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ABSTRACT

Crisis management is currently an important challenge for

medical service and research. This motivates the develop-

ment of new decision system approaches to assist (or to guide)

the decision makers. A crisis management is a special type of

collaboration involving several actors. The context and char-

acteristics of crisis such as extent of actors and their roles

make the crisis management more difficult in order to take

decision. In this paper, we propose to model the interaction

between different actors involved in crisis management. For

this purpose we use finite state automaton in order to opti-

mize the emergency response to the crisis and to reduce the

disastrous consequences on people and environment. Thus,

an adaptive supervision method is proposed. Therefore, we

address the problem of diagnosis and prediction (prognostic)

given an incomplete model of the discrete event systems of a

crisis situation. When the model is incomplete, we introduce

learning into the diagnoser (diagnosis module) construction.

1. INTRODUCTION

Nowadays, crisis management is an issue of paramount im-

portance in the world (Fantacci, Marabissi, & Tarchi, 2010;

Habib & Mazzenga, 2008). A crisis can be for instance an

earthquake, an industrial accident, a train accident, etc. In

general, the crisis management is a special type of collabo-

ration involved several actors as policemen, first aid agents,

doctors, government delegates, fire trucks, etc..., as shown in

Figure 1. Further details about the collaboration among dif-

ferent actors involved in crisis management can be found in

(Sediri, Matta, Loriette, & Hugerot, 2013).

During crisis management we face a problem of managing
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Figure 1. Emergency response scenario, (I. Benkhelifa et al).

the people involved and the evolution of situations over time.

Therefore several aspects must be considered. In particular,

the coordination between different teams involved in the cri-

sis management. This coordination between the teams is fun-

damental in order to optimize the emergency response and to

reduce the disastrous consequences on people and the dam-

ages in nearby by surrounding areas. In this paper, the inter-

action between different actors and teams is represented by

a discrete event model. The latter represents dynamic situa-

tion whose behavior is governed by the occurrence of physi-

cal events that causing abrupt changes in the state of the cor-

responding situation (Sayed-Mouchaweh & Billaudel, 2012).

During crisis management, the cooperation implies the de-

ployment of a rescue team, for example first aid agents, fire-

fighter, etc · · · The execution and management this deploy-
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ment is in general dynamic.

Recently, there has been a lot of interest in modeling cri-

sis management or events in Discrete Event Systems (DES)

to detect critical situations or to supervise a specific behav-

ior. Different approaches have been developed to detect crit-

ical situations (or faults) or to supervise a specific behav-

ior (supervision pattern) in the discrete event systems. Most

of the latter approaches are represented by Finite State Au-

tomata (FSA) or Petri Net (Cabasino, Giua, & Seatzu, 2010;

Sampath, Sengupta, Lafortune, Sinnamohideen, & Teneket-

zis, 1995; Yunxia, 2003). A supervision pattern has been pro-

posed in (Jeron, Marchand, Pinchinat, & Cordier, 2006), but

this approach requires a complete and accurate model of the

system to be diagnosed. In this paper, we propose a new ap-

proach for supervision of pattern and prognostic of DES by

using the inputs and outputs of the automaton. In this paper,

the discrete event systems are modeled as FSA, which gener-

ates languages for the detection of critical situations during a

crisis management or for supervisor control purpose. The lan-

guages generated by the automaton allow to build sequences

of events represented by a string. Based on this formulation,

a first approach of a learning diagnoser in discrete event sys-

tems is proposed in (Kwong & Yonge-Mallo, 2011). A learn-

ing diagnoser is a standard diagnosis that tolerate missing in-

formation (transitions) about the system (situation) to be di-

agnosed. The construction of a supervision pattern in discrete

event systems using a sequence of events is described in detail

in (Jeron et al., 2006).

The prognostic of the future evolution of discrete event sys-

tems based on trajectories has stimulated attracted a great deal

of research interest in the last years. In this paper, prognostic

aims to predict the critical situations of a discrete event before

their occurrences (Khoumsi & Chakib, 2009). A prognosis

framework in the case of a partially-observed discrete event

systems is proposed in (Genc & Lafortune, August 2006).

A so-called prognoser (prognosis module) issues a prognosis

on whether a failure will occur, based on its partial observa-

tion of the plant. Also, a prognostic method of a possibly

unobservable event in the system behavior, based on the lan-

guage containing the observable events is presented in (Genc

& Lafortune, 2009). In (Takai & Kumar, 2012), the local

prognosers of discrete event systems exchange their observa-

tions for the sake of arriving at the prognosis decision. The

prognostic problem in (Xi-Rien, 1989) is a special type of

projection between two languages.

Crisis management is a special type of collaboration involv-

ing several different groups and actors. The challenge is how

to handle the coordination and interactions between these dif-

ferent involved groups and actors during the crisis manage-

ment and to detect abnormalities (e.g., critical process de-

viations, evolution towards dangerous or blocked situations,

etc.) online or to predict the evolution of the current situa-

tion towards a dangerous or critical state. In this paper we

developed a model based on finite state automata (called su-

pervision patterns) describing the evolution of status of crisis

management in response to actions and changes in its envi-

ronment. The goal is to find supervision patterns leading to

critical or dangerous situations or states. Then, a diagnostic

model has been developed in order to recognize these special

supervision patterns or even to predict their occurrence in or-

der to alert the crisis decision makers of the evolution of crisis

status in response to actions or made decisions. This alert will

help the decision makers to adapt their actions (decisions) in

order to stop the evolution of the crisis state towards critical

or dangerous situations.

This paper is organized as follows. Section 2 introduces the

concept and definition of discrete event systems. In section

3, we describe the definition of the supervision pattern. In

section 4, the definition of discrete event systems model of a

dynamic system is presented. The standard diagnoser for the

dynamic system is shown in section 5. We present in section

6, the prognostic of discrete event systems. A learning diag-

nosis approach that tolerate missing transitions is presented

in section 7. Finally, the approaches presented in this paper

are illustrated to crisis management in section 8.

2. AUTOMATON MODEL FOR DES

A DES is a dynamic system that evolves in accordance with

the abrupt occurrence, at possibly unknown irregular inter-

val, of physical events. In this paper, the DES is modeled as

FSA, which generates languages for the detection of critical

situations or for supervisory control purpose.

A FSA G is a 6-tuple denoted as:

G = {X ,Σ,δ ,Y,x0,F} ,

where

• X is the set of fuzzy states

X = {x0, · · · ,xi, · · · ,xn−1,xn},

• Σ is set of input symbols,

Σ = {σ0,σ1, · · · ,σm−1,σm},

• The fuzzy subset δ : X × Σ → X is a function, called

the fuzzy transition function. A transition from state xi

(current state) to x j (next state) upon σk is denoted as:

x j ∈ δ (xi,σk).

• Y is the non-empty finite set of output,

Y = {y0,y1, · · · ,yl−1,yl},

• x0 ∈ X is the set of initial fuzzy states and

• F ⊆X is the (possibly empty) set of accepting or terminal

states. An example of FSA with accepting state is shown

in figure 2, i.e., F = {x1}.

The finite set of events Σ can be partitioned in two subset such

that Σ=Σo∪Σuo, where Σo is the observable events and Σuo is
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Figure 2. Example of an automaton for DES

the unobservable events. A string is a finite-length sequence

of events over Σ. The set of all strings formed by events in Σ
is denoted by Σ∗. The set Σ∗ is also called the Kleene-closure

of Σ.

Further, we extend the transition function δ to δ̃ to accept

words over Σ as following δ̃ : X ×Σ∗ −→ X . For example if

δ (xi,σi) = x j and δ (x j ,σ j) = xk, then δ̃ (xi,σiσ j) = xk with

xi, x j, xk ∈ X and σi, σ j ∈ Σ.

Definition 1 A state x j is reachable from the state xi if there

exists a sequence Γ ∈ Σ∗ such that x j = δ̃ (xi,Γ). Also, we can

say, the state x j is the state-adjacent of the state xi and we

write xi
Γ
→ x j.

Let ΓG be a trajectory in Σ. For each trajectory ΓG ∈ Σ∗, |ΓG|
denotes its length. We say, the trajectory ΓG ∈ Σ∗ is accepted

by G if and only if there exists a path ξ (ξ = x0
ΓG−→ xn),

labeled by ΓG, in the state diagram of G leading from start

state x0 to terminal state xn ∈ F ⊆ X . Any subset of Σ∗ is

called a language over Σ.

The language generated by FSA of G, denoted by L (G) is

defined as

L (G) = {ΓG ∈ Σ∗ | δ̃ (x0,ΓG) ∈ X},

where δ̃ is the extension of δ that accept strings over Σ.

The language accepted by the system G is the set of all and

only those trajectories ΓG (ΓG ∈ Σ∗) over Σ that are accepted

by G. The marked language accepted by G is defined by

Lm(G) = {ΓG ∈ Σ∗ | δ̃ (x0,ΓG) ∈ F}.

Definition 2 The language accepted by a deterministic FSA

Lm(G) is called a regular language. A FSA G is determinis-

tic, if any given path in G labeled by trajectory ΓG ∈ Σ∗ has

a unique run, otherwise, FSA G is non-deterministic.

The FSA of G is said complete when all

(x,σi) ∈ X ×Σ, | δ (x,σi)| ≥ 1 and a subset X ′ ⊆ X is stable

whenever that δ (X ′,Σ)⊆ X ′.

The projection of strings from L (G)−→ Σ∗o is denoted by P

(P : L (G)−→ Σ∗o). Given a strings ΓG ∈L (G), P is obtained

by removing all elements of Σuo in string ΓG, (we recall Σ =
Σuo ∪Σo), where Σo is the observable events and Σuo is the

unobservable events.

In this paper, the language generated by FSA of G is used

to detect critical situations or to supervise a specific behavior

(pattern). The definition of a supervision pattern in discrete

event systems is given in the next section.

3. DEFINITION OF THE SUPERVISION PATTERN

A supervision pattern is a language associated to a path of

FSA M that we are interested in for the purpose of detec-

tion. The language may be associated with the occurrence of

single critical situation or multiple critical situations. Thus,

the language may be associated with a specific behavior of

the situation or a system. In (Ye & Dague, 2012), a super-

vision pattern is a deterministic, complete FSA with a stable

final states set Fϑ . Let ϑ = (Xϑ ,Σϑ ,δϑ ,x0ϑ
,Fϑ ) be the FSA

which satisfies the four following conditions.

1. ∀ x ∈ Xϑ , ∀σ j ∈ Σϑ , if x1 ∈ δϑ (x,σ j) and x2 ∈ δϑ (x,σ j),
then x1 = x2.

• This condition describes the pattern as a determin-

istic FSA,

2. ∀x∈Xϑ , Σϑ (x) =Σϑ where Σϑ (x) = {σ j ∈Σϑ |∃x1 ∈Xϑ

such that x1 ∈ δϑ (x,σ j)}.

• This condition describes the pattern as a complete

FSA,

• A FSA M is said complete when all (x,σi) ∈ X ×
Σ, | δ (x,σi)| ≥ 1 and a subset X ′ ⊆ X are stable

whenever δ (X ′,Σ)⊆ X ′.

3. Fϑ ⊆ Xϑ and δϑ (Fϑ ,Σϑ )⊆ Fϑ , where

δϑ (Fϑ ,Σϑ ) =
⋃

x∈Fϑ
{x1 ∈ Xϑ |x1 ∈ δϑ (x,σ j)} with σ j ∈

Σϑ ,

• This condition characterizes that the final state set

Fϑ is stable.

4. x0ϑ
/∈ Fϑ .

The supervision of the pattern ϑ is defined as the recognition

problem of the path whose intention is to answer the question

whether trajectories corresponding to observed path are ac-

cepted or not by the automaton ϑ . The supervision pattern

method presented above is not adaptive for an incomplete

model of a discrete event system. A discrete event model

can arisen from abstraction and simplification of a continu-

ous time system or through model building from input/output

data. As such, it may not capture the dynamic behavior of the

system completely. In next section, we present dynamic dis-

crete event systems model in dynamic environment using the

outputs sequences of M for the diagnosis. Most real-world

applications operate in dynamic environment. In dynamic

3
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(non-stationary) environment, the parameters and structure of

the application may change over time.

4. NEW AUTOMATON MODEL FOR DES

The pattern of the model of a system in non-stationary en-

vironment can be supervised by using the state and the out-

put sequence. Suppose that X denotes the set of states and

Y denotes the set of outputs. A sequence of state is a se-

quence x0 · · ·xi of state and an sequence of output is a se-

quence y0 · · ·yk for x0, · · · ,xi ∈ X and y0, · · · ,yk ∈ Y . we in-

troduce the same notations and definitions for the pattern of

supervision of a behavior of a dynamic model. The behavior

of a dynamic model to be supervised is modeled by applying

methods based on FSA. These methods are represented by a

quintuple structure

G = (X ,Σ,Y,ϕ ,x0,F) ,

with ϕ is the transition relation, and ϕ is the extension of δ
of the system M that is defined as ϕ : X×Σ→ X×Y .

Given state xi ∈X and input (event) σi,∈Σ, and z j =(x j,y j)∈
ϕ(xi,σi) if and only if the input of σi when G is in state xi may

result in G in to state x j and outputting y j. The tuple defines

by (xi,z j ,σi) is a transition of the model G.

The equation ϕ(x0,σ0) = {x1,y1}, means when the system G

is in state x0 and the event σ0 occurs, the system G moves to

the state x1 and sends the message y1, with x0 ∈ X , σ0 ∈Σ and

y0 ∈Y . The transition function ϕ of G can be extended to take

the sequence of inputs. For example if we have ϕ(x0,σ0) =
{x1,y1} and ϕ(x1,σ1) = {x2,y2}, the extension of this exam-

ple is ϕ(x0,σ0σ1) = {x2,y1y2}.

In this paper, we define two projections of ϕ . These two pro-

jections are ϕ1 and ϕ2. The projection ϕ1 gives the states

reached from a state and a given input. The projection ϕ2

defines the output from state. These projections are defined

as




ϕ1(xi,σi) = {x j ∈ X | ∃ y j ∈ Y s.t (x j,y j) ∈ ϕ(xi,σi)},

ϕ2(xi,σi) = {y j ∈ Y | ∃ x j ∈ X s.t (x j,y j) ∈ ϕ(xi,σi)},

ϕ(xi,σi) = (ϕ1(xi,σi),ϕ2(xi,σi)),

In the following zi = (xi,yi) and z j = (x j,y j).

The projections ϕ1 and ϕ2 of ϕ may be extended to take the

input sequences. For ϕ(x0,σ0) = {x1,y1} and ϕ(x1,σ1) =
{x2,y2}, we get

{
ϕ1(x0,σ0σ1) = {x2},

ϕ2(x0,σ0σ1) = {y1y2},

Let L (G) be the language defined by the FSA G containing

the input/output sequence allowed by G. Formally

L (G) = {ΓG/∆G | ΓG ∈ Σ∗ & ∆G ∈ ϕ2(x0,ΓG)},

with x0 the starting state. The state xi ∈ X of G has an associ-

ated language

LG(xi) = {ΓG/∆G | ΓG ∈ Σ∗ & ∆G ∈ ϕ2(xi,ΓG)},

with ∆G = y0 · · ·yk, ΓG = σ0 · · ·σk ∈ Σ∗ and y0, · · · ,yk ∈ Y .

The language L (G) is the set of all trajectories originating

from the state x0 of the system G. Clearly L (G) = LG(x0).

Let Φ(LG(x0),σi) be the trajectory in LG(x0) = ΓG such that

ΓG/∆G ∈LG(x0) that ends with σi. Formally

Φ(LG(x0),σi) = {ΓG = L1σi | L1 ∈ Σ∗ and σi ∈ Σ}.

We recall here that the FSA model of a dynamic system is de-

fined as G = (X ,Σ,Y,ϕ ,x0,F), where ϕ : X ×Σ−→ X×Y is

the transition function. A set of events set Σ may include crit-

ical events (or faults). The event set of these critical events

is denoted Σc. Thus, a dynamic system can have different

functioning modes or situations: normal situation (N) and

degraded situation (Nd). In addition to normal and degraded

situations, there are p abnormal situations (failure modes),

denoted F1, · · · ,Fp that describe the evolution of the situa-

tion in crisis management. The condition set of the dynamic

system is defined as Ω := {N,Nd ,F1, · · · ,Fp}. For a discrete

event dynamic system, the state set X can be partitioned ac-

cording to the condition of the system.

X = XN ∪XNd
∪XF1

∪·· ·∪XFp .

Occurrence of a degradation event brings the system into the

set XNd
corresponding to the degraded situation Nd . The oc-

currence of a critical event brings the system into the one of

the set XFi
, corresponding to the abnormal situation Fi.

To define the condition map of a dynamic system on a tra-

jectory ΓG of G, we introduce the label propagation func-

tion Lλ : X×Ω×Σ∗→ Ω. Lλ (x,λ ,ΓG) propagates the label

λ over ΓG ∈ Σ∗, starting from xi ∈ X and following the dy-

namics of G, with xi ∈ X , λ ∈ Ω and LG(xi) ∈ Σ∗ such that

ΓG = Φ(LG(xi), ℓ).

Lλ (x,λ ,Γ)=





N, if ∃ x j ∈ X | x j ∈ ϕ1(xi,Γ) & x j ∈ XN ,

Nd , if ∃ x j ∈ X | x j ∈ ϕ1(xi,Γ) & x j ∈ XNd
,

Fi, if ∃ x j ∈ X | x j ∈ ϕ1(xi,Γ) & x j ∈ XFi
,

The definition of the conditions map can be extended to sub-

sets of X .

for all zk ⊆ X , Lλ (zk,λzk
,Γ) =

⋃

x0
Γ
→xi∈zk

{Lλ (x1,λi,Γ)}.

Let x0, · · · ,xm ∈ X and m ∈ N such that

zk = {(x0,λ0), · · · ,(xm,λm)}. The evolution of λi is normal if

4



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

λi = N for all 0 ≤ i ≤ m, certain if λi = Fi for all 0 ≤ i ≤ m

and uncertain if there exists λ j = N and λi = Fi for the same

0≤ i, j ≤ m.

The necessary and sufficient condition for the supervision

pattern of a discrete event dynamic situation (or system) is

based on the learning diagnoser and prognostic of discrete

event dynamic system. The learning diagnoser is obtained

from the standard diagnoser.

5. STANDARD DIAGNOSER

In this paper, a standard diagnoser, denoted here DG is a FSA

built to detect and isolate critical situations during crisis man-

agement whose the evolution is represented by the model G.

This latter is defined by G = (X ,Σ,Y,ϕ ,x0). The model G

is the discrete event model for the situation that we want to

supervise. The set Y is the output of G. The standard diag-

noser that we use for discrete event dynamic situations is a

FSA that takes the outputs sequence ∆G = y0y1 · · ·yk of sys-

tem G as its inputs as shown in Figure 3, with λi the evolution

of situations.

Output of G Input of DG

G = (X ,Σ,Y,ϕ ,x0 ,F) DG = (Z,Y,Ω,ξ ,z0)

X = {x0,x1,x2,x2 , · · · }

Y = {y0,y1,y2,y2 , · · · }

Z = {(x0,y0),(x1,y1), · · · }

Ω = {N,F1,F2, · · · ,Fp}

y0y1 · · · yk

λ1 · · ·λm

Situation’s evolution

Figure 3. System and supervision pattern, with λ1 · · ·λm are
the evolution of the situation and y0y1 · · ·yk the output se-
quences.

The standard diagnoser DG of G is defined as

DG = (Z,Y,Ω,ζ ,z0) ,

where Z is the set of standard diagnoser state, Y is the set of

standard diagnoser input, Ω is the set of standard diagnoser

output (current state of the situation), ζ is the standard diag-

noser state transition function, the relation ζ is Z×Y → Z,

z0 ∈ Z is the start state of the standard diagnoser.

Let ζ1 and ζ2 be the two projections of ζ of diagnoser DG,

with ζ1 and ζ2 are given by





ζ1(xi−1,yk) = {xi | ∃ λ s.t (xi,λ ) ∈ ζ (xi−1,yk)},

ζ2(xi−1,yk) = {λ | ∃ xi s.t xi ∈ ζ (xi−1,yk)},

ζ (xi−1,yk) = (ζ1(xi−1,yk),ζ2(xi−1,yk)).

with λ = Lλ (x0,λk,β ) ∈Ω.

The diagnoser state space Z is the resulting subset of 2X×Ω

composed of the state of the diagnoser that are reachable from

z0 under ζ . The initial state z0 of the diagnoser is defined by

z0 = (x0,λ0). Assume that the system G is normal to start,

then λ0 = N. The state z j ∈ Z can be defined as

z j = {(x0,λ0), · · · ,(xi,λi)},

where xi ∈ X and λi ∈ Ω, for all i ∈ {0, · · · ,n}. In the fol-

lowing we choose the length of equal 1, i.e., |z| = 1, (egzk =
{(xk,λk)}.

Based on the output sequence ∆G = y0y1 · · ·yk of the model

G, the state zk = (xi,λi) ∈ Z is determined to which xi may

belong at the time that the output yk was generated. For the

diagnoser of the evolution of the situation from x0 will be

Lλ (x0,λi,∆G) such that ζ ((x0,λ0),y0)⇒ ζ ((xi,λi),yk).

For any zi = (xi,λi) and z j = (x j ,λ j), with xi, x j ∈ X and

λi, λ j ∈Ω, we say that z j = (x j,λ j) is output-adjacent to zi =
(xi,λi) and we write zi⇒ z j if λi 6= λ j and if there exists τ ∈N
and inputs y0, · · · ,yτ ∈Y such that (x j,λ j)∈ ζ ((xi,λi),y0 · · ·yτ).

The diagnoser state transition is defined by

(xi,λi) = ζ ((xi−1),yk) with yk ∈ Y.

In the following, we write the diagnoser state zk = (xi,λi) as

zk = (xz,i,λi).

In this paper, we address the problem of supervision pattern

of a discrete event model. We recall here, the supervision

pattern means to define a language that we are interested in

for the purpose of diagnosis and prognostic.

Let H be a subset over Σ, and (H ⊂ Σ). The subset H is used

to define the pattern that we want to supervise in the paper.

The definition of the language that should be recognized by

the supervision pattern depends the problem studied. In this

paper, the detection approach of the critical behavior or situ-

ation is given by





LDG
(xz,1) = {ΓD/∆D | ΓD ∈ Y ∗ & ∆D ∈ ζ2(xz,0,ΓD)},

such that, ∃ L ∈ Σ∗ defined by

L = {ΓG ∈ Σ∗ | ΓD ∈ ϕ2(x0,ΓG} and |Po(L)| ≥ C,

Po : Σ∗ −→ H∗, H ⊆ Σ,

C = Criteria,

ϕ2 is the projection of ϕ of the model G,

with the sequence ΓD = ΓDG
= y0y1 · · · that is the input se-

quence of the diagnoser DG and the output of the model G

.

Before to detect the critical behavior, it is interesting to pre-

dict the future state of the evolution of the situation by relying

on the trajectory LDG
= ΓDG

. Prognostic of a discrete event

systems aims at predicting failure events or critical situations

of a discrete event systems before their occurrences and to

detect new transitions that is missing in the nominal model.

Each new transition must be validated by a crisis manage-

ment expert after a predefined period of time (lifetime). If

5
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a new created transition is not validated by an expert during

this time period, then the transition will be deleted. In the

next section, we introduce the problem of prognostic of dis-

crete event systems.

6. PROGNOSTIC OF DISCRETE EVENT DYNAMIC SYS-

TEM

Prognostic of a trajectory or equivalently, sequence of a dy-

namic system behavior is defined in the context of formal lan-

guage.

Let LDG
(y0) denote the set of all trajectories originating from

the starting state of the diagnoser z0 =(xz,0,λ0), and Φ(LDG
(y0,yα))

is a trajectory in LDG
(y0) ending with yα ∈ Y .

Φ(LDG
(y0,yα)) = {β ∈ Y ∗ such that β = y0 · · ·ynyα}.

Let ψ(xz,i) be the function giving the state immediately after

the state xz,i. This function is defined as

ψ(xz,i) = {x
′
z, j | ∃ y ∈ Y such that x′z, j ∈ ζ1(x,y)}.

Roughly speaking, a diagnoser state is predictable if it is al-

ways possible to detect the future diagnoser state, immedi-

ately before to arrive in this state. In this paper, we rely

only on the output sequence of discrete event dynamic sys-

tem model of G to predict the future state.

The prognostic of the future diagnoser state at time k, when

xz,i is generated, is given by

x̂z,i+1 = ψ(xz,i)∩ζ1(xz,i,yk+1),

with yk+1 ∈ Y , and yk+1 is the input of DG and output of the

model G .

The predicted state of the diagnoser DG is:

ẑk+1 = (x̂z,i+1,yk+1).

Thus, the prognostic of the trajectory Φ̂(LDG
(y0,yk+1)) is:

Φ̂(LDG
(y0,yk+1)) = {β̂ = y0 · · ·ykyk+1}.

The prognostic of the evolution of the situation is the propa-

gation of the label λk+1 over β̂ , defined by Lλ (xz,0,λk+1, β̂ ).
Finally the diagnosis state predicted from xz,0 in the form of

ẑk+1 = (x̂k+1,Lλ (xz,1,λk+1, β̂ ), xi 7−→ x̂k+1 (Traore, Sayed-

Mouchaweh, & Billaudel, 2013).

For example, in this section we propose a FSA for the health

condition of a patient as shown in Figure 4.(a). The states

x0, x1 and x2 are respectively excellent, poor and bad health

condition of the patient.

• N: the patient’s health condition is normal,

• Nd : the patient’s health condition is in degraded state,

• F : the patient’s health condition is abnormal,

• to characterize the active in example 4, we define

y0 = [1 0 0], y1 = [0 1 0] or y2 = [0 0 1] respectively if

the active state is x0, x1 or x2 state.

x0/y0 x2/y2

x1/y1

xz,0 xz,1

xz,2

σ1

σ2

σ3

σ4

σ5

y0 y1

y2

(a) - model G (b) - diagnoser DG

Nd

F

N

Output

zk

yk

xz,i

λi

Figure 4. Finite state automaton corresponding to patient’s
health condition after a car accident, x2 is the critical situation
(condition), σ0, · · · , σ4 are the drugs taken by the patient.

Suppose at time k the output sequence

∆G = y0y1y0 is observed, then the diagnoser state is xz,i = xz,0.

When the output sequence ∆G = y0y1y0 is observed, and the

next output symbol yk+1 is anything other than y1, we get

ψ(xz,0)∩ζ1(xz,0,yk+1) = /0,

that means the observation generated after y0 is inconsistent

with the model dynamic and the diagnoser can not proceed.

The current diagnoser state xz,i+1 is different to diagnoser

state x̂z,i+1 predicted before. Based on the language LG(x0)=
ΓG/∆G, in particular the output sequence ∆G, we determine

the sate candidate.

When the output sequence is inconsistent with the model of

the situation G, then we have to revise the model of G by

adding to it new transitions that we believe are missing in the

nominal model. Adding new transitions in Σ of G is called

learning diagnoser. In the next section we detail the construc-

tion of a learning diagnoser.

In non-stationary environments, the detection model must be

updated in order to take into account the changes. The crisis

environments are strong non-stationary environments.

7. LEARNING DIAGNOSER

A learning diagnoser is a standard diagnosis that tolerate miss-

ing transitions (information) about the system to be diagnosed.

The learning diagnosis must be able to learn the true model

of the system G, when missing information about the system

are presented.

Let σnew be a new input event not found in Σ of G and the

new set Σnew of G is given by Σnew = Σ∪{σnew}. A transition

xd
σnew−→ xa is ordered pair of state denoting a transition from

the state xd to the state xa. Let ϕnew be extended transition

6
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function of ϕ of the system G such that

ϕnew(xd ,σi) =





xa if σi = σnew &





Σ : Σ← σnew,

and

X : X ← xa if xa /∈ X ,

ϕ1(xd ,σi) otherwise,

Let be a dynamic model Gnew of the model G defines as

Gnew = extend(G,Π) = (X ,Σ∪Π,Y,ϕnew,x0).

Gnew is called the extension of G by Π, where Π is the set

containing all the new transitions founded. The transition set

Π is empty, if the model G of the system is consistent with

the output sequence.

For instance, when the sequence y0y1y0y2 is observed by the

diagnoser in Figure 4.(b), then the transition from the state

xz,0 to the state xz,2 is a new transition for the model G, now

ψ(xz,0) can be

ψ(xz,0) = {xz,1} or ψ(xz,0) = {xz,2}.

That means in Figure 4.(a), x2 ∈ϕ1(x1,σ2) and x2 ∈ϕ1(x0,σnew).

When the model of G is inconsistent with the output sequence,

the subset H for the supervision pattern may be updated, which

is not the case for the supervision pattern approach presented

in section 3.

When a new transition is detected, the detection model must

be updated as





LDG
(xz,0) = {ΓDG

/∆D | ΓD ∈ Y ∗ & ∆D ∈ ζ2(xz,0,ΓD)}

such that it exist a language L defined by

L = {ΓG ∈ Σ∗ s.t ΓDG
∈ ϕ2(x0,ΓG} and |Po(L)| ≥ C

Pnew
o : Σ∗new −→H∗update,

Π = Hupdate = H ∪{σnew},

C = Criteria and Po = Pnew
o .

Pnew
o : Σ∗new −→H∗update is the new definition of the projection

Po. The fact to update the subset H ⊆ Σ in real time, we

obtain a learning supervision pattern of the system (situation)

operating in non-stationary environment.

8. APPLICATION TO CRISIS MANAGEMENT

During a crisis situation, the capacity to make fast and ade-

quate decisions is a very important challenge for a better exit

of crisis. The context and characteristics of crisis make more

difficult to take decision than in normal situations. Thus, the

multiplication of actors and roles in crisis management also

increase the difficulty to exchange information and the coor-

dination between different involved groups. That is why it

is important to propose a model allowing to detect a critical

situation during a crisis management, thus that the prognos-

tic of the evolution of the normal situation toward this critical

situation. The case of a critical situation, can be the manage-

ment problem between different involved teams. In this paper

we propose a model (no generic model) of crisis management

applied on the team S.A.M.U (Emergency Medical Service)

from Hospital of Troyes in France, during T EAN (T EAN is

the name of the exercise) exercise.

The Emergency Medical Service (S.A.M.U) is a hospital ser-

vice which organizes emergency treatment outside the hospi-

tal (on the street, at home, etc). S.A.M.U includes the cen-

ter that receives calls made ”15” (like 911 in the US) and is

called specifically the Reception Center and Regulatory Ap-

peals. It also includes an Academic Emergency Care Center.

Mobile Service Emergency and Intensive Care include a med-

ical team, vehicle and equipment responsible for responding

to the request of the Emergency Medical Service.

S.A.M.U . perform the following missions:

1. Ensure permanent Medical listening.

2. Determine and trigger, in the fastest time, the best-adapted

response to the nature of the calls.

3. Ensure the availability of public or private hospital means

adapted to the patient (· · · ) and to prepare its welcome.

4. Otherwise, organize the transportation in a public or pri-

vate institution involving a public service or a private

company medical transport.

5. Ensure the patient’s admission at the hospital by coordi-

nating the hospital secretariat.

8.1. FSA model of T EAN exercise

The TEAN exercise team is composed of the following ac-

tors:

• Rear Base 1 (RB): Operations Coordination,

• Communication Center (CC): collecting information and

sharing with RB,

• First Team: first intervention, sending the first evaluation

(result) about the crisis to the CC,

• Advanced Medical Post (AMP): Intervention and evacu-

ation of victims, sending the complete evaluation to the

CC.

The FSA of the T EAN exercise is shown in Figure 5.

The discrete event model showed in Figure 5 for T EAN exer-

cise, allows on one hand to monitor the communication and

coordination between various groups involved in crisis man-

agement, and also to supervise some specific behaviors that

are critical situations. The FSA in Figure 5 is specified as:

Gn = (X ,Σ,δ ,Y,x0,F), Gn is the nominal model

1Other word, Rear Base is decision makers

7
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x0/y0

x1/y1 x2/y2

x3/y3

x4/y4

x5/y4

x6/y6

x7/y7

x8/y8

σ1

σ3

σ10

σ2

σ6

σ4 σ2

σ11 σ2

σ5

σ8

σ7

σ9

Figure 5. An example of modelisation of a scenario of crisis
with finite state automaton.

The dashed line in Figure 5, between states x6 and x7 repre-

sents a critical event. The occurrence of the event ′′σ ′′7 brings

the system in the critical situation corresponding to state x7.

In this example

X = {x0,x1,x2,x3,x4,x5,x6,x7,x8} , is the set of states,

Σ = {σ1,σ2,σ3, · · · ,σ10,σ11} , set of input symbols,

Y = {y0,y1,y2,y3,y4,y6,y7,y8} , set of output events,

F = {x7} , terminal state,

Table 1. List and definition of the states.

States Definition

x0 No crisis

x1 Onset Crisis

x2 Information received at the communication center (CC)

x3 Information arrived at the police center

x4 Information received at the Emergency department

x5 Information arrived at the Advanced Medical Post (AMP)

x6 Information received at the accident area

x7 The model is not suitable for this crisis situation

x8 The end of the intervention

Table 2. List and definition of the transitions (events).

events Definition

σ1 A call from (or about) an accident

σ2 Sending Team to the accident site

σ3 Sending information to CC

σ4 Sending information to Emergency department

σ5 Sending the first evaluation to CC

σ6 Sending final evaluation to CC by the AMP’s actors

σ7 End of crisis management ”without” success

σ8 End of crisis management ”with” success

σ9 Confirmation of the end of the intervention

σ10 Sending information to the police office

σ11 Sending information to Emergency and AMP

Table 3. List and definition of outputs.

Output labels Definition

y0 No coming call

y1 Accident is happen

y2 Information arrived to CC

y3 Information arrived to police office

y4 Preparation of the Intervention Team

y5 Preparation of the AMP

y6 New Actors arrived in the accident area

y7 uncontrolled situations (conditions)

y8 The crisis is resolved

8.2. Diagnosis model of TEAN exercise

The goal is to construct a diagnosis module (called diagnoser)

able to diagnose critical situations. Hence, the standard diag-

noser for the model illustrated in Figure 5 is shown in Figure

6, with z0 = {x0}. Each state of the diagnoser D
G̃n

, shown as

a rounded box in Figure 6 is a set of states of the system. In

Figure 6, an output symbol (λ (z1) corresponding to the evo-

lution of the situation is associated with each diagnoser state.

λ (zi) =

{
F1(abnormal mode), if i=7,

N(normal mode), otherwise.

Many critical situations can be identified in TEAN exercise,

but for simplicity and easy understanding of our approach, we

cited only a single example of a critical situation.

Therefore, the specific behavior that we want to supervise

(or to detect) here is the sequence ′′y6y′′7 (∆Cg = y6y7) in the

output sequence during the crisis management. The appear-

ance of ∆Cg in the output sequence brings the crisis manage-

ment into the set XF corresponding to the critical situation F1.

Thus, the objective of the diagnoisis by a supervision pattern

allows us to generalize the properties to be diagnosed.

The standard diagnoser DGn of the behavior presented just

above is shown in Figure 6. This diagnoser is defined as

DGn = (Z,Y,Ω,ζ ,z0), with Ω = {N, F1}. The pattern that

has supervised is having ′′y6y′′7 in the output sequence during

the crisis management. We remind that y0,y1 · · · ∈ Y are the

outputs of the model Gn and inputs for the diagnoser DGn , as

shown in Figure 3. In Figure 6, having the subset ′′y6y′′7 in the

output sequence brings the diagnoser in critical situation.

After the occurrence of the event σ2 at time t, then, the prog-

nostic of the future state at time t + 1, when y6 is generated,

is given by

x̂z,i+1 = ψ(xz,6)∩ζ1(xz,6,yk+1).

The future state of the diagnoser DGn is:

ẑk+1 = (x̂z,i+1,yk+1).

8
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Thus, the prognostic of the trajectory Φ̂(LDGn
(y0,yk+1)) is:

Φ̂(LDGn
(y0,yk+1)) = {β̂ = y0 · · ·y6yk+1}.

The prognostic of the evolution of the situation is the propa-

gation of the label λk+1 over β̂ , defined by Lλ (xz,0,λk+1, β̂ ).
Finally the diagnosis state predicted from xz,0 is in the form

of

ẑk+1 = (x̂k+1,Lλ (xz,1,λk+1, β̂ ), xi 7−→ x̂k+1.

In this application:

x̂z,i+1 = ψ(xz,6)∩ζ1(xz,6,yk+1),

= {x7,x8},

ẑk+1 = (x̂z,7,y7),

= (x̂z,8,y7),

Φ̂(LDGn
(y0,yk+1)) = {y0y1y2y3y4y5y6y7} =⇒ λk+1 = F1,

= {y0y1y2y3y4y5y6y8} =⇒ λk+1 = N.

We address the problem of modeling the diagnosis objective

by a supervision pattern of a discrete event dynamic model.

The subset H ⊂ Σ is used to define the pattern that we want

to supervise in this application. In this paper, the critical be-

havior (situation) during the T EAN exercise that we want to

detect is detected if and only if





Lη(xz,0) = {Γη/∆η | Γη ∈ Y ∗ and ∆η ∈ ζ2(xz,0,Γη )},

such that, it exists a language L ∈ Σ∗ defined by

L = {ΓGn ∈ Σ∗ | Γη ∈ ϕ2(x0,ΓGn} and |Po(L)| ≥ C,

Po : Σ∗ −→H∗, and H = {σ7} ⊆ Σ

C = criteria,

ζ2 is the extension of ζ

with η = DGn , Γη = y0y1 · · · is the inputs and ∆η is the out-

puts of the diagnoser DGn of the model Gn. For the behavior

that we want to supervise here, we have H = {σ7} and the

Criteria=1. The detection of σnew between x1 and x7 and the

occurrence of σ7 and σnew bring the crisis management in

critical situation

If at time t+1, x̂z,i+1 =ψ(xz,6)∩ζ1(xz,6,yk+1)= /0, that means

the observation generated after y6 is inconsistent with the

model dynamic and the diagnoser can not proceed. Hence,

we detect a new transition from x6 to the next state at time

t + 1.

when the model of Gn is inconsistent with the output se-

quence, the subset H for the supervision pattern may be up-

dated. In this section, the behavior that we want to supervise

is having ′′y′′7 in the output sequence. For example if we get

the output sequence ′′y1y′′7 at time t + 4, then with the new

transition σnew, we can go to the x7 when the event σnew or

σ7 occurs. Then the new subset for the supervision pattern is

defined by Hupdate = {σ7,σnew}. The critical pattern of the

behavior of the crisis is detected if and only if





Lη(xz,0) = {Γη/∆η | Γη ∈ Y ∗ and ∆η ∈ ζ2(xz,0,Γη )}

such that it exists a language L defined by

L = {ΓGn ∈ Σ∗ such that Γη ∈ ϕ2(x0,ΓGn} and |Po(L)| ≥ C

Pnew
o : Σ∗new −→ H∗update = Π = H ∪{σnew}= {σ6,σnew}

C = Criteria and Po = Pnew
o .

Pnew
o : Σ∗new −→ H∗update is the new definition of Po and C = 1.

Updating the subset H ⊆ Σ allows us to obtain a learning su-

pervision pattern.

Dk

yk

zk

λ(zk)

y0

New transition (σnew)

x0

N

y1

x1

N

y3

x3

N

y2

x2

N

y4

x4

N

y5

x5

N

y6

x6

N

y8

x8

N

y7

x7

F1

Figure 6. Diagnoser of crisp discrete event systems model
shown in Figure 5.

9. NUMERICAL SIMULATION

In Figure 7, we show the numerical simulation of the crisis

management of the TEAN exercise model. For the simula-

tion of the T EAN exercise model , we used the Statechart

simulation with Yakindu Statechart Tools. This latter is self

contained and they not only contain the definition of states

and state transitions, but also the definition of the statechart

interface as shown in the left of the Figure 7. In Figure 7 the

active state is ”waiting” state. Therefore, the simulation that

are made from the statecharts are complete and provide a well

defined interface that can be easily integrated with any appli-

cation code. The code generated by Yakindu statechart can be

java, C or C++. The vector LCD.out putSequence in Figure 7

is used for the diagnosis and prognosis of critical situation.

10. CONCLUSION AND PERSPECTIVES

In this paper, we showed that the interaction between different

actors/groups involved in crisis management can be modeled

9
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Figure 7. Crisis management model simulation of the T EAN exercise (this is not generic model).
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by a FSA to help the decision makers to act during the crisis.

The notion of supervision pattern for the diagnosis purpose is

presented and illustrated with a crisis management as a case

study. A method for the prediction of discrete event systems

model of a dynamic system is presented. We we also pre-

sented a learning diagnoser that is tolerant to missing tran-

sitions (information) about the system to be diagnosed. We

demonstrated how the learning diagnosis learn the true model

of the system. We proposed a new learning supervision pat-

tern for discrete event dynamic systems applied to a crisis

management case.

Future work will focus on the development of a generic learn-

ing supervision pattern for the dynamic model of a crisis. We

will propose a new diagnosis and prognosis approaches that

deal with the problem of fuzziness, impreciseness and uncer-

tainness, like stress of the people involved in crisis manage-

ment and the weather condition.
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