSs.

These datasets were geared towards data-driven approaches
where very little or no system information was made available
to PHM developers.

As described in detail in Section 3, the analysis of the publi-
cations using these datasets shows that many researchers have
tried to make comparisons between results obtained from
these similar yet different datasets. This section briefly de-
scribes and distinguishes the five datasets and explains why it
may or may not be appropriate to make such comparisons.

Table 1 summarizes the five datasets. The fundamental dif-
ference between these datasets is attributed to the number of
simultaneous fault modes and the operational conditions sim-
ulated in these experiments. Datasets #1 through #4 incor-
porate an increasing level of complexity and may be used to
incrementally learn the effects of faults and operational con-
ditions. Furthermore, what sets these four datasets apart from
the challenge datasets is the availability of ground truth to
measure performance. Datasets 1 — 4 consist of a training
set that users can use to train their algorithms and a test set
to test the algorithms. The ground truth RUL values for the
test set are also given to assess prediction errors and compute
any metrics for comparison purposes. Results between these
datasets may not always be comparable as these data simulate
different levels of complexity, unless a universal generalized
model is available that regards datasets 1 — 3 as special cases
of dataset #4.
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Table 1. Description of the five turbofan degradation datasets available from NASA repository.

Datasets #Fault Modes  #Conditions  #Train Units  #Test Units
#1 1 1 100 100
Turbofan data 2 1 6 260 259
from NASA #3 2 1 100 100
repository #
#4 2 6 249 248
PHM2008 Data #5T 1 6 218 218
Challenge #5V 1 6 218 435

The PHM challenge datasets are designed in a slightly dif-
ferent way and divided into three parts. Dataset #57" con-
tains a frain set and fest set just like for datasets 1 — 4 ex-
cept with one difference. The ground truth RULSs for the test
set are not revealed. The challenge participants were asked
to upload their results (only once per day) to receive a score
based on an asymmetrical scoring function (Saxena, Goebel,
et al., 2008a). Users can still get their results evaluated using
the same scoring function by uploading their results on the
repository page, but otherwise it is not possible to compute
any other metric on the results in absence of ground truth to
allow error computation. The third part of the challenge set is
dataset #5V, the final validation set that was used to rank the
challenge participants, where they were allowed only once
chance to submit their results. The challenge since then is still
continuing and a participant may submit final results (only
once) for evaluation per instructions posted with the dataset
on the NASA repository (Saxena & Goebel, 2008).

2.2. Establishing Performance Baseline

For performance comparison purposes, data challenge win-
ning entries can be regarded as the benchmark performance
with scores published on the challenge website in 2008. Since
that webpage was taken down in subsequent years, these
scores are not available except as reported in the published
publications from the winners. Therefore, those scores are
included here for reference in future. It is, therefore, real-
ized that a direct comparison with the winners has not been
possible and researchers have inconsistently compared per-
formance between these different datasets. To alleviate that
problem, this paper provides a number of error-based met-
rics listed in (Saxena, Celaya, et al., 2008) computed for top
ten entries to formally establish a performance benchmark for
datasets #57" and #5V . Since there is no common record of
results from datasets 1 — 4, no such benchmark can be eas-
ily established and can only be partially collected from the
published publications. It is however, expected that the per-
formance obtained on dataset #2 may be comparable to that
from #57 due to similarity in fault mode and operational
conditions.

Figures 1(a) and 1(b) graphically present the performance of
top thirty scores from the challenge datasets. The scores were
calculated using the asymmetric scoring function described

in (Saxena, Goebel, Simon, & Eklund, 2008b). Similarly a
number of error based performance metrics were computed
for the participant entries and are presented in Tables 2 and 3
for the test and validation sets respectively. While interpret-
ing these results following must be kept in mind:

e Scores obtained on dataset #5V are expectedly poorer
in general than those obtained on dataset #57". This is
due to two reasons - (1) PHM score metric is an aggre-
gate over all units and is not normalized by number of
units (note that #5V has almost twice the number of
units in #5V7), and (2) the RUL statistics were intention-
ally changed for dataset #5V to check against overfitting
or the methods that impose thresholds to avoid overpre-
dictions that are penalized more severely by the scoring
function.

e Owing to the above two reasons the top ranking algo-
rithms on #57 did not necessarily perform equally well
on #5V. Therefore, it must not be interpreted that the
top ranked algorithm in Figure 1(a) is also the top rank-
ing one in Figure 1(b). At the same time both tables
should be regarded as separate benchmarks for the two
datasets.

e For the sake of a common ground, the ranks in Tables
2 and 3 are assigned based on PHM’08 scoring func-
tion. As observed, that poorer ranking algorithms may
perform better when evaluated on other metrics. This il-
lustrates a key point that metrics must be chosen based
on what is important to achieve the goals in a specific
application and that there may not be a universal metric
for performance.

e These tables do not include the prognostic metrics such
as those proposed in (Saxena, Celaya, Saha, Saha, &
Goebel, 2010). The primary reason being that for these
datasets predictions are made for multiple units and only
once, which is a different scenario than for continuous
prediction for prognostic metrics to be applicable.

3. C-MAPSS DATASET LITERATURE REVIEW

To analyze various approaches that have been used to solve
C-MAPSS dataset problem, all the publications that either
cite these datasets or the citation recommended by the repos-
itory were collected through standard web search. The search
results returned over seventy publications which were then
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Figure 1. Top thirty scores from PHM’08 data Challenge (datasets #57 and #5V) computed using competition scoring

function.

Table 2. Comprehensive set of metrics as computed from PHM’08 Challenge leader board based on test set (dataset #57°).
Ranking in column 1 is established based on PHM Scores.

Rank on #57°  Competition Score MSE FPR (%) FNR (%) MAPE (%) MAE Corr. Score Std. Dev.. = MAD MdJAD
1 512.12 152.71 56.35 43.65 15.81 8.67 0.96 0.64 8.68 5.69
2 740.31 224.79 57.73 38.12 18.92 10.77 0.94 0.76 10.72 7.00
3 873.36 265.62 53.59 28.18 19.19 11.47 0.93 0.81 11.75 8.00
4 1218.43 269.68 51.93 44.20 20.15 11.87 0.93 0.85 12.05 8.00
5 1218.76 331.30 50.55 49.45 33.14 13.81 0.91 0.95 14.03 10.87
6 1232.27 334.52 42.27 57.73 32.90 14.14 0.91 0.96 14.28 10.37
7 1568.98 394.46 50.55 47.24 36.75 15.37 0.89 1.03 15.48 12.00
8 1645.77 330.02 47.24 50.28 30.00 13.47 0.91 0.95 13.59 10.00
9 1816.60 359.97 50.28 49.17 26.47 13.82 0.90 0.99 14.07 9.75
10 1839.06 377.01 45.86 53.59 27.72 14.31 0.89 1.02 14.43 9.10

preprocessed to identify overlapping efforts by same authors
or the publications that only cite the dataset but perceivably
did not use them for algorithm development. This resulted
in forty unique publications that were then considered for re-
view and analysis for this work. For the sake of readability,
each of these publications were assigned a unique ID to use in
various tables summarizing the results presented in this sec-
tion. This mapping between publication and IDs is presented
in Table 16. Furthermore, to keep the paper length short, a
detailed review analysis of each of the forty publications is
not included but only the summarized findings. However, the
three winning methods from PHM’08 challenge are reviewed
and summarized here to provide an appreciation of the ap-
proaches that were used by the top scorers. These publica-
tions also reported a lot of observations and other relevant
information about the data with several insights that may be
useful in future developments.

3.1. The Three Winning Methods

Similarity Based Approach (T. Wang, Yu, Siegel, & Lee,
2008) (Publications ID 1 and 7) — Approach: The authors’
winning approach implemented a similarity-based prognos-
tics algorithm. The method included several data analysis

techniques to preprocess the data such as PCA and kernel
smoothing (a detailed version can be found in the PhD disser-
tation (T. Wang, 2010)). These data were then divided into six
bins corresponding to the six operating conditions by using
a K-means clustering applied on channels 3,4, and 5 (these
columns represent operating conditions)'. Sensors 7,8, 9, 12,
16, 17, and 20 were selected manually as relevant features be-
cause they exhibit continuous and consistent trends suitable
for regression and generalization. The first 5% and the last
95% of each training instance (trajectory) were considered
as healthy and failure data respectively. For each operating
regime, the data were used to estimate the parameters of an
exponential regression model describing the evolution of the
health indicator (HI) from the healthy state to the failure state.
These regression models were then used to estimate HI given
a test trajectory for all operating regimes individually, and
then fused together to get one HI using specific fusion rules.
A threshold on maximum RUL estimates was applied to de-
crease the risk of being penalized by late predictions. Being
part of the competition this approach was applied on datasets
#4, #5T,#5V, and most of the results were published in
resulting publications.

I'The partitioning into operating conditions can be directly obtained by using
the results obtained in (Richter, 2012)
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Table 3. Comprehensive set of metrics as computed from PHM’08 Challenge leader board based on test set (dataset #5V).
Ranking in column 1 is established based on PHM Scores.

Rank on #5V  Competition Score MSE FPR (%) FNR (%) MAPE (%) MAE Corr. Score Std. Dev.. . MAD MdJAD
1 5636.06 546.60 64.83 31.72 19.99 16.23 0.93 1.01 16.33 11.00
2 6691.86 560.12 63.68 36.32 17.92 15.38 0.94 1.03 16.29 8.08
3 8637.57 672.17 61.38 23.45 20.72 17.69 0.92 1.09 17.79 11.00
4 9530.35 741.20 58.39 39.54 34.93 20.19 0.90 1.22 20.17 15.00
5 10571.58 764.82 58.85 41.15 32.60 20.05 0.91 1.22 20.41 14.23
6 14275.60 716.65 59.77 37.01 21.61 18.16 0.90 1.17 18.57 11.00
7 19148.88 822.06 56.09 41.84 30.25 20.23 0.88 1.29 20.89 13.00
8 20471.33 1000.06 51.95 48.05 33.63 22.44 0.88 1.42 24.05 14.78
9 22755.85 1078.19 62.53 35.40 39.90 24.51 0.86 1.45 24.08 20.00
10 25921.26 854.57 34.25 64.83 51.38 22.66 0.86 1.36 21.49 16.00

Recurrent Neural Network Approach (Heimes, 2008)
(Publication ID 2) — Approach: The authors implemented an
advanced proprietary algorithm initially developed for mod-
eling complex dynamics of aircraft components (such as tur-
bines) at BAE Systems. This algorithm was based on the work
of (Feldkamp & Puskorius, 1998) able to solve various prob-
lems in adaptation, filtering and classification. The first part
of the publication is dedicated to the data exploration phase.
A classifier based on MLP was first trained to distinguish be-
tween healthy and faulty states yielding an error of 1%. The
author then focused on regression methods such as MLP and
RNN to cope with truncated instances as it is the case for the
data challenge. RNN was preferred to MLP because RNN
was able to cope with time-dependent data. The data explo-
ration phase ends with some observations that may be useful
for other algorithms: The degradation is made of four phases
(steady, knee, acceleration of degradation and failure), and a
threshold on maximum RUL estimates is set to 130. The sec-
ond part of the publication is then focused on the algorithm
implemented. The parameters of the RNN were estimated us-
ing all sensor data and operating conditions. Gradients were
computed by a truncated back-propagation through time al-
gorithm jointly with an extended Kalman filter to refine the
weights. An evolutionary approach based on differential evo-
lution was also used to maintain an ensemble of solutions
with various and efficient parameterization. The optimization
was performed using cross-validation by splitting the training
data into distinct training and validation sets.

Multi Layer Perceptron and Kalman Filter Based Ap-
proach (Peel, 2008) (Publication ID 3) — Approach: The
author presented an architecture based on MLP and RBF (im-
plemented on Netlab) including a Kalman filter. The first part
of the publication is dedicated to the data exploration phase
and in particular effective visualization techniques such as
neuroscale mapping. This technique allowed the author to
point out the six operating conditions from sensor data and to
conclude that these conditions cannot be used alone for pre-
dictions. Similarly to (Heimes, 2008), the various degrada-
tion levels were also pointed as one important difficulty (due

to operating conditions (Saxena, Goebel, et al., 2008b)). The
second part of the publication is then dedicated to the algo-
rithm. The data processing included data standardization de-
fined specifically for each operating condition to obtain fea-
tures in similar scales. The author investigated a tournament
heuristic approach to select various sensor subsets by mini-
mizing the error on RUL prediction. The RUL is estimated
by an ensemble of RBFs and MLPs with multiple parame-
terization. The step phase is the Bayes-optimal combination
of RUL estimates using a Kalman filter. The Kalman filter
also allowed the author to reduce sensor noise and to treat
instances as time-series by integrating past information.

The analysis of the collected publications reveals several im-
portant observations that are summarized here. First, these
publications are binned into various different categories and
then analyzed. These categories and corresponding findings
are presented in the sequel.

3.2. C-MAPSS Dataset Used

Table 4 identifies specific publications that use one or more
of these five datasets. It can be observed that the dataset #1
was the most used one (55%), followed by the test set (#5T")
from the PHM’08 challenge (35%), whereas rest of the other
datasets are relatively under utilized. Three publications re-
port generating their own datasets using the C-MAPSS simu-
lator.

The heavy usage of the dataset #1 (=~ 70%) compared to
all other datasets among the four from the NASA Repository
may be attributed to its simplicity compared to the rest (see
Figure 2), whereas high usage of dataset #57 is attributed to
the PHM’08 challenge, where several teams had already used
these data extensively, thereby gaining significant familiarity
with the dataset as well as a preference due to availability
of corresponding benchmark performance from the challenge
leader board.

Several publications mentioned in Table 4 have used only the
training datasets that have complete (run-to-failure) trajecto-
ries. Using data with complete trajectories gives access to
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Table 4. List of publications for each dataset.

Datasets Publication ID Rate
5,6, 10, 13, 14, 15, 19, 20,
#1 23, 24, 25, 26, 27, 28, 31, 22/40
Turbofan data 32, 33, 34, 36, 37, 38, 40
from %TASA #2 13,22, 34, 40 4/40
repostory #3 34,40 2/40
#4 7,34, 40 3/40
, 1,2,3,4,8,12, 16,17, 21,
PHM’08 Data #5T 55730 34, 35. 40 14/40
challenge
#5V  1,2,3,40 4/40
Simulator OWN  9,11,39 3/40
Other - 18 1/40

mdataset#1 ® dataset#2
dataset#3

dataset #4

18

Numberof Papers

1

Usage distribution for datasets
from NASA Repository

Other  Simulator  Data NASA
Challenge Repository

Figure 2. Relative usage of various C-MAPSS datasets in
literature.

the true End-of-Life (EOL) to compute RUL from any time
point in a degradation trajectory which could be used to gen-
erate a larger set of training data. This approach is also
relevant to estimating RULs at different time points and al-
lows the usage of prognostics metrics (Saxena, Celaya, et al.,
2008) such as prognostics Horizon, o — A metric, or the con-
vergence measure. However, in true learning sense the al-
gorithm, once trained, should be tested on unseen data for
proper validation, as was required for the PHM’08 challenge
datasets. Table 5 shows that 11 different publications used the
“full” training/testing datasets, meaning the training dataset
for estimating the parameters and the full testing dataset for
performance evaluation.

Table 5. List of publications using only full training/testing
datasets.

Datasets Publication ID Rate

#1 20, 27, 28, 40 5/40

Turbofan dataset #2 40 1/40
from NASA

repository #3 40 1/40

#4 40 1/40

PHM’08 Data #5T 1,2,3,4,16,21,40  7/40

challenge #5V  1,2,3,40 4/40

3.3. Target Problem to Solve

As normally expected, there is a wide variety of approaches
taken in interpreting the datasets, formulating the problem
and modeling the system to solve it. However, contrary to ex-
pectations, a significant number of publications have utilized
these datasets for “fault detection” purpose by considering
“multi-class classification” or “clustering” rather than prog-
nostics. Table 6 identifies and distinguishes between publica-
tions that focus on detection versus prognostics.

By posing a multi-class classification problem various publi-
cations attempt to solve mainly three types of problems:

e Supervised classification: The training dataset is labeled
(known classes for each feature vector);

e Unsupervised classification: The classes are not known
apriori and data are not labeled;

e Partially supervised classification: Some classes are pre-
cisely known, others are unknown or are attached with a
confidence value to express belief in that class.

Publications 1, 7, 10, 20, 24, 27, 32 use classification for
preprocessing steps towards solving a prognostics problem.
Specifically, unsupervised classification algorithms are used
in publications 1, 7 to segment the dataset into the six oper-
ating conditions. For reference, detailed information about
various simulated operating conditions in C-MAPSS is de-
scribed in (Richter, 2012), which can also be used to label
these datasets. Supervised and unsupervised classification al-
gorithms are also used in publications 6, 10, 20, 27, 32 to
assign a degradation level according to sensor measurements.
The sequence of discrete failure degradation stages is indeed
relevant for the estimation of the current health state and its
prediction (Kim, 2010).

Health assessment, anomaly detection (seen as a 1-class clas-
sification problem) or fault identification are tackled in pub-
lications 6, 11, 12, 13, 26, 31, 35 using supervised classifi-
cation methods, and partially supervised classification tech-
niques in publications 12, 27, 33. For these approaches, a
known target (or a degradation level) is required to evaluate
the classification rate. For instance, four degradation levels
were defined for labeling data in publications 6, 10, 27, 33:
normal degradation (class 1), knee corresponding to a notice-
able degradation (class 2 viewed as a transition between class
1 and 3), accelerated degradation (class 3) and failure (class
4). Some hand-made segmentations have been provided by
some authors (publication 13). Using these segmented data
(clusters) as proxy to ground truth, some level of classifica-
tion performance can be evaluated for comparison purposes.
These classification methods span all three classes of learn-
ing as mentioned above and corresponding publications are
summarized in Table 7.

Similar to several classification approaches used, many ap-
proaches were employed for solving the prognostics problem
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for predicting RULs. In order to give due attention to the
analysis of prognostic methods, a discussion is presented sep-
arately in Section 4.

Table 6. List of publications focused on detection and predic-
tion.

Purpose Publication ID Rate
Detection 6, 10, 11, 12, 13, 31, 33, 34, 35, 37 10/40
1,2,3,4,5,7,8,9, 10, 13, 14, 16,
Prediction 17,19, 20, 21, 22, 23, 24, 25, 27,28,  31/40
29, 30, 32, 34, 36, 37, 38, 39, 40
Other 15, 18, 26 3/40

Table 7. Methods and references for state/fault classification.

Classification method  Publication ID
Supervised 6,10,11,12,13,26,31,35
Unsupervised 1,7,11,20,24,32

Partially supervised 27,33

3.4. Method for Treatment of Uncertainty

Given the inherent nature of datasets that include several
noise factors and lack of specific information on the effects of
operational conditions it is important for algorithms to model
and account for uncertainty in the system. Different publica-
tions have dealt with uncertainty at various stages of process-
ing as described below:

1. Signal processing step such as noise filtering using a
Kalman filter as in publications 2, 3, 20, Gaussian kernel
smoothing in publications 1, 7, and functional principal
component analysis in publication 15.

2. Feature extraction/selection step such as using princi-
pal component analysis and other variants of it as sug-
gested in publications 1, 7, 13, grey-correlation in publi-
cation 22, relevance of features for prediction in publica-
tion 23, and a greedy search with results visualization in
publication 40.

3. Health estimation step such as based on operating con-
ditions assessment to normalize/factor out the effects of
operating conditions as proposed in publications 1, 7, 21,
40 and using non-linear regression.

4. Classification step where uncertainty modeling plays a
role on data labeling using noisy and imprecise degrada-
tion levels as shown in publications 12, 27, 33, or on the
inference of a sequence of degradation levels such as us-
ing Markov Models or multi-models as in publications 6,
10, 24, 32, 34.

5. Prediction step such as gradually incorporating prior
knowledge during estimation in presence of noise as pro-
posed in publications 4, 14, 16, 17, 19, 21, 30, in deter-
mining failure thresholds as in publications 10, 27, 32 or
in representing health indicator such as in publication 40
to be used in prediction.

6. Information fusion step by merging multiple RUL esti-
mates through Bayesian updating as pointed in publica-
tions 4, 21 or in similarity-based matching as in publica-
tions 1, 27, 40.

A variety of different uncertainty representation theories are
found to be used. Table 8 classifies different publications ac-
cording to the theory of uncertainty treatment used in corre-
sponding analysis (Klir & Wierman, 1999). As shown in the
table, the probability theory is the most popular one (65%)
followed by set-membership approaches (in particular fuzzy-
sets with 15%), Dempster-Shafer’s theory of belief functions
(13%), and other measures (such as polygon area and Cho-
quet integral).

Table 8. Methods for uncertainty management used on C-
MAPSS datasets.

Theories Publication ID Rate
1,2,3,4,5,6,7,11, 12, 13, 15, 16,

Probability theory 17, 19, 20, 21, 22, 26, 28, 29, 30, 26/40
31, 32, 33, 34, 35

Set-membership 10, 14, 23, 25, 36, 39 6/40

Belief functions 6, 10, 24, 27, 33 5/40

Other measures 10, 40 2/40

3.5. Methods used for Performance Evaluation

Table 9 summarizes the performance measures that have been
used for prognostics-oriented publications. A taxonomy of
performance measures for RUL estimation was proposed in
(Saxena, Celaya, et al., 2008; Saxena et al., 2010), where dif-
ferent categories were presented: accuracy-based, precision-
based, robustness-based, trajectory-based, computational per-
formance and cost/benefit measures, as well as some mea-
sures dedicated specifically to prognostics (PHM metrics).
Since this problem involves predictions on multiple units, it
is expected that the majority of publications would use error-
based accuracy and precision metrics. Metric like the Mean
Squared Error (MSE) has been used in two different ways-
for the estimation of the goodness of fit between a predicted
and a real signal, and as an accuracy-based metric to aggre-
gate errors in RUL estimation. Only the publications that
fall under latter category are included in the table. The ta-
ble clearly shows that accuracy-based measures were most
widely used, in particular the scoring function from PHM’ 08
challenge, which also weighs accuracy by timeliness of pre-
dictions. Broader usage of this metric is also explained by
the fact that this is the only metric for which scores from
data challenge were available and can be used as benchmark
to compare with any new development. However, one may
also compute additional measures if using only the training
datasets where full trajectories are available. In that case,
approaches like leave-one-out validation become applicable
where all training instances but one are used for training each
time and the remaining ones can be used for performance
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evaluation. Then the average of the performance measures
is computed from all the runs. Publication 27 presents this
approach for dataset #1 and a cross-validation procedure for
dataset #57 is used in publication 21. Note that publications
19, 20, 32 provide the only RULs estimates for all testing in-
stances (without computing any metrics) and publications 10,
27 present distribution of errors.

Table 9. Performance measures used in prognostics-oriented
publications applied on C-MAPSS.

Categories Measures Publication ID Rate
PHM’08 Score  1,2,4,5,8, 16, 21, 29, 30, 40 10/40

FPR, FNR 8, 10,27, 40 4/40

Accuracy MSE 3,8,15,17,29, 40 6/40

MAPE 4,23, 28, 32, 34, 39, 40 7/40

MAE 5,13, 38,40 4/40

Precision ME 25,28,32,39 4/40

MAD 25 1/40

PH 7,22 2/40

a—A 7,22 2/40

Prognostics RA 7,22,34 3/40
CV 7,22, 34 3/40

AB 34 1/40

4. PROGNOSTIC APPROACHES

As shown previously, C-MAPSS datasets have been used for
the development and benchmarking of various detection and
prognostics approaches. This section focuses specifically on
the prognostic approaches which can be divided into three
broad categories as described in the sequel.

4.1. Category 1: Using functional mappings between set
of inputs and RUL

Methods in this category (see Table 10) first transform the
training data (trajectories) into a multidimensional feature
space and use the RULs to label the feature vectors. Then,
using supervised learning methods, a mapping between fea-
ture vectors and RULSs is developed. Methods within this cat-
egory are mostly based on Neural Networks with various ar-
chitectures. Different sensor channels were used to generate
corresponding features. However, it was observed that the ap-
proaches yielding good performance also included a feature
selection step through advanced parameter optimization such
as using genetic algorithm and Kalman filtering as described
in publications 2, 3 that ranked 2d and 3rd respectively in the
competition.

The adaptation to new situations can be difficult with such
approaches as it would be necessary to adapt model parame-
ters if the process evolves as opposed to keep using the static
mapping. Some further developments have considered these
issues, for instance, Echo State Networks and Extreme Learn-
ing Machine are known to reduce the learning time and com-
plexity (Jaeger & Haas, 2004; Huang, Zhu, & Siew, 2004;

Siqueira, Boccato, Attux, & Lyra, 2012; Butcher, Verstraeten,
Schrauwen, Day, & Haycock, 2013), while evolving mod-
els (Angelov, Filev, & Kasabov, 2010) are well-suited for
adaptive real-time learning. However, these later approaches
were evaluated only on a few instances of C-MAPSS training
datasets in publications 24, 25, 32. Therefore, it was difficult
to evaluate whether reducing learning time, making models
gray-boxes, or even using evolving models are efficient strate-
gies to perform well on C-MAPSS datasets. More experi-
ments using the full training/testing datasets may be useful to
evaluate these approaches better.

Table 10. Category 1 methods using a mapping learned be-
tween a subset of sensor measurements as inputs and RUL as
output.

Methods Publication ID
RNN, EKF 2
MLP, RBF, KF, Ensemble 3
MLP 8
ANN 9
ESN 20
Fuzzy rules, genetic algorithm 36
MLP, adaboost 38

4.2. Category 2: Functional mapping between health in-
dex (HI) and RUL

Methods listed in Table 11 are based on the estimation of
two mapping functions: One maps sensor measurements to
a health index (1-D variable) for each training unit based on
sensor measurements; The second mapping links health in-
dex values to the RUL. These approaches construct a library
of degradation models. Inference of the RUL for a given test
instance includes using the library as prior knowledge to up-
date the parameters of the model corresponding to the new
test instance. Updating can be done using Bayes rule as pro-
posed in publication 4 or other model averaging or ensemble
techniques designed to take into account the uncertainty in-
herent to the model selection process (Raftery, Gneiting, Bal-
abdaoui, & Polakowski, 2003).

Table 12 lists some other approaches that use approximation
functions to represent the evolution of individual sensor mea-
surement through time. Given a test instance as many predic-
tions are made as the number of sensors. These predictions
are then used in a classifier that assigns a class label related
to identified degradation level. Some of these approaches
also update classifier parameters with new measurements us-
ing some Bayesian updating rules as mentioned previously.
These methods were however applied only on dataset #1 in
which sensors depict clear monotonic trends.

Methods in the category 2 using health index to RUL map-
ping are flexible since new instances are easily incorporated
into the library. The main drawbacks include the generaliza-
tion capability of updating techniques (with performance esti-
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Table 11. Type 2 methods using health index as input and
RUL as output.

Methods Publication ID
Quadratic fit, Bayesian updating 4
Logistic regression 5
Kernel regression, RVM 7
RVM 16
Gamma process 17
Linear, Bayesian updating 19
RVM, SVM, RNN, Exponential and quadratic fit, 21
Bayesian updating

Exponential fit 28
Wiener process 29
Copula 30
HMM, LS-SVR 34

Table 12. Category 2 methods based on individual sensor
modeling and classification.

Methods Publication ID
exTS, supervised classification 10
SVR 13
exTS, ARX 14
ANN, ANFIS 23
Piece-wise linear (multi-models) 24
exTS 25
ELM, unsupervised classification 32

mation on full training/testing datasets). The performance for
RUL prediction depends on both mapping functions which
are excellent research topics. The approaches for health in-
dex (degradation) estimation and modeling are of great im-
portance, not only for C-MAPSS datasets but more generally
for PHM. The method used in publications 1, 7 was used the
most in estimation of the health index (the first mapping func-
tion), with some variants proposed in publications 21, 17, 40.
The health index in C-MAPSS datasets is a temporal hidden
variable and strongly occluded by operating conditions which
have to be inferred from noisy sensor measurements. The es-
timation of the first mapping function is thus challenging and
advanced machine learning and pattern recognition tools have
to be considered. Since the operating conditions represent us-
age load profile as pointed out in publications 9, 18, their se-
quence is important. Therefore, the estimation of the health
index can be improved by taking into account the sequence of
operating conditions.

The second mapping function generally takes the form of a re-
gression model (Table 11) for which new methods for uncer-
tainty estimation and propagation can be developed (Table 8).
Nonlinear methods demonstrated better performance since
the degradations of the units demonstrate changing trends, i.e.
gradual and slow, sudden and steep, or regular as shown in
publications 1, 2, 3. Approaches based on sequences of mul-
tiple states (Moghaddass & Zuo, 2014) could be considered to
cope with slope change in the health index. Moreover, adap-

tation to complex noise appears to be a critical issue since
generally, in practice, noise is not simply additive and Gaus-
sian but multimodal and dependent on operating conditions
(Saxena, Goebel, et al., 2008b). Finally, new model averag-
ing algorithms can be a relevant source of improvement as il-
lustrated in publications 1, 2, 3, 4, 7, 21, 38, 40, for example
by considering information fusion tools and ensemble tech-
niques (Kuncheva, Bezdek, & Duin, 2001; Francois, Grand-
valet, Denoeux, & Roger, 2003; Kuncheva, 2004; Monteith,
Carroll, Seppi, & Martinez, 2011; Hu, Youn, Wang, & Yoon,
2012).

4.3. Category 3: Similarity-based matching

In these methods (Table 13), historical instances of the system
(sensor measurements trajectories labeled with known failure
times) are used to create a library. For a given test instance
similarity with instances in the library is evaluated generating
a set of Remaining Useful Life (RUL) estimates that are even-
tually aggregated using different methods. Compared to cat-
egory 2 methods, these methods do not make use of training
trajectory abstraction into features, but trajectory data (possi-
bly filtered) are themselves stored. Similarity is computed in
the sensor space as in publication 27 or using health indices
as in publications 1, 7, 17, 21, 40.

As mentioned in publications 1, 7, the test instance and the
training instance may take different time in reaching a partic-
ular degradation level from the initial healthy state. There-
fore, similarity-based matching must accommodate this dif-
ference in the early phases of degradation curves. In publica-
tion 40, this problem was tackled by assuming a constant ini-
tial wear for all instances yielding an offset on health indices.
Efficient similarity measures are also necessary to cope with
noise and degradation paths. For instance, in publications 1, 7
three different similarity measures were used, and in publica-
tion 40, computational geometry tools were used for instance
representation and similarity evaluation.

Table 13. Category 3 methods using similarity-based match-
ing.

Methods Publication ID
HI-based 3 similarity measures and kernel smoothing 1,7
Similar to 1 and 7 using 1 similarity measure 22
Feature-based similarity, 1 similarity measure, en- 27
semble, degradation levels classification

HI-based similarity, polygon coverage similarity, en- 40
semble

An advantage of approaches in this category is that new in-
stances can be easily incorporated. Moreover, similarity-
based matching approaches have demonstrated good general-
ization capability on all C-MAPSS datasets as shown in pub-
lications 1, 7, 40 despite a high level of noise, multiple simul-
taneous fault modes, and a number of operating conditions.
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This category of algorithms are relatively easily parallelized
to reduce computational times needed for inference.

Similarity-based approaches are generally said to be sensi-
tive to the training dataset. However, to our knowledge,
this sensitivity has not been studied for C-MAPSS datasets.
The important number of training and testing instances in C-
MAPSS should help to draw interesting conclusions about
the behavior of an algorithm and its ability to map features
to RUL with respect to both the quantity and the quality of
data (Gouriveau, Ramasso, & Zerhouni, 2013). An interest-
ing direction should be to consider the performances of the
similarity-based approaches using multiple metrics and con-
sidering various operating conditions and fault modes. This
study may help future end-users of prognostics algorithms to
select the appropriate one according to the possibility of gath-
ering sufficient and representative data.

5. SOME GUIDELINES TO USING C-MAPSS DATASETS

Another contribution from this paper is through summarizing
some guidelines in using C-MAPSS datasets that may help
future users to understand and utilize these datasets better.
It summarizes information gathered from the literature re-
view and authors’ own experiences, which in many cases go
beyond the documentation provided along with the datasets.
Specifically, it offers some general processing steps and lists
relevant publications that describe implementation of these
preprocessing steps that could be useful in developing a prog-
nostic algorithm (Figure 3).

Understanding
CMAPSS Data
and dataset

Turbofan Dataset from
NASA (81, #2, #3, #4)

PHMO08 Challenge Dataset

selection (#5T, #5V))
Defining the Multiclass classification
Problem Prognostics
1 —» Create Train, Test, Validation sets

Sensor selection

Data Preparation —
Feature extraction

v

l Noise filtering
—» Neural Network -based methods
Learning and ___[—* Extrapolation -based methods
Predicting — Similarity -based methods
l —» Choice of metrics
Performance —> ComDarlson with benchmarks
Evaluation L > Evaluation on challenge

validation set by NASA

Figure 3. Guidelines to Using C-MAPSS Datasets.

Based on the analysis presented in (Section 3), five general
data processing and algorithmic steps are considered:

[Step 1:] Understanding C-MAPSS datasets — Com-
prehensive background information on turbofan engines
and C-MAPSS datasets is well presented in three publica-

tions, (Saxena, Goebel, et al., 2008b), (Richter, 2012), and
(T. Wang, 2010). More details about the hierarchical decom-
position of the simulated system into critical components can
also be found in (Frederick et al., 2007; Abbas, 2010), which
provides valuable domain knowledge. These publications do
not focus on the physics-of-failure of turbofan engines but
describe generation of these datasets and various practical as-
pects when using C-MAPSS datasets for prognostics. These
include description of sensors measurements, illustrations of
operating conditions, impact of fault modes, etc., which can
play an important role in improving data-driven prognostics
algorithms as well. Going from dataset #1 to #4 repre-
sents varying degrees of complexity and, therefore, it is rec-
ommended to use them in that order to incrementally de-
velop methods to accommodating individual complexity one
by one. The challenge datasets fall somewhere in the middle
as far as complexity level goes but suffer from availability of
ground truth information for a quicker feedback during algo-
rithm development. Therefore, these datasets may be used
as validation examples and should be compared to other ap-
proaches using benchmarks presented in Section 2.2.

[Step 2:] Defining the problem — Given the nature of these
datasets several types of problems can be defined. As men-
tioned in Section 3.3 in addition to prediction, a multi-class
classification problem can be defined for a multidimensional
feature space. However, the intent behind these data was
to promote prognostics algorithm development. Since these
data consist of multiple trajectories, the problem to predict
the RUL for all trajectories can be constructed just as the one
posed in the data challenge. However, one could also define
the problem at a higher granularity by modeling the degrada-
tion for each trajectory individually and predict RUL at multi-
ple time instances, which would be more of a condition based
prognostics context.

[Step 3:] Data preparation — After a dataset (turbofan or
data challenge) is selected, it is suggested to split the original
training dataset into two subsets: a training dataset for model
parameter estimation (learning) and a testing dataset to test
the learned model 7 (see for example publications 21, 40).
For the datasets #1 — 4 corresponding RUL vectors are pro-
vided for the test sets so users can validate their algorithms.
However, for the challenge datasets, the evaluations can only
be obtained by uploading the RUL to the data repository web-
site. Therefore, it may be desirable to split the training set
itself for training, test, and validation purposes during algo-
rithm development. The next step is to downselect sensors to
reduce problem dimensionality. Some data exploration and
preparation approaches for the data challenge (datasets #57T
and #5V) are well described in publications 1, 2 and 7. Some
“heuristic rules” to avoid over-predictions are also presented
in publication 40 and applied on all five C-MAPSS datasets.
Some of the better performing methods are based on a PCA
such as in publication 1, and other sensor selection proce-
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dures such as in publications 2, 3 and 40. From the survey, it
was noted that the most commonly selected subset of sensors
was 7,8,9,12,16, 17,20 (as it was also initially suggested in
publication 1). Additional sensors may also be considered,
similar to the approach proposed in publication 40 where a
total of 511 combinations were studied for each dataset for
an exhaustive evaluation.

[Step 4:] Learning and Predicting — This step forms the
core of the prediction problem. As described in Section 3 a
variety of learning approaches can be employed to learn var-
ious mappings between the sensor data and system health to
compute RUL. Some of these methods try to learn RUL as
a function of sensor data (system state) or features thereof,
others estimate a health index first. Each of the trajectory can
be modeled into a degradation process to predict when they
cross the zero health threshold using regression methods. Ap-
proaches based on health index computation can be applied
to all datasets. The approach proposed in publications 1, 7
is the simplest to implement. To deal with normalization (or
alternatively segmentation) of data by operating conditions
one could use a clustering approach as suggested by the au-
thors above, or one may directly use the parameters described
in publication 18 to validate the performance of segmenta-
tion. Some variants for health indicator estimation can also
be picked from publications 21 and 40.

[Step 5:] Performance evaluation — Once a learned model
results in to satisfactory results on the testing set aside by
partitioning the training data, one may use the actual test
dataset provided with the datasets. After further tuning, es-
pecially for datasets (#57 and #5V), a final validation can
be done by submitting the results to the NASA repository.
Before uploading the final submission, the generalization ca-
pability should be ensured by computing using several per-
formance metrics as discussed in Section 2.2. Some bench-
marks have been provided in Section 2.2 using metrics that
aggregate prediction performance from multiple units. While
the exact numbers would not match, the performance is ex-
pected to be in the similar range for results obtained from
turbofan datasets that have access to RUL. For comparison
purposes, the scores obtained in previous works on full C-
MAPSS datasets are summarized in Table 14 for the PHM’08
data challenge and Table 15 for the turbofan datasets. Note
that here using the full trajectory data it is possible to com-
pute prognostics metrics as presented in (Saxena, Celaya, et
al., 2008; Saxena et al., 2010) as the actual EOL is known
apriori. This allows testing the critical time aspect of a pre-
diction in addition to accuracy and precision measures.

6. CONCLUSION

As observed from published PHM literature the most widely
used datasets for data-driven prognostics come from the C-
MAPSS turbofan simulator from among the other openly

Table 14. Performance of approaches on the PHM’08
datasets (testing dataset #5717 and final validation dataset
#5V) after 2008 (published work).

Algorithm & Publication ID #5T #5V

RULCLIPPER in 40 752 11572
SBL in 16 1139 -
DWin 21 1334 -
OW in 21 1349 -
MLP in 8 1540 -
AW in 21 1863 -
SVM-SBI in 21 2047 -
RVM-SBIin 21 2230 -
EXP-SBIin 21 2282 -
GPM3 in 4 2500 -
RNNin 21 4390 -
REG2in 8 6877 -
GPM2B in 4 19200 -
GPM2v in 4 20600 -
GPM1 in 4 22500 -
QUAD in 21 53846 -

Table 15. Performance of approaches on the full train-
ing/testing turbofan datasets.
ID  Measures #1 #2 #3 #4
20 MSE 3969 - - -
MSE 44100 - - -
Accuracy (%) 53 - - -
27 FPR (%) 66 - - -
FNR (%) 34 - - -
28  MAPE (%) 9 - - -
PHMO8 Score 216 2796 317 3132
Accuracy (%) 67 46 59 45
40 FPR (%) 56 51 66 49
FNR (%) 44 49 34 51
MAPE (%) 20 32 23 34
MAE 10 17 12 18
MSE 176 524 256 592

available prognostic datasets. Guided by this observation, a
survey of approaches developed using these datasets (since
2008) was carried out with the purpose of understanding the
current state-of-the-art and assess how these datasets have
helped in development of prognostic algorithms. However,
it was noticed that due to several factors these datasets did
not get used as intended and any meaningful comparison be-
tween approaches was not trivial. Specifically, following ob-
servations were made and this paper tries to alleviate some of
these factors to improve usage of these datasets as originally
intended:

e Several thousand downloads and 70 papers referring to
C-MAPSS were found in the published literature. The
ratio suggests that a vast majority of those who down-
loaded did not get to utilize these data to the point of pub-
lishing the results in a publication. Therefore, some guid-
ance has been provided to help in understanding these
datasets and how a prognostics problem may be set up
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in few different ways. Furthermore, a description of all
five C-MAPSS datasets is provided identifying their dis-
tinguishing characteristics and clearing up some misun-
derstandings as identified from the survey.

e Among the 70 papers, only a few actually used the test-
ing datasets for evaluating their methods. A mix of dif-
ferent datasets and the metrics used to evaluate perfor-
mance was observed from the survey. This made it diffi-
cult to compare performance between different reported
methods in a consistent manner. Therefore, a better ex-
planation of differences in these datasets and providing
the top thirty scores from challenge datasets should help
future users in comparing their methods against a bench-
mark in a more consistent manner. Furthermore, it is also
suggested how results from datasets that are not from the
challenge could be compared against this benchmark es-
tablished on the challenge set. In addition to the timeli-
ness, several other metrics have been computed from the
PHM’08 Challenge leader board and presented in this pa-
per to help in comparisons.

e The survey reveals usage of various prognostics ap-
proaches that can be divided into three main categories.
These approaches are briefly described with potential ar-
eas for further improvement. The survey also demon-
strated that C-MAPSS datasets can be used for devel-
oping and testing methods for several intermediate steps
in prognostics such as sensor selection, health indicator
estimation, operating conditions modeling in addition to
fault estimation and prediction.

With the analysis presented in this paper and references to a
variety of approaches employed, this paper hopes to establish
public knowledge that can be used by future users in prognos-
tic algorithm development and aid in fulfilling the underlying
intent of data repository to facilitate algorithm benchmarking
and further development.

NOMENCLATURE

PHM Prognostics and Health Management

RUL Remaining Useful Life

CMAPSS Commercial Modular Aero-Propulsion
System Simulation

HI Health index

MLP MultiLayer Perceptron

ANN Artificial neural network

RNN Recurrent neural network

RBF Radial basis function

ESN Echo state network

ELM Extreme learning machine

EKF Extended Kalman filter

KF Kalman filter

SVR Support vector regression

LS-SVR  Least squared support vector regression

exTS Evolving extended Takagi-Sugeno system

ARX Autoregressive exogeneous model

ANFIS Adaptive neuro fuzzy inference system

RVM Relevance vector machine

HMM Hidden Markov model

PCA Principal components analysis

MSE Mean squared error

MAPE Mean absolute percentage error

MAE Mean absolute error

ME Mean error

PH Prediction horizon

AP Acceptable predictions (rate)

a—A Accuracy at specific times

RA Relative accuracy

Ccv Convergence

AB Average bias

FPR False positive rate

FNR False negative rate
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APPENDIX
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