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ABSTRACT 

Most mission planning algorithms are designed for healthy 

systems. When faults occur in a system, it is advantageous to 

optimize the mission plan by taking the system health 

condition into consideration.  In this paper, a mission 

planning scheme is proposed to integrate real-time 

prognostics in a receding horizon path planning framework 

to accommodate the system fault. In this scheme, the state-

of-charge of a battery is monitored and predicted by a 

particle-filtering based prognostic algorithm. The predicted 

state-of-charge and remaining useful life of the battery are 

used in the mission planning to minimize mission failure risk. 

A series of experiments are presented on a robotic platform, 

which is powered by a Lithium-ion battery, to demonstrate 

and verify the proposed scheme. 

1. INTRODUCTION 

Unmanned systems are playing important roles in real-

world applications ranging from surveillance, patrolling, 

search and rescue, operations in contaminated and denied 

areas to space exploration, law enforcement, and battlefield 

support, among others (Jan, Chang, & Parberry, 2008, Tsai, 

Huang, & Chan, 2011, Sudha & Mohan, 2011, Sun & Reif, 

2007, Lu, Huo, Arslan, & Tsiotras, 2011).  Fault may occur 

in systems due to fatigue, abrasion, aggressive operations, 

environment corrosion, deformation, etc.  The fault will 

consequently cause changes of dynamics and introduce new 

constraints on mission completion. If no action is taken, 

system may fail unexpectedly and may cause loss of 

asset/system. It is therefore critical to guarantee system safety 

when fault occurs, especially under situations where 

maintenance is difficult or even unavailable such as in the 

middle of a mission. To achieve this goal, system resource 

needs to be reconfigured and/or mission needs to be re-

planned to perform tasks with high priorities and, at the same 

time, minimize effects of the fault.  In this paper, failure 

prognosis is integrated with mission planning to address this 

problem.  

There are two categories of mission planning algorithms, 

deterministic searching (Singh, Simmons, Smith, Stentz, 

Verma, Yahja & Schwehr, 2000) and probabilistic or 

randomized searching (Kavrak, Svestka, Latombe, & 

Overmars, 1996). In this research, deterministic searching is 

utilized.  In deterministic searching, the A* algorithm aims to 

find the least-cost path from starting point to goal. This 

scheme requires a full knowledge of the map. On the 

contrary, D* is an incremental search scheme (Stentz, 1994) 

that explores and updates the map as the vehicle explores the 

area. This is more realistic for applications where the whole 

map is unknown and needs to be built in real time via onboard 

sensors.  D* and its variants have been widely used for 

autonomous vehicles, including the Mars rovers Opportunity 

and Spirit (Carsten, Rankin, Ferguson & Stentz, 2007).  

Among variants of D* algorithm, field D* is an interpolation 

based algorithm (Ferguson & Stentz, 2005, Koenig & 
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Likhachev, 2005) that is able to generate direct, low-cost path 

through a non-uniform environment.   

Most of the current works on mission planning are 

concerned with healthy vehicles (Singh et. al., 2000, Kavraki, 

et. al., 1996, Stentz, 1994, Carsten, et. al., 2007, Ferguson, et. 

al., 2005, Koenig, et. al., 2005). The planning cost functions 

are typically terrain (for non-uniform environments), path 

distance, mission time, energy consumption, or a 

combination of these factors.  The constraints on 

maneuverability, survivability, availability, and mission 

failure caused by faults are not considered in these papers.  

To address this problem, we propose a mission planning 

framework which takes fault progression into consideration. 

One of our goals is to make sure that fault growth is smaller 

than a threshold that indicates vehicle failure before the end 

of the mission. This requires integrating failure prognostics 

in planning to provide information of vehicle’s fault state at 

current time instance and at the end of the mission. The 

prognostic algorithm also calculates remaining useful life 

(RUL) that can be used as a constraint to evaluate mission 

completion. With these new constraints on vehicle’s health 

state and RUL, the mission will be planned to guarantee 

system safety.  

In order for mission planning to be integrated with 

prognosis, fault detection and isolation (FDI) and failure 

prognosis (FP) are needed.  There are many examples of 

efforts and applications on FDI and FP reported in the past 

decades (Chen, Zhang, Vachtsevanos, & Orchard, 2011, 

Zhang, Sconyers, Byinton, Patrick, Orchard & Vachtsevanos, 

2011, Chen, Zhang, & Vachtsevanos, 2012, zhang, Khawaja, 

Patrick, Vachtsevanos, Orchard, & Saxena, 2009, Tang, 

Kacprzynski, Goebel, & Vachtsevanos, 2010, Gebraeel, 

Elwany, & Pan, 2009, Saha, Goebel, Poll, & Christophersen, 

2009, Goebel, Saha, Saxena, Celaya, & Christophersen, 

2008). In general, the approaches are divided into two main 

categories: model-based and data-driven. Model-based 

approaches use physics based laws to build a model and 

identify its parameters to describe fault development and 

progression for fault state detection and prediction. Data-

driven approaches, on the other hand, use recorded data to 

either build a model or conduct statistical analysis to achieve 

these goals.  Each approach has its own advantages and 

limitations. When a fault is detected, a diagnostics algorithm 

estimates the fault state and prognostics projects fault state at 

the end of mission and calculates the RUL of the failing 

system.  This information is integrated in mission planning to 

achieve an optimal mission plan, which reduces risk to 

failures in both the system and the mission.  

In this paper, a prognostics-enhanced mission planning 

approach is developed, in which prognosis and path planning 

are integrated in a receding horizon planning (RHP) 

framework. The main contributions include integration of 

particle filter based prognostics (prediction of fault state and 

RUL) with RHP, and implementation in a remotely 

controlled mobile robot platform. For this platform, the 

battery provides power to critical functions including 

command, control, communications, computers, intelligence, 

surveillance and reconnaissance (Gebraeel, et. al., 2009, 

Saha, et. al., 2009, Goebel, et. al., 2008).  It is important to 

monitor the state-of-charge (SOC) of battery to make sure 

that the mission is accomplished or the robot returns to base 

before the end of charge.  To demonstrate its efficiency, the 

proposed approach with a prognosis of battery SOC is 

implemented on a Pioneer 3-AT robotic platform and a series 

of experiments are presented, analyzed, and compared.  

The remainder of this paper is organized as follows: 

Section II introduces an overview of prognostic and health 

management (PHM)-enhanced unmanned system. Section III 

discusses integration of particle filter based prognostics with 

mission planning in a receding-horizon framework. Section 

IV addresses hardware and fault mode of interest, which is a 

Lithium-ion battery state-of-charge. Section V presents a 

series of experiments, which is followed by concluding 

remarks in Section VI. 

2. CONFIGURATION OF MISSION PLANNING 

For mission planning of a faulty system, PHM plays a 

critical role that takes into account not only low-level system 

input and dynamics, but also high-level constraints on system 

health, mission completion, resources and system dynamics.  

Figure 1 shows the hierarchical structure of the proposed 

PHM enhanced mission planning implemented on a mobile 

robot platform with closed-loop controllers. In this paper, we 

will not discuss the low-level system dynamics and its 

changes caused by faults. The focus of the paper will put on 

constraints on system health, measured by predicted fault 

state at future time instants and RUL, and mission 

accomplishment.  

 
Figure 1: PHM-enhanced system hierarchy 

In Figure 1, PHM module provides diagnostics and 

prognostics while situation awareness module provides map 

including obstacle identification and terrain classification.  

Since our focus is on failure prognosis, it is assumed that fault 

has been detected and isolated.   

As we known, the prognostic algorithm predicts future 
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fault state and RUL based on a prognostic model in the 

absence of measurements.  Many uncertainties, such as future 

loading profile, environmental disturbances, and 

uncertainties with model parameters and structure, have 

impacts on prediction. As prediction horizon increases, the 

impacts of these uncertainties will accumulate and will 

eventually make the prognostic results less reliable in terms 

of accuracy and precision.  It is necessary to properly handle 

these uncertainties in mission planning to achieve reasonable 

optimization results. 

The map is constructed by evenly divided square grids. 

Nodes are defined on corners of grids. The onboard sensors 

are able to identify and classify the terrain of each grid. 

Therefore, the map is divided into two areas, observed area 

and unobserved unknown area. A RHP scheme is then 

applied to plan a path from vehicle’s current location to the 

goal. The path is denoted as a series of waypoints located 

either on nodes or on edges of grids. As robot moves along a 

path, the onboard sensors are able to observe more grids and 

the path will be replanned if necessary.  

To integrate prognostic into mission planning, the planned 

path will be used to calculate the future loading profile, which 

is an input to the model that predict the fault growth.  The 

loading profile in the observed area is more accurate since the 

terrain is known while that in the unknown are is usually 

based on an assumption of terrains. This, along with RHP 

scheme, which only executes the path segments in the 

neighboring grid, will reduce the uncertainties of loading 

greatly.   

Different from field D* algorithm that considers only 

neighboring grids, the RHP approach in Figure 1 searching is 

carried out in a much larger area that is observed by robot’s 

onboard sensors and, because of this, the RHP approach is 

able to generate smooth path with more flexible heading 

directions without using interpolation. This is important 

because interpolation in field D* is based on an assumption 

of linearity, which does not hold when prognosis (typically 

nonlinear) is involved. 

The following section outlines general (non-formatting) 

guidelines to follow. These guidelines are applicable to all 

authors and include information on the policies and practices 

relevant to the publication of your manuscript. 

3. PROGNOSIS-ENHANCED MISSION PLANNING 

Figure 2 illustrates the structure of prognostic enhanced 

mission planning. Map is built on assumption in the unknown 

area and the classified terrains in the observed area. The 

planning algorithm searches the optimal path based on a well-

defined cost function, which usually includes multiple factors 

such as terrain and mission duration.  In this paper, prognosis 

of robot health condition and/or RUL will be integrated into 

the cost function.   

To this end, a particle filtering based prognostic algorithm 

is implemented to predict future health condition at the end 

of mission and calculate RUL. This result is evaluated against 

failure threshold to check if prognostic constraint is satisfied. 

Cost factors on mission duration and terrain are also 

investigated in the cost function to find the optimal path.  If 

not all candidate paths can satisfy these constraints, path with 

minimum cost will be selected.   

The optimal path is sent to the robot and the robot moves 

to the next waypoint. As the robot moves, the health state of 

the robot is updated in real-time with measurements and this 

becomes the initial condition for prognostics as re-planning 

becomes necessary either because of map update or change 

of operating condition. This process is repeated until robot 

reaches goal or it finds that there is no path to reach goal.  

The challenge is that the predicted health state and RUL 

are usually described by a probability density function (pdf).  

In addition, traditional search algorithms like D* or field D* 

considers only neighboring grids. This brings difficulties to 

prognosis since grids are usually small and prediction 

horizons in neighboring grids are small to get any meaningful 

prognostic results.  

 
Figure 2: Prognostic enhanced mission planning 

This limitation motives a RHP strategy that considers 

planning in an area beyond neighboring grids. In RHP, map 

is divided into implementation area, observation area, and 

unknown area. In the proposed approach, these areas are 

defined according to robot’s current location when it reaches 

a waypoint, which is either on a node defined on a corner of 

a grid or a pointed located on an edge of a grid.  The 

implementation area contains only neighboring grids next to 

vehicle’s current location. When the robot waypoint is on a 

node (corner of a grid), the implementation area consist of 4 

neighboring grids. When the robot is on an edge, the 

implementation area consists of 2 neighboring grids. The 

observation area consists of grids in the sensing range of 

onboard sensors centered at the robot’s current location. The 

unknown area is the area remains unexplored.  Observation 

area provides a reasonable large prediction horizon to 

conduct meaningful prognosis. This is important because 

loading profile in this area is known and prognostic routine 

can provide an accurate prediction result in this area. On the 

other hand, prognostic results in unknown area provide a 

reference of fault state prediction at the end of mission and 

RUL.  

Since planning considers multiple factors, the cost function 

is a weighted sum of each individual factor. It is worth noting 
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that the weighting factors play an important role in balancing 

effect of each individual factor.  By properly assigning 

weighting factors, the path can be planned optimally 

according to the robot’s health state. For example, if the fault 

is small, aggressive operations can be taken. However, if the 

fault grows fast and approaches a critical threshold, 

conservative operations need to be taken. 

3.1. Receding-Horizon Planning 

Field D* algorithm considers planning in neighboring 

grids (implementation area), it only carries very short 

prediction horizon. In addition, it is a fixed horizon planning 

scheme that has the following limitations. The first one is that 

it cannot handle the unexpected that is not included in the 

model. The second one is that it typically does not perform 

optimization as time approaches the end of horizon because 

there is little time to do any meaningful optimization. The 

RHP (Kuwata & How, 2011, Toit & Burdick, 2012), which 

is carried out iteratively in following steps, is introduced to 

address these limitations.   

1. At waypoint pi, a fixed horizon optimization problem 

over [pi+1, pi+N] is solved.  

2. The robot moves to waypoint pi+1.  

3. Repeat optimization at waypoint pi+1 over [pi+2 pi+N+1] 

and go back to step 2.  

   (a)    

  ( b) 

Figure 3 Illustration of receding-horizon planning; (a) Planning at step 

1 from initial start s; (b) Planning at step 2 and s in this step is s’’ in 

step 1 

Figure 3 illustrates the idea of RHP. In Figure 3 (a), vehicle 

location is s, green box is the implementation area, magenta 

box is the observation area, and outside magenta box is the 

unknown area. Note that in Figure 3 (a), the robot is located 

at s, which is a node on the corner of grid. The 

implementation area of the green box consists of 4 grids next 

to this s node. On the other hand, in Figure 3 (b), the robot is 

located at s, which is on the edge of grid. The implementation 

area of the green box consists of 2 grids next to this s 

waypoint. For each node in the observation area, it leads a 

candidate path from s to this node and to goal G. Then, the 

loading profile, mission time, and terrain etc. along this path 

can be obtained. A particle-filter based prognostic algorithm 

is employed to predict the fault state at the end of mission and 

RUL.  These factors are used either in the cost function or as 

constraints to select the optimal path.  In Figure 3(a), the 

optimal path is defined by node s’ and is denoted as s-s’-G. 

The path segment s-s’ crosses implementation area at s’’ and 

this waypoint is executed to move the robot to waypoint s’’.  

When the robot reaches s’’, the map gets updated. The s’’ 

in Figure 3(a) becomes the robot’s location s as shown in 

Figure 3(b). The planning is carried out again for all nodes in 

the new observation area and a new optimal path is selected. 

Note that the observation areas (magenta boxes) and the 

implementation areas (green boxes) in Figure 3 (a) and (b) 

are different. This indicates that the increase of map 

exploration. 

3.2. Particle Filter Based Prognostic Algorithm 

Let 
0: 0 1{ , , , }t tx x x x  and 

1: 1 2{ , , , }t ty y y y  denote the 

signal and observations up to time t. For a filtering problem, 

it is of interest to estimate the posterior distribution

 0: 1:|t tp x y , the marginal distribution  1:|t tp x y , and the 

expectation  0: 1:( ) |t tE g x y , where g is an integrable function. 

Sequential Monte Carlo methods, also referred as particle 

filters, are a class of algorithms designed to obtain weighted 

samples sequentially from a target distribution { }t , denoted 

as a collection of N  weighted random samples 
( ) ( )

0: 1, ,{ , }i i

t t i Nw x 
 such that it satisfies 

     ( ) ( )

0: 0: 0:1

N i i

t t t t t t t tNi
w x x x dx  


  , 

where ft is any pt integrable function.  

In Bayesian filtering, the target distribution 

 0: 0: 1:( ) |t t t tx p x y   is the a posterior distribution of 
0:tx . 

Suppose that a set of N particles ( )

0: 1 1, ,{ }i

t i Nx  
 distributed 

according to the target distribution is available at time t-1. 

The objectives of filtering is to obtain a set of N new particles 
( )

0: 1, ,{ }i

t i Nx 
 and this set of particles are distributed according 

to the target distribution at time t, i.e., 
0:( )t tx .  

To generate this new set of particles ( )

0: 1, ,{ }i

t i Nx 
, the 

particles at time t-1 ( )

0: 1 1, ,{ }i

t i Nx  
 are extended using a kernel 

function and obtain a new distribution  ( )

0:

i

t tq x , which is 
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referred to the importance distribution or proposal 

distribution. To get the consistent estimate of posterior 

distribution  ( )

0: 1:|i

t tp x y , importance sampling corrects the 

difference between  ( )

0:

i

t tq x  and  ( )

0: 1:|i

t tp x y  by setting 

weighting factors for each particle, which is given by: 

 
 
 

( )

0: 1:( )

0: ( )

0:

|i

t ti

t i

t t

p x y
w x

q x
  

and is normalized as  

 
 
 

( )

0:( )

0: ( )

0:

i

ti

t i

t

w x
w x

w x



. 

With this new set of weights, the target distribution can be 

approximated as: 

   ( ) ( )

0: 0: 1: 0: 0:1
( ) |

N i i

t t t t t ti
x p x y w x x 


     (1) 

In a simple case of particle filter, Bootstrap filter, the 

importance density function is set as the a prior pdf 

   0: 0: 1 1| |t t t t tq x x p x x  . In this setting, the weights for the 

newly generated particles are proportional to the likelihood 

of new observations, i.e. 

   ( ) ( ) ( ) ( ) ( )

1 1: 0: 1| |i i i i i

t t t t t t tw w p y x w p y x     .  (2) 

 

Particle filter based prognostic algorithm is used to predict 

fault growth and estimate the RUL and is beyond filtering 

problem itself. The initial health state of prognosis is given 

by a Gaussian distribution or a uniform distribution based on 

the prior knowledge about battery charge condition. 

The prognostic algorithm involves three steps.  

Step 1: The first one is to estimate the current health state 

with real-time measurement as shown in Equation (2). Such 

a measurement is often a feature or condition indicator that is 

extracted from the robot’s raw measurement, such as current, 

voltage, vibration, temperature, or others. This step is a one-

step-ahead prediction plus correction. The output is a 

posteriori state estimate, which is used as the initial condition 

for the second step, prognostics or long-term prediction of 

battery charge and remaining useful life.   

Step 2: In the second step, a long-term p-step ahead 

prediction for the distribution of fault state is generated using 

the fault growth model and the a posterior pdf from the first 

step recursively, which can be described as 

 1:

( ) ( )

1 1 1 11
2

|

( | ) ( | )

t p t

t p
N i i

t t t j j t t pi
j t

p x y

w p x x p x x dx dx





    
 



  

 

In prognosis, the prediction depends on solely fault 

progression models since there are no measurements 

available.  In addition, the calculation often requires 

significant computation, especially when the prediction 

horizon is large. To simplify the computation, the weights of 

particles remain unchanged for prediction. This is based on 

the assumption that the error caused by invariant weights is 

negligible compared to other sources of error, such as model 

inaccuracies. In practice, this assumption is valid and the 

results from this approach satisfy the engineering 

requirements.  

Step 3: To estimate the remaining useful life, a failure 

threshold Ff is defined to indicate the failure of system. With 

this threshold and the prediction of future fault state 

distributions at future time instants from step 2, the law of 

total probabilities can be applied to compute the probability 

of failure at any future time instant, i.e. the time to failure 

distribution:  

 ( ) ( )

1
( ) Pr

N i i

failure t f ti
p t x F w


   

 

For battery SOC prognosis, the first step uses battery 

voltage and current measurement to estimate the current 

battery SOC. In step 2, the predictions of battery SOC at the 

future time instants are calculated. In the third step, a critical 

battery charge is defined as a threshold value indicating the 

battery death.  The predicated remaining charge is compared 

against this critical value to estimate the time-to-failure and 

RUL of the battery.  With the RUL distribution, the statistical 

estimations and confidence intervals of them can be 

calculated and used in mission planning. 

3.3. Prognostics in Mission Planning 

To implement particle filter based prognosis, a fault 

progression model is needed. The model can be written as: 

 1 ,k k Ff F f L N     (3) 

where fk is the fault state at time instant k, L is the load applied 

to the robot, and NF is noise subject to N(0, QF).   

The load L is a function of the robot’s velocity v and terrain 

d, which indicates difficulty to traverse the terrain, 

  ( ,  ) LL G d v N   (4) 

where NL is noise subject to N(0, QL). With Equation (4), the 

selection of paths containing different terrains will have a 

direct influence on the robot’s loading profile and, 

consequently, have a direct influence on fault growth.   

Figure 4 is an illustrative example of the prediction of fault 

growth from the robot’s current location s to the goal G. In 

this figure, horizon axis is the time of robot operation and 

vertical axis is the usage of battery charge. Particle filtering 

based algorithm is used since it is suitable to handle nonlinear 

fault growth applications with non-Gaussian noises. When 

the prognostic algorithm is carried out, a number of particles, 

with different initial values, are projected in the time horizon 

from current time instant to the end of the mission using a 

fault progression model. These particles form a fault state at 

each future time instant.  By defining a critical threshold 

indicting the failure, the time instant that each particle cross 

the critical value can be obtained from which a RUL pdf can 

be estimated as shown in Figure 4.  
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Figure 4 Failure prognosis and RUL pdf 

It is worth noting that the predicted fault state and RUL 

have a large uncertainty due to the fact that there are noise 

and unmodeled uncertainties and there is no measurement 

available for correction. The uncertainty is also illustrated in 

Figure 4, in which the predicted fault states are presented by 

expectation and lower and upper bounds of 95% confidence 

interval.  From this figure, the growth of uncertainties is clear 

and the 95% confidence bound become larger with the 

increase of prediction horizon. More details of particle filter 

can be found in (Arulampalam, Maskell, Gordon, and Clapp, 

2002). 

3.4. Prognosis Enhanced Receding Horizon Planning 

The prognostic algorithm predicts the fault growth from 

the robot’s current location s to goal G. The map is divided 

into three areas: implementation area, observation area, and 

unknown area, as shown in Figure 5.  In this figure, prognosis 

in the observation area is denoted as short-term prognosis 

while prognosis in the whole path is denoted as long-term 

prognosis.   

 
Figure 5 Short-/long-term prognosis and its corresponding areas 

In Figure 5, the optimal path is assumed given from s to s’ 

and to G, where s’ is a node in the observation area that has 

the minimum cost.  This optimal path crosses the 

implementation area at s’’ (as in Figure 3(a)).  Note that s’’ 

could be located on either a node or any location of an edge. 

Path segment s-s’’ will be execute by the robot. During the 

execution, loading profile and measurement become 

available. With this information the fault state at each time 

instant can be estimated and updated to achieve a posterior 

pdf of the fault state.  

Suppose each candidate path, defined by each node in 

observation area cross the boundary of the observation area 

at se. Then, each path can be denoted as ss’segoal. 

Clearly, the map information in ss’se is always known and 

is the short-term prognosis horizon shown in Figure 5. The 

cost factors for path segment ss’, s’se, and segoal are 

denoted as c(s,s’), c(s’,se), and g(se), respectively. The cost 

on the entire path is:  

 
' ( )
min ( , ') ( ', ) ( )e e

s obsv s
c s s c s s g s


 

 (5)
 

where obsv(s) is the set of all node in the observation area 

when the robot is at s. 

If s’ is located on the boundary of the observation zone, we 

have s’=se. In this case, the cost on the entire path reduces to:  

 
' ( )
min ( , ') ( ')

s obsv s
c s s g s


                           (6) 

In traditional planning algorithms, the cost factors only 

carry deterministic factors such as terrain, distance, and 

mission duration. The prognostic results, however, are given 

in a form of pdf. To include prognosis in the cost function, 

there are two means. The first one is to evaluate path in a 

probabilistic sense.  

The second one is to convert state or RUL pdf to a value, 

such as the expectation and fault value at risk (FVaR). In this 

paper, the second means is selected. The fault state pdf is 

described by a single value of interest in the cost function.  

FVaR has been adapted from the field of actuarial science 

and has been provided as a means for online evaluation of the 

severity of a fault condition (Precht, 2000, Schreiner, Balzer, 

& Precht, 2010). FVaR with a given risk , denoted as 

FVaR, is defined as a threshold of fault dimension such that 

probability of actual fault dimension being larger than this 

threshold is at most 1-. That is, p(x>FVaR)=1-, where x 

is the fault dimension. In other word, FVaR associated to the 

fault state pdf is computed at a degree of confidence .  

3.5. Cost Function 

The planning is multi-objective and the cost function 

considers factors of mission duration, terrain, and FVaR95%. 

Terrain factor in the cost makes the robot select the easiest 

path, which will reduce wear of components and lower 

mission failure risk. Mission duration factor in the cost makes 

robot find the quickest way to accomplish mission.  When a 

fault occurs, FVaR95% in the cost factor makes robot find path 

with the least fault growth at the end of mission.  There is a 

trade-off between these factors.  

The cost function is then a weighted sum defined as: 

 

 

 

'
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   (7) 

where subscript T, D, and P stand for mission duration, 

terrain value, and prognostics, respectively; c(s,s’), c(s’,se) 
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and g(se) are cost on segment ss’, s’se, and segoal, 

respectively; weighting factors wT, wD, and wP have feature of  

wT+wD+wP=1. 

4. EXPERIMENTAL RESULTS 

To verify the proposed PHM-enhanced mission planning, 

it is implemented on a mobile robotic platform powered by a 

lithium-ion battery. The prognostic algorithm is designed to 

monitor the battery state-of-charge (SOC).  

4.1. Robot Hardware 

The experiments are based on a Pioneer 3-AT robotic 

platform, as shown in Figure 6. The platform hosts an 

onboard computer that supports build-in controllers, sonar 

sensors, serial communications, encoders and other 

autonomous functions.   

In the following experiments, the robot is allowed to travel 

at three velocities, 0.4m/s, 0.25m/s, and 0.2m/s. The robot has 

an acceleration phase after a speed command is received and 

a deceleration phase when it approaches a waypoint.  

The robot is powered by two separate batteries. One 

battery powers the onboard computer, auxiliary sensors, and 

peripheral equipment. The onboard computer communicates 

with the build-in controller via a serial port. It also 

communicates with other computers (such as a remote client 

laptop running path planning algorithm) on a network 

through a wireless access port. The second battery, which is 

a 2.4A-hr LiFePO4 Lithium-ion battery, powers the robot and 

we monitor the SOC of this battery. A NI PCI-6229 data 

acquisition (DAQ) card has been added to the onboard 

computer to measure current and voltage of the battery. 

 
Figure 6: The robot platform 

In an actual mission, robot would experience different 

battery loading scenarios based on terrain and velocity. To 

simulate this in an indoor, 2-D environment, a variable load 

has been attached to the battery. This variable load is made 

up of three resistors with resistance of 6.23Ω, 12.5Ω, and 

25Ω, respectively. The resistors are wired in parallel to the 

battery. The onboard computer controls the connection/ 

disconnection of each resistor. It provides eight different 

loading scenarios progressing linearly in magnitude. When 

robot moves into a grid of high terrain value, it activates a 

larger loading scenario requiring high current draw using the 

variable load. When robot moves into a grid of low terrain 

value, it activates a low loading scenario requiring low 

current draw. This allows for many simulated terrains while 

keeping the robot in a safe environment.  

4.2. System Configuration 

The system configuration is illustrated in Figure 7.  There 

are two computers in this configuration. The onboard 

computer hosts prognosis server, DAQ server, and UGV 

controller. It realizes all low-level functions including sensor 

data acquisition and analysis, robot position and velocity 

control, and localization, and prognosis. The remote client 

computer is configured to perform high-level functions such 

as path planning (Tang, L., Zhang, B. DeCastro, J., & Hettler, 

E., 2011, Zhang, B., Tang, L., DeCastro, J., & Goebel, K. 

2011, Tang, L., Hettler, E., Zhang, B., & DeCastro, J. 2011).  

The mission planning starts from the robot’s current 

location and its observed area with onboard sensors.  As soon 

as a path is planned, the first waypoint and loading profile of 

the path are sent to robot for execution according to RHP.  

 
Figure 7 Hardware architecture 

As robot moves along the planned optimal path, the 

voltage and current of the battery are collected via DAQ card. 

These data are used by the prognostic algorithm to estimate 

the battery’s current SOC in real time.  Then, the SOC pdf at 

the end of the mission and the RUL pdf are predicted.  The 

SOC pdf and RUL pdf are sent back to client computer.  At 

the same time, the map is updated via measurements of the 

robot’s onboard sensors as the robot moves.  After the robot 

reaches the waypoint, the current SOC pdf is used as initial 

condition for prognosis for re-planning.  

4.3. Fault Growth Model and Prognosis 

The fault growth model is given as follows: 

1 1 1

2 2 1 2

0 2 2 1

( 1) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x k x k w k

x k x k C v k I k T k w k

v k V C x k x k I k o k

  


      
      

  (8) 

where x1, x2 are states indicating model parameters and the 

battery remaining charge, respectively, v is the battery 

voltage, I is the current drawn from the battery, T is the 

sampling period indicating time duration for the current draw, 

C1, C2 are fixed constant, V0 is the initial battery voltage, w1, 
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w2 are process noises while o is observation noise, k is index 

of time instant.  In the model, C1=10-5,  C2=-5.5687, and 

V0=12.  

In this model, x1 and x2 are related to battery voltage 

tracking, in which x1 is a parameter that reflects the 

relationship between battery voltage drop and current draw 

while x2 is the battery remaining charge.  The battery 

remaining charge is calculated as the current charge minus 

the voltage times current during a sampling period. The 

voltage drop is also related to battery remaining charge as 

shown in the third equation.  

(a) 

(b) 

(c) 

Figure 8: Battery data and end-of-charge prediction: (a) Voltage; (b) Current; 

(c) End-of-charge prognosis 

Figure 8 shows a set of battery voltage and current data 

collected on the testbed running a random varying load and 

the prognosis results. It is clear that the voltage in subplot (a) 

is mainly affected by the load before the battery charge 

reaches a critical level at about 3500 seconds, then the voltage 

drops drastically to 10 V within 500 seconds. The current in 

subplot (b) is totally determined by the load and only a trivial 

increase tending is observed towards the end when voltage 

drops. In the subplot (c), three end-of-charge predictions 

probability density functions are predicted at 1226, 2451 and 

3677 seconds, respectively, are shown. Since the true end-of-

charge time in this case is 3990 seconds, it can be seen that 

predictions at 1226 and 1451 seconds have been made 

conservatively due to the uncertainties associated with initial 

charge state and future load. The prediction at the 3677 

second was made when the voltage signal started to drop and 

was rather accurate.   

4.4. Map 

Using satellite images of the NASA Mars yard shown in 

Figure 9, a 37-meter by 20-meter low resolution map is 

scaled. The map has 8 types of terrains indicating 8 different 

difficulty levels. As mentioned earlier, each type of terrain is 

simulated by a corresponding resistor configuration 

connected to the battery. In the map, the 8 different terrains 

are indicated by colors from white to black with increase of 

difficulty to traverse and black is actually indicating obstacle.  

Using the prognosis enhanced mission planning presented 

in previous sections, the robot navigates the simulated Mars 

Yard.  In each case, the robot starts from coordinates X=2 m, 

Y=18 m to goal X=20 m, Y=7 m. The algorithm is set such 

that the robot can observe terrain within 2 meters of its center 

point.  In each scenario, we use different weights in the cost 

function but keep the same starting point and the same goal.  

 
Figure 9: Satellite image of the NASA Mars Yard 

4.5. Experimental Results 

This section provides a series of experimental results to 

demonstrate the integration of prognosis in mission planning. 

The effects of each individual factor in the path can be 

reflected by adjusting weighting factors in the cost function.  

For these experiments, the battery starts at a full charge 

condition. After each experiment, the battery is fully 

recharged before the start of the next experiment.  

4.5.1. Experiment 1: Prognostic optimality 

The weighting factors in this experiment are set as [wT, wD, 

wP] = [0, 0, 1].  Since we only have weighting factors on 

prognosis, the robot plans a path that minimizes the battery 

usage.  The planned path is shown in Figure 10. This figure 

shows that mission duration is around 126 seconds and path 

distance is about 24.8 meters. 
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Figure 10: Planned path with [wT, wD, wP] = [0, 0, 1] 

 
Figure 11 Expectation of SOC along path with [wT, wD, wP] = [0, 0, 1] 

Figure 11 shows the expectation of battery SOC pdf at each 

waypoint along the mission. This figure shows that the 

battery uses about 9% of its charge to accomplish the task.  

4.5.2. Experiment 2: Mission duration optimality 

 
Figure 12 Planned path with [wT, wD, wP] = [1, 0, 0] 

When weighting factors change to [wT, wD, wP] = [1, 0, 0], 

the planning algorithm seeks the shortest time to accomplish 

the mission. To this end, the robot finds the shortest path and 

travels at the highest speed in this scenario.  The results are 

shown in Figure 12. It can be seen that the path is almost a 

straight line. The path distance is about 21.3 meters and 

mission duration is about 114.2 seconds.  

The expectation of the battery SOC along the path is shown 

in Figure 13. In this case, the robot uses a large amount of 

energy, which is around 32% of the battery charge. The 

reason is that, when the robot travel in those grids with high 

terrain values, the current drawn from the battery is large.  

 
Figure 13 Expectation of SOC along path with [wT, wD, wP] = [1, 0, 0] 

4.5.3. Experiment 3: Terrain optimality 

The weighting factors are given as [wT, wD, wP] = [0, 1, 0].  

In this case, the optimization is only carried out to find the 

easiest path with lowest terrain values. The prognostic results 

and the robot velocity do not have influence on path planning.  

In this experiment, the robot velocity is selected as the lowest 

speed at 0.2m/s. Figure 14 shows the path planned, which has 

a distance of about 24.6 meters and the mission duration is 

about 202.2 seconds.  It can be seen that the path is similar to 

the one shown in Experiment 1.  

Figure 15 shows the expectation of the SOC along the path. 

Although the path is similar to that in Experiment 1, the use 

of the battery energy is very different. In this experiment, the 

robot uses about 17.7% of battery charge to accomplish the 

mission.  The battery energy use is about twice that in the 

Experiment 1.  

 
Figure 14 Planned path with [wT, wD, wP] = [0, 1, 0] 

 
Figure 15 Expectation of SOC along path with [wT, wD, wP] =[0 1 0] 

4.5.4. Experiment 4: Weighted-sum optimality 

In most cases, the cost function is a weighted sum of these 

factors in which none of the weighting factors are zero. In this 

experiment, the weighting factors are set as [wT, wD, wP] = 

[0.33, 0.33, 0.34]. That is, the contribution of each individual 

factor in the cost function is equal.   
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Figure 16 shows that planned path. The path distance is 

about 24.5 meters and it takes the robot about 126.4 seconds 

to accomplish the mission.   

Figure 17 shows the expectation of SOC pdf at each 

waypoint along the path. The use of battery charge in this 

experiment is about 11.9%. Clearly, this planning is a mixed 

case of the previous three cases. It uses less battery charge 

than the mission duration-based (Experiment 2) and the 

terrain- based (Experiment 3) planning. On the other hand, it 

uses more battery charge than the prognosis-based 

(Experiment 1) planning. 

 
Figure 16 Planned path with [wT, wD, wP] = [0.33, 0.33, 0.34] 

 
Figure 17 Expectation of SOC along path with [wT, wD, wP] = [0.33, 0.33, 

0.34] 

4.5.5. Summary of Results 

The experimental results are summarized in Table 1. From 

the comparison of battery charge usage, a general conclusion 

is that the battery charge use with prognostics in mission 

planning is less that that without prognosis.   

Table 1 Summary of results 

Weight factors 

wD 1 0 0 0.33 

wT 0 1 0 0.33 

wP 0 0 1 0.34 

Charge use (%) 17.68 32.03 9.03 11.91 

Distance (meters) 24.56 21.26 24.81 24.45 

5. CONCLUSION 

Technological advancements have enabled unmanned 

systems to play more and more important roles and perform 

a wide variety of present and future critical missions.  Fault 

can occur in unmanned systems and cause degradation in 

performance and reduction in system availability. It is 

therefore critical to introduce prognostics and health 

management (PHM) into system design, development, and 

deployment. Under fault scenarios, mission planning should 

consider system health condition and/or RUL to guarantee 

system safety and mission success.  To address this challenge, 

this paper presents a prognostics-enhanced mission planning 

scheme to accommodate system faults.  The proposed method 

includes a failure prognostic algorithm and a mission 

planning algorithm. A mobile robot platform powered by a 

Li-Ion battery is utilized to verify the proposed scheme by 

monitoring battery SOC.  A series of experiments are 

presented to verify the proposed method. 
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