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ABSTRACT 

Up to date, model and parameter uncertainties are generally 

overlooked by majority of researchers in the field of battery 

diagnostics and prognostics. As a consequence, accuracy of 

the battery performance estimation is dominated by the 

model fidelity and may vary from cell-to-cell. This paper 

proposes a systematic framework to quantify battery model 

and parameter uncertainties for more effective battery 

performance estimation. Such a framework is generally 

applicable for estimating various battery performances of 

interest (e.g. state of charge (SOC), capacity, and power 

capability). Case studies for battery SOC estimation are 

conducted to demonstrate the effectiveness of the proposed 

framework.   

1. INTRODUCTION 

Hybrid electric vehicles (HEVs), plug-in hybrid electric 

vehicles (PHEVs) and electric vehicles (EVs) are gaining 

popularity in automotive industry. Lithium-ion (Li-ion) 

battery is the most promising power source for 

HEVs/PHEVs/EVs due to its light weight, high energy 

density, and relatively low self-discharge compared to Ni-cad 

and NiMH batteries. Battery performances of interest, such 

as state of charge (SOC), capacity and power capability, have 

been extensively studied due to their importance in real 

HEVs/PHEVs/EVs applications (Santhanagopalan & White, 

2008; He et al., 2012; He et al., 2012). Battery SOC, similar 

to the remaining gas in the gasoline vehicles, is of particular 

interest and should be exactly known at any operating time. 

Unfortunately, the percentage of the charge remaining in the 

battery, namely the battery SOC, is not a directly measurable 

quantity and thus should be accurately estimated instead. 

Coulomb counting is the most widely employed method for 

tracking the SOC provided that the initial SOC is known (Ng 

et al., 2008). Otherwise, Kalman filter (KF), extended 

Kalman filter (EKF), and unscented Kalman filter (UKF) (He 

et al., 2013; Zhang and Pisu, 2014) are typical methods for 

fast SOC estimation based on various equivalent circuit 

models of the Li-ion battery (Plett, 2004b). Other methods in 

machine learning have been recently explored in the SOC 

estimation and/or degradation parameter (e.g., capacity) 

estimation (Santhanagopalan and White, 2010; Lee et al., 

2011; Andre et al., 2012; Hu et al., 2012; Jun et al., 2012; 

Orchard et al., 2012; He et al., 2013; Waag and Sauer, 2013; 

Wang et al., 2013; Xiong et al., 2014; Hu et al., 2014a&b).    

Five types of uncertainty play a key role for reliable 

estimation of the battery performances of interest and they 

can be classified as: i) measurement uncertainty, ii) algorithm 

uncertainty, iii) environmental uncertainty, iv) model 

parameter uncertainty, and v) model uncertainty. 

Measurement uncertainty includes current and voltage 

measurement error and has been well considered by most 

researchers. For example, a sensor noise term is typically 

included in the KF (Han et al., 2009). Algorithm uncertainty 

focuses on accuracy of numerical algorithms for estimating 

the battery hidden state. This field of research evolves 

gradually and typical algorithms include KF, EKF, particle 

filter (PF), etc. For example, Li et al. conducted a 

comparative study of SOC estimation using Luenberger 

observer, EKF, sigma point KF (SPKF), and sequential 

Monte Carlo filter (i.e., the PF) (Li et al., 2013; Li et al., 2014). 

Environmental uncertainty especially the temperature 

uncertainty has a great influence on battery SOC and state of 

health (SOH) estimation and has been recently addressed by 

researchers (Chen et al., 2013; Xing et al., 2014). Model 

parameter uncertainty is the realization of the physical 

uncertainty on a specific battery model (e.g., equivalent 

circuit model and electrochemical model), where the physical 
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uncertainty is mainly caused by the manufacturing tolerance 

resulting in the cell-to-cell variability. These types of 

uncertainty were noticed and discussed in recent work for 

battery SOC estimation (Truchot et al., 2014; Xing et al., 

2014). However, there is a lack of systematic approach to 

characterize the model parameter uncertainty. Model 

uncertainty, representing the bias of the battery model 

compared to the true physical system, may always exist 

because no battery model can truly represent the battery 

system without any error under various battery operating 

conditions. For example, an electrochemical battery model 

typically indicates a higher fidelity level compared to the 

equivalent circuit model, but its model uncertainty or bias 

still exists. Since the battery performance estimation is 

conducted on the basis of the assumed ‘perfect’ battery model, 

any level of model uncertainty will cause biased battery 

performance estimation regardless of the specific numeric 

algorithms. Up to date, model parameter uncertainty and 

model uncertainty are generally overlooked by majority of 

researchers in the field of battery diagnostics and prognostics.   

Contribution of this paper is to propose a systematic 

framework to quantify battery model and parameter 

uncertainties for more effective battery performance 

estimation. Such a framework is generally applicable for 

estimating various battery performances of interest (e.g. SOC, 

capacity, and power capability). The structure of the rest of 

the paper is organized as follows. Section 2 illustrates model 

and parameter uncertainties of the battery model. Section 3 

presents the framework with associated methodologies to 

quantify the battery model and parameter uncertainties. Case 

study is presented in Section 4 for demonstration of the 

proposed framework. Finally, conclusion is made in Section 

5.  

2. MODEL AND PARAMETER UNCERTAINTIES 

This section first presents a brief review of Li-ion battery 

models, and then illustrates model and parameter 

uncertainties in the following two subsections, respectively.  

2.1 Battery Model  

Battery model can be classified into two groups: 

electrochemical models and equivalent circuit models. 

Electrochemical models are physics-based models where a 

set of governing non-linear differential equations are used to 

predict the battery internal state variable which can be further 

related to the typical battery performances of interest. They 

are generally treated as high fidelity models requiring high 

computational effort and thus are not desirable in real time 

battery SOC and state of health (SOH) diagnosis and 

prognostics. Equivalent circuit models are simplified 

physics-based models where a capacitor (or a voltage source) 

and resistors are used to represent the diffusion process and 

internal impedance of the battery cell, respectively. 

Compared to the electrochemical models, they can be viewed 

as low fidelity models with less accuracy but very high 

computational efficiency. Thus, majority of the battery 

management system (BMS) employs the equivalent circuit 

model for battery SOC and SOH diagnosis and prognostics.  

A discrete time state-space model (see Eq, (1)) is typically 

used to estimate battery hidden states (e.g. SOC and capacity) 

using the KF/EFK on the basis of the equivalent circuit model.    
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where xk is the state vector at the kth step; uk means the input 

vector (e.g. current); wk is the process noise; yk is the output 

vector (e.g. terminal voltage); vk is the measurement noise of 

the output vector; f(·) is the state transition function; and g(·) 

is the equivalent circuit model that relates the output vector 

with the input and hidden state vectors.  

2.2 Model Uncertainty 

When battery models are truly representing the real physical 

systems, the output vector predicted from the model would 

be exactly the same as the test results under various battery 

operating conditions. It is worth noting that above statement 

is valid when satisfying three conditions: i) no model 

parameter uncertainty, ii) no numerical algorithm uncertainty, 

and iii) no test error. However, models are generally built on 

the basis of many assumptions and simplifications and 

therefore model uncertainty may always exist because there 

is probably no ideal model which can predict the real physical 

system without any model bias.  

Eq. (2) shows one specific state-space model used for the 

SOC estimation (Plett, 2004a).  
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where ���� is the SOC at the (k+1)th step; ����is the coulomb 

accumulation for given charging/discharging efficiency (η), 

current ( �� ) and time accumulation T;  �	 is the nominal 

capacity. The second equation is the equivalent circuit model 

which builds the functional relationship for terminal voltage 

yk, open circuit voltage (OCV), internal impedance R and 

voltage change hk due to the hysteresis effect. A one-state 

hysteresis model is further expressed in Eq. (3).  

ℎ� = exp �− ��������∆���
�� ℎ��� + �1 −

exp �− ��������∆���
���!      (3) 

where " is a positive value which tunes the rate of decay; and 

M is a polarization coefficient.  

For one specific battery cell, model uncertainty is the 

deterministic difference between the predicted terminal 

voltage yk and the true terminal voltage, which indicates the 
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model inadequacy for representing the actual functional 

relationship under various battery operating conditions. In 

general, parameter uncertainty, which will be illustrated in 

the next subsection, is coupled with the model uncertainty 

and should be taken into account when characterizing the 

model uncertainty. Thus, model uncertainty becomes the 

stochastic difference between the predicted terminal voltage 

yk and the true terminal voltage. For the equivalent circuit 

model considered above, a corrected model after introducing 

the model uncertainty can be defined in Eq. (4). 
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where δ(·) is the model uncertainty function which is also 

referred as model bias in model validation community.  

Development of an effective model uncertainty 

characterization approach can improve model prediction 

accuracy in the intended uses of the model (Youn et al., 2011; 

Zhan et al., 2012; Xi et al., 2013a&b). Such process is 

especially useful to improve accuracy of a low fidelity model 

(e.g. equivalent circuit models with high computational 

efficiency) comparable to a high fidelity model (e.g. 

electrochemical models with low computational efficiency) 

so that diagnosis and prognostics of battery SOC and SOH 

can be conducted more effectively.  

2.3 Parameter Uncertainty 

A common mistake in battery SOC and SOH diagnosis and 

prognosis is ignorance of the fact that the battery used in 

laboratory test is different with others in real operation due to 

various sources of uncertainties (e.g. physical uncertainty) 

even if they are the same type and come from the same 

manufacturer. Physical uncertainty can be viewed as the cell-

to-cell variability due to manufacturing tolerance. 

Correspondingly, parameter uncertainty is the realization of 

the physical uncertainty in the specific battery models.  

According to the battery model defined in Eq. (3) and Eq. (4), 

model parameters (e.g. internal impedance R, decay factor ", 

polarization coefficient M, etc.) contain uncertainty due to the 

cell-to-cell variability and thus should be appropriately 

quantified. Otherwise, the battery performance estimation 

may be accurate for one cell under perfect calibration 

condition, but not so accurate for other cells. Accuracy 

variability depends upon two factors: i) significance of the 

parameter uncertainty and ii) sensitivity of the accuracy with 

respect to the parameter uncertainty.   

2.4 Remarks on Model and Parameter Uncertainty  

In model calibration, the objective is to maximize the 

agreement between the model prediction and the test data. A 

common approach for simplification is to disregard the model 

uncertainty by maximizing the agreement between the 

original model prediction and the test data through calibration 

of unknown model parameters. It is apparent that the 

calibrated model parameters may not be the true values. This 

is acceptable in model calibration because models are treated 

more pragmatically to increase their predictive power for one 

or several specified battery cells. However, if the objective is 

to improve the model prediction accuracy for the population 

of the battery cells under various operating conditions, it is 

risky to directly use model calibration technique because the 

model prediction could be inaccurate out of the calibration 

domain due to incorrect calibration of the model parameters 

and ignorance of the model uncertainty.  

3. PROPOSED FRAMEWORK FOR BATTERY 

PERFORMANCE ESTIMATION 

The proposed systematic framework is shown in Fig. 1 with 

consideration of the model and parameter uncertainties for 

more effective battery performance estimation. There are two 

major benefits using the proposed framework: i) 

consideration of the cell-to-cell variability and ii) accuracy 

improvement of the initial battery model. Basically, this 

framework enables user to select a low fidelity battery model 

with high computational efficiency without sacrificing 

accuracy because a corrected battery model with high 

accuracy can be later obtained through characterizing the 

model uncertainty. Furthermore, battery SOC or SOH 

diagnosis becomes probabilistic instead of deterministic so 

that confidence of the estimation is available. Following 

subsections elaborate each step of the framework.   

3.1 Determination of Initial Battery Model  

The initial battery model ideally should include major input 

factors that affect the output performances. For example, 

OCV, SOC, charge/discharge current, hysteresis and 

temperature are important inputs for predicting the terminal 

voltage and thus should be considered in the empirical model. 

The purpose is to have a good base model with reasonable 

accuracy so that model uncertainty can be more effectively 

quantified to improve the model prediction accuracy. 

Otherwise, more noise factors would be included in the 

quantified model uncertainty such that the corrected model 

prediction would include much wider confidence intervals to 

account for the ignorance of the important factor. In this study, 

the equivalent circuit model in Eq. (2) and Eq. (3) is used 

without considering the temperature effect. Thus, testing is 

conducted in the room temperature to eliminate the noise 

factor from various temperature levels for the battery 

performance estimation.  
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Figure 1. Flowchart of the proposed framework for battery performance estimation 

 

3.2 Quantification of Parameter Uncertainty  

A certain number of battery cells should be employed to 

account for the cell-to-cell variability based on the parameter 

uncertainty. The issue of data sufficiency needs to be 

addressed in this step. For example, defined pulse power 

capability tests of five battery cells result in five sets of model 

parameters after calibration of each cell individually. Thus, 

five random realizations are available for quantifying the 

uncertainty of the model parameter. Typically, random 

parameters can be classified into two groups: i) irreducible 

random parameter and ii) reducible random parameter. The 

irreducible random parameters are characterized using 

probability density functions (PDFs) with sufficient 

information. The reducible random parameters are derived 

from the lack of information for describing the uncertainty. 

For example, parameters, i.e., the mean and the variance of 

the PDF, or even distribution types are uncertain unless 

sufficient information is collected (Wang et al., 2009). 

This study considers parameter uncertainty as irreducible 

random parameter and use maximum likelihood estimation 

(MLE) to select the optimal distribution for each model 

parameter. The statistics of the random parameter is 

represented by the statistical parameter Θ of a candidate 

distribution. For example, in the case of a normal distribution, 

the parameter is defined as Θ={µθ, σθ}, which includes the 

mean and standard deviation. Thus, Θ is the calibration 

parameter and needs to be identified. The statistical model 

calibration using the MLE is formulated as   

 Maximize ( ) ( )[ ]∑
=

Θ=Θ
N

j

iji vfVL

1

10 |log|  (5) 

where L(·) is the likelihood function; f(·) is the PDF of the 

random parameter Vi for a given Θ; i means the ith model 

parameter; and N is the number of available the data for the 

calibration. A candidate distribution pool, including Normal, 

Lognormal, Weibull, Beta, Gamma, and Uniform, is defined 

and the optimal distribution is determined by the maximum 

likelihood value among candidate distributions.  

3.3 Quantification of Model Uncertainty  

The objective for quantifying model uncertainty is to improve 

the model prediction accuracy by adding the identified model 

uncertainty to the original model as shown in Eq. (4). This 

paper proposes a two step approach for quantifying the model 

uncertainty as a Gaussian process (GP).  

Step 1: calibrate the model bias of several battery cells 

under typical charge/discharge profile. 

Step 2: perform GP modeling to account for the 

variability of the model bias from several battery cells. 

The first step is straightforward and a deterministic model 

bias can be calculated as the difference between the measured 

and predicted performance of interests for individual cell. 

Variability of the model bias or model uncertainty can be 

observed after calibrating the model bias for multiple cells 

and hence can be modeled as a GP.  

 

A GP is a stochastic process whose realizations (e.g. model 

bias) consist of random values associated with every point in 

a range of input domains (e.g. battery charge/discharge 

current and SOC) such that each random variable has a 

normal distribution. Moreover, every finite collection of 

those random variables has a multivariate normal distribution. 

One can write δ ~ GP (µ, Σ), meaning the random function δ, 

i.e. model uncertainty, is distributed as a GP with mean 

function µ and covariance function Σ. When the input vector 

is two- or multi-dimensional, a GP might be also known as a 

Gaussian random field. Interested readers should refer to the 

reference (Rasmussen and Williams, 2006) for details about 

the GP modeling.   

3.4 Correction of Initial Battery Model  

The corrected battery model is shown in Eq. (6) by adding 

the identified model uncertainty, i.e., δ (ik, xk, Ck), to the 

initial battery model. Furthermore, model parameter 

uncertainty should have been characterized to account for the 

cell-to-cell variability. The corrected model is a statistically 

validated model and is thus expected to produce more 

accurate and robust battery performance estimation. It is 

worth noting that such correction applies for aging battery 

cell as well if the characterized model uncertainty considers 

degraded battery cells (e.g., capacity degradation of Ck).      
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3.5 Selection of Numerical Algorithm  

KF has been widely used in many applications to estimate the 

hidden state for linear state-space models. As an extension, 

EKF applies for non-linear state-space model using the linear 

approximation at each estimation step. Other KF related 

approaches are also reported such as adaptive KF, unscented 

KF, etc. All KF related approaches assume linearity of the 

state space model with Gaussian noise, which could cause 

estimation error for the non-linear model with non-Gaussian 

noise. In that scenario, Particle Filter (PF) (Orchard & 

Vachtsevanos, 2009) is more appropriate to approximate the 

state PDF using the Bayesian approach. However, PF is much 

more computational expensive than EKF. This study employs 

the EKF for demonstration of the proposed framework due to 

its reasonable accuracy and efficiency. It is worth noting that 

inappropriate selection of numerical algorithms could cause 

numerical estimation error.       

3.6 Uncertainty Quantification  

The objective is to estimate the battery performance in a 

statistical manner using the validated battery model and the 

selected numerical algorithm. All sources of uncertainties are 

considered in model parameters and identified model 

uncertainty/bias. Essentially, the battery performance 

estimation of xk becomes an Uncertainty Quantification (UQ) 

process to quantify the distribution of the performance xk 

subject to the input uncertainties from the model parameter, 

model uncertainty, numerical algorithm error, and the 

measurement and process noise.  

A common challenge in UQ is a multi-dimensional 

integration to quantify probabilistic nature of system 

responses. Neither analytical multi-dimensional integration 

nor direct numerical integration is possible for large-scale 

engineering applications. Other than those approaches, 

existing approximate methods for UQ can be categorized into 

five groups (Youn et al., 2008): i) sampling method, ii) 

expansion method, iii) the most probable point (MPP)-based 

method, iv) response surface approximate method, and v) 

approximate integration method. This study uses the 

sampling method, i.e. the Monte Carlo simulation (MCS), for 

UQ.    

4. CASE STUDY 

This section presents a case study to demonstrate the 

effectiveness of the proposed framework for battery SOC 

estimation. 

4.1 Background  

EIG C020 battery cells were used in this case study with the 

nominal capacity of 20Ah. Four training battery cells were 

connected parallel to four channels of the battery cycler 

(Arbin BT2000). All experiments, including static capacity 

test, hybrid pulse power characterization (HPPC) test, OCV-

SOC test and federal urban drive schedule (FUDS) test, were 

conducted at the room temperature (25 oC) and detailed in Fig. 

2. Capacity test results are shown in Table 1 with the mean 

(µ) and standard deviation (σ) equal to 19.82 Ah and 0.06 Ah, 

respectively. Coulomb efficiency of EIG C020 is very high 

and stable and thus was considered as 100%. In this study, 

the sample average capacity (=19.82 Ah) was treated as the 

nominal capacity for the SOC estimation. OCV-SOC curve 

was obtained at every 10% SOC as shown in Fig. 3.  

 

 
a. Capacity test 

 
b. HPPC test 

 
c. OCV-SOC charging test 
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d. OCV-SOC discharging test 

 
e. FUDS test 

Figure 2. Current and voltage profiles of battery testing 

 

Table1. Static capacity test 

Capacity 

 (Ah) 

#1 #2 #3 #4 µ    σ    
19.90 19.84 19.79 19.74 19.82 0.06 

 
Figure 3. OCV-SOC curve 

4.2 Results Analysis 

4.2.1 Parameter Uncertainty Quantification 

Four battery cells were used to study the uncertainty of four 

model parameters including: i) charging impedance R+, ii) 

discharge impedance R-, iii) polarization coefficient M, and 

iv) decay factor γ. HPPC test was conducted with 10-second 

discharge-pulse and 10-second charge-pulse at each 10% 

depth-of-charge (DOD) increment, and the data were used to 

calibrate above four battery parameters.  

Table 2. Uncertainty quantification of model parameters 

SOC R+ R- γ M 

100% 4.61% 4.26% 45.37% 33.95% 

90% 2.11% 4.68% 29.54% 13.72% 

80% 2.02% 1.99% 44.61% 41.78% 

70% 6.06% 8.21% 18.76% 24.86% 

60% 2.02% 4.85% 14.49% 13.80% 

50% 3.92% 3.98% 10.73% 9.60% 

40% 3.77% 1.94% 24.39% 20.58% 

30% 3.58% 4.66% 18.43% 18.52% 

20% 1.83% 5.31% 23.34% 17.63% 

10% 7.90% 13.97% 101.90% 71.14% 

 

Mean and standard deviation of each parameter are calculated 

at every 10% SOC. Furthermore, the ratios between means 

and standard deviations were computed as shown in Table 2. 

For example, the standard deviation (STD) of charging 

impedance R+ at 70% SOC is 6.06% of its mean value. 

Typically, we should not ignore the parameter uncertainty if 

the STD is more than 1% of its mean value. Hence, four 

model parameters were characterized as random parameters 

and they were assumed to follow GP over the SOC range. 

Mean and 99% confidence interval (CI) of four parameters 

are shown in Fig. 4.  

 
a. R+ 

 
b. R- 
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c. M 

 
d. γ 

Figure 4. Mean and 99% CI of four battery parameters 

4.2.2 Model Uncertainty Quantification 

FUDS data of four battery cells were used as training data to 

quantify the model uncertainty as a random process. Figure 5 

presents the model bias of battery cell #1 under the FUDS test 

as a function of charge/discharge rate and SOC. Four similar 

model bias were obtained in total from four training battery 

cells and they were further employed to construct the GP for 

modeling the model uncertainty. Mean of the model 

uncertainty was obtained from the GP and was plot as a 

function of time for the FUDS test as shown in Fig. 6. 

 

 
Figure 5. Model bias of cell #1 

 

 

 
Figure 6. Mean of the model uncertainty for the FUDS test  

4.2.3 SOC Estimation  

Accuracy of the terminal voltage was first evaluated using 

Eqs (2) and (6) on the basis of initial battery model and 

corrected model with consideration of the model uncertainty, 

respectively. Figure 7 shows the comparison of two cases for 

battery cell #5 under one FUDS cycle test, where dashed and 

solid lines are measured and estimated terminal voltage, 

respectively. Furthermore, root mean square (RMS) was 

computed for two cases as 0.0251 and 0.0144, meaning that 

the corrected model of Eq. (6) significantly reduced the RMS 

error (~43%) for estimating the terminal voltage.  

 
a. without model uncertainty  

 
b. with model uncertainty 

Figure 7. Comparison of terminal voltage for cell #5 under 

the FUDS test 
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Accuracy of the SOC estimation was further compared for 

battery cell #5 and #6 using the initial battery model and the 

corrected model with identified model uncertainty from four 

training data sets. Both cells were firstly fully charged to 100% 

SOC and then followed by four FUDS cycles with about 10 

minutes rest period in between till the SOC reached 10%. 

Reference SOC was calculated using the coulomb counting. 

Initial estimation of the SOC was set as 90% and the EKF 

was employed as the numerical algorithm. Figure 8 clearly 

shows that SOC estimation is much more accurate using the 

corrected battery model by considering the model uncertainty.   

 

 
a. Battery cell #5 

 
b. Battery cell #6 

Figure 8. Percentage of SOC estimation error for 

battery cell #5 and #6 under the FUDS test 

 

It is impossible to precisely calibrate model parameter and 

model bias for each battery cell for a fleet of battery 

applications. Therefore, UQ of the battery performance 

estimation is important by considering the parameter and 

model uncertainties. In this example, MCS was employed to 

calculate the 95% CI of the SOC estimation under the FUDS 

test as shown in Fig. 9, where the dashed line indicates one 

SOC realization from the cell #5. The results indicate that 

variability of the SOC estimation could reach up to 3% for 

the same type of battery under the same discharge/charge 

profile due to the manufacturing tolerance. It is worth nothing 

that such variability most likely would increase as the health 

state of the battery degrades. Hence, these uncertainties 

should be carefully considered in order to design reliable 

battery diagnostics and prognostics systems.  

 

 
Figure 9. 95% CI of SOC estimation Under the FUDS test 

considering the parameter and model uncertainty  

5. CONCLUSION 

A systematic framework was proposed to quantify battery 

model and parameter uncertainties for more effective battery 

performance estimation. Quantification of the battery 

parameter uncertainty captures the cell-to-cell variability due 

to the manufacturing tolerance so that battery performance 

estimation could be accurate for a fleet of batteries instead of 

individual cell. Characterization of the battery model 

uncertainty enables user to correct an originally low fidelity 

battery model so that a high fidelity model could be obtained 

for more accurate battery performance estimation while 

keeping high computational efficiency. One case study of the 

battery SOC estimation demonstrated the effectiveness of the 

proposed framework. Further work is to systematically 

address all uncertainty sources and their coupling effects in 

battery management systems in real HEV/PHEV/EV 

applications.  
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