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ABSTRACT 

In order to reduce the costs of wind energy, it is necessary to 

improve the wind turbine availability and reduce the 

operational and maintenance costs. The reliability and 

availability of a functioning wind turbine depend largely on 

the protective properties of the lubrication oil for its drive 

train subassemblies such as the gearbox and means for 

lubrication oil condition monitoring and degradation 

detection. The wind industry currently uses lubrication oil 

analysis for detecting gearbox and bearing wear but cannot 

detect the functional failures of the lubrication oils. The 

main purpose of lubrication oil condition monitoring and 

degradation detection is to determine whether the oils have 

deteriorated to such a degree that they no longer fulfill their 

functions. This paper describes a research on developing 

online lubrication oil condition monitoring and remaining 

useful life prediction using particle filtering technique and 

commercially available online sensors. It first introduces the 

lubrication oil condition monitoring and degradation 

detection for wind turbines. Viscosity and dielectric 

constant are selected as the performance parameters to 

model the degradation of lubricants. In particular, the 

lubricant performance evaluation and remaining useful life 

prediction of degraded lubrication oil with viscosity and 

dielectric constant data using particle filtering are presented. 

A simulation study based on lab verified models is provided 

to demonstrate the effectiveness of the developed technique. 

1. INTRODUCTION 

Lubrication oil is an important information source for early 

machine failure detection just like the role of the human 

blood sample testing in order to perform disease detection. 

In modern industries, lubrication oil plays a critical part in 

 

condition maintenance of complicated machineries such as 

wind turbines. In recent years, health condition monitoring 

and prognostics of lubrication oil has become a significant 

topic among academia and industry. Significant effort has 

been put into oil diagnostic and prognostic system 

development and research. In comparison with vibration 

based machine health monitoring techniques, lubrication oil 

condition monitoring provides approximately 10 times 

earlier warnings for machine malfunction and failure (Poley, 

2012).  The purpose of most research is, by means of 

monitoring the oil degradation process, to provide early 

warning of machine failure and most importantly extend the 

operational duration of lubrication oil in order to reduce the 

frequency of oil changes and therefore reduce maintenance 

costs. 

For the wind industry, in order to reduce wind energy costs, 

there is a pressing need to improve the wind turbine 

availability and reduce the operational and maintenance 

costs. The reliability and availability of a functioning wind 

turbine depends largely on the protective properties of the 

lubrication oil for its drive train subassemblies such as 

gearbox and means for lubrication oil condition monitoring 

and degradation detection.  The wind industry mostly uses 

offsite lubrication oil analysis. The lubrication oil in the 

wind turbine is normally sampled every 6 months and sent 

to oil analysis labs for feedback on the condition of the oil. 

However, the online health monitoring of functional failures 

of lubrication oil has been an issue that cannot be handled 

by such techniques and remains to be an unsolved problem.  

The purpose of lubrication oil condition monitoring and 

degradation detection is to determine whether the oil has 

deteriorated to such a degree that it no longer fulfills its 

protective function and to provide early warning of the 

possibility of total failure. As stated by Sharman and Gandhi 

(2008), and many other researchers, the primary function of 

lubrication oil is to provide a continuous layer of film 

between surfaces in relative motion to reduce friction and  
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Figure 1. The relationship among the basic degradation features, performance parameters, 

 and available oil condition sensors 

 

prevent wear, and thereby, prevent seizure of the mating 

parts.  

The secondary function is to cool the working parts, protect 

metal surfaces against corrosion, flush away or prevent 

ingress of contaminants and keep the mating component 

reasonably free of deposits. In a lubricated system, variation 

in physical, chemical, electrical (magnetic) and optical 

properties change the characteristics of the lubrication oil 

and lead to the degradation as its protective properties.  The 

main causes of turbine lubricant deterioration are oxidation, 

particle contamination, and water contamination. These 

three are defined in this paper as lubrication oil basic 

degradation features. The parameters that describe the 

lubrication oil performance or level of degradation are 

called performance parameters. These parameters include 

viscosity, water content, total acid number (TAN), total base 

number (TBN), particle counting, pH value and so forth. 

Each performance parameter can be measured by certain 

sensing techniques. The relationship among the basic 

degradation features, performance parameters, and available 

oil condition sensors is shown in Fig. 1. Also, Table 1 

shows the performance parameters for different kinds of 

applications and their benchmark for lubrication oil 

degradation. For example, for water content, it measures the 

water contamination percentage of the lubrication oil. This 

performance parameter is necessary and crucial to gearbox, 

hydraulic system, engine, compressor and turbine 

applications. Water content can be measured by a 

capacitance sensor, viscosity sensor, and water in oil sensor.  

To find a feasible solution for online lubrication oil health 

condition monitoring and remaining useful life (RUL) 

prediction, it is necessary to conduct a comprehensive 

review of the current oil health monitoring techniques. The 

investigation on current state of the art lubrication oil 

monitoring techniques is reported in (Zhu et al., 2012; 

2013). Over the years, scientists and experts have developed 

sensors and systems to monitor one or more of the 

lubrication oil performance parameters in order to monitor 

the oil condition effectively. These sensors and systems can 

be summarized into four categories including electrical 

(magnetic), physical, chemical, and optical techniques. For 

example, the most effective electrical technique for oil 

health monitoring is detecting the dielectric constant change 

of the lubrication oil.  According to recent studies, the  



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

 

3 
 

 

Performance 
Parameters 

Measurement 
Function 

Unit 

Benchmark 

of 

Degradation 

Applications 

Available Measurement 
Approach Gear 

box 

Hydraulic 

system 
Engine Compressor Turbine 

Viscosity (40 

 ) Contamination 

of lubricant by 
some other oil, 

oxidation 

Cst 
(mm2/s) 

    

    
yes yes yes yes yes 

Kinetic Viscometer 

Viscosity (100 

 ) 

    

   

Micro-acoustic 

Viscometer 

Water Content 
Presence of 

water 
     yes yes yes yes yes 

Capacitance sensor 

(Dielectric constant) 

Kinetic Viscometer 

Water in oil sensor 

TAN/TBN 

Acidity/alkalini
ty of lubricant 

(oxidation 

level) 

mgKOH/

gm 

     

      
yes yes yes yes yes 

Capacitance sensor 

(Dielectric constant) 

Kinetic Viscometer 

Conductivity Sensor 

Flash point 

Presence of 

dissolved 

solvents or 
gases in the 

lubricant 

  
     

     
no yes yes no no Thermometer 

Wear Particle 

Count 

Wear particles 

in parts per 
million 

ppm     yes yes yes yes yes Capacitance sensor 
(Dielectric constant), 

Kinetic Viscometer, 

Conductivity Sensor, 
Inductive Sensor 

Particle 
Counting 

Detect number 

of particles for 
sample size of 

100cc 

mg/L      no yes no no yes 

 

Table 1. Performance parameters, applications and their benchmark for lubrication oil degradation. 

capacitance or permittivity change can be used to monitor 

the oxidation, water contamination, and wear particle 

concentration.  On the other hand, for physical techniques, 

viscosity is commonly discussed. The lubrication oil 

oxidation, water contamination, particle concentration, and 

some other property changes all have an influence on oil 

viscosity.  Therefore, viscosity is considered an objective 

mean of oil degradation detection. The final goal of all 

above mentioned systems is to achieve lubrication oil online 

health monitoring and remaining useful life prediction in 

industrial machineries.  Note, that most sensing systems are 

only capable of off-line monitoring, in which oil samples 

are collected from the machinery by specialists and sent to 

laboratories for oil condition analysis. In this way, the actual 

condition of the lubrication oil cannot be determined online 

because of the sampling and analysis delay. With the 

deployment of online oil condition monitoring techniques, 

one can optimize the maintenance schedule and reduce the 

maintenance costs. 

In this paper, based on the previous results of a 

comprehensive investigation of oil condition monitoring 

techniques reported in (Zhu et al., 2012; 2013), the two 

most effective online lubrication oil sensors, kinematic 

viscometer and dielectric constant sensors, are selected to 

develop an online lubrication oil health monitoring and 

remaining useful life prediction tool.  Kinematic viscosity is 

the absolute viscosity with respect to liquid density while 

dielectric constant is the relative permittivity between the 

lubrication oil and air.   

The purpose of this paper is to present the development of 

an online lubrication oil condition monitoring and 

remaining useful life prediction technique based on a 

particle filtering algorithm and commercially available 

online sensors. This technique is developed by integrating 

lubrication oil degradation physical models with the particle 

filtering algorithm.   The physical models are used to 

simulate the deterioration process of the lubrication oil due 
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to water contamination in terms of the kinematic viscosity 

and dielectric constant. A simulation case study based on 

lab verified models is used to demonstrate the effectiveness 

of the technique.   

In this paper, a particle filtering algorithm is utilized as RUL 

prediction tool. For oil condition monitoring, an effective 

and accurate state estimation tool will be beneficial to 

reduce machine downtime.  An on-line RUL estimator 

includes two stages: state estimation and RUL prediction. 

First, in the state estimation stage, even though there are 

many state estimation techniques, Kalman filter and particle 

filter are the most utilized ones. However, Kalman filter 

requires many assumptions such as: 1) zero-mean Gaussian 

process noise, 2) zero-mean Gaussian observation noise, 3) 

Gaussian posterior probability density function (pdf), etc. 

Because nonlinear Kalman filter is linearization based 

technique, if the system nonlinearity grows, any of 

linearization (either local or statistical linearization) 

methods breaks down (Merwe et al., 2000). Second, in RUL 

estimation stage, particle filtering can handle statistic 

prediction data unlike the other methods (parameter 

estimation). As a result, particle filtering algorithm provides 

feasible solutions for a wide range of RUL predication 

applications. A particle filtering algorithm integrated with 

physics based oil degradation models will provide a basis to 

develop practically feasible tools for accurate RUL 

prediction of lubrication oil. 

The remainder of the paper is organized as follows.   

Section 2 is focused on the development of an online 

lubrication oil health monitoring and remaining useful life 

prediction tool using a kinematic viscometer and dielectric 

constant sensor.  In this section, physical models that 

simulate the kinematic viscosity and dielectric constant as a 

function of the water contamination level and temperature 

are presented.  The validation of the physical models using 

the experimental data is performed.  The developed physical 

models are then integrated into a particle filtering 

framework to develop the lubrication oil remaining useful 

life prediction tool.  The developed tool is then illustrated 

with a simulation case study based on lab verified models.  

Finally, Section 3 concludes the paper. 

2. DEVELOPMENT OF LUBRICATION OIL RUL 

PREDICTION TOOL 

2.1. Lubrication Oil Deterioration Models Due To Water 

Contamination 

In this section, physical models that represent lubrication oil 

deterioration due to water contamination in terms of 

viscosity and dielectric constant are presented.  Since 

experimental approach has certain disadvantages including 

limited degradation scenario coverage, long pre-installation 

training time and unavoidable test errors, the physical 

models can be built aiming at eliminating all those 

shortcomings and provide an accurate/ideal sensor output 

which reflects the actual health status of the lubricant oil. 

Water contamination is selected as a representative basic 

degradation feature. Using the physical models, given any 

temperature and a water contamination ratio, one could 

simulate the kinematic viscometer and the capacitance 

sensor outputs with maximum accuracy. 

2.1.1. Kinematic Viscosity 

Define: 

T = temperature, in Celsius 

       = viscosity of the healthy oil at temperature T, in Cst 

         = viscosity of the water at temperature T, in Cst 

P = water volume percentage  

According to Stachowiak and Batchelor (2005), water and 

oil mixture viscosity at a certain temperature      can be 

computed as: 

                                                    (1) 

where: 

                                                         (2) 

Note that in Eq. (1),        is defined as the healthy 

lubrication oil information and is extracted from our initial 

test while          is defined as the water physical attribute 

which can be considered known factors.  Based on Equation 

(1), we can compute the degree of oil degradation as the 

result of water contamination in terms of viscosity as: 

DDviscosity =
    

      
. 

Equation (1) represents the kinematic viscosity of the 

degraded oil as a function of temperature and water 

contamination ratio. 

2.1.2. Dielectric Constant 

Define: 

       = dielectric constant of healthy oil at temperature T 

         = dielectric constant of water at temperature T 

According to Jakoby and Vellekoop (2004), the dielectric 

constant of water and oil mixture at a certain temperature 

     can be computed as: 

     

              
                

                                       
  (3) 

where: 

                                                (4) 
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Figure 2. Lubrication oil water contamination simulation model for viscosity and dielectric constant 

Note that in Eq. (3),        is defined as the healthy 

lubrication oil information and is extracted from our initial 

test while           is defined as the water physical attribute 

which can be considered known factors.  Based on Equation 

(3), we can compute the degree of oil degradation as the 

result of water contamination in terms of dielectric constant 

as: DDdielectric constant =
    

      
. 

Equation (3) represents the dielectric constant of the 

degraded oil as a function of temperature and water 

contamination ratio. 

The simulation application of the lubrication oil 

deterioration model due to water contamination in terms of 

viscosity and dielectric constant can be summarized in Fig. 

2.  The simulation input is the temperature and water 

contamination ratio. The simulation output is the degraded 

oil kinematic viscosity and dielectric constant. Using the 

simulation application, one could generate a series of 

viscosity and dielectric constant values accordingly to 

reflect the true status of the lubrication oil.Experimental 

Validation of the Physical Models 

2.1.3. Experimental Setup 

In this section, the experiment setup using both capacitance 

and viscosity sensors are presented. In order to obtain the 

viscosity and the dielectric constant data, VISCOpro2000 

from Cambridge Viscosity Inc. and Oil quality sensor from 

GILL Sensor were used.  For the kinematic viscometer, the 

sensor output data with a RS232 port and was connected to 

Window PC through a RS232 and USB converter.  The 

software interface on the PC was HyperTerminal that comes 

with Microsoft Windows XP.  The viscometer involves a 

piston that dipped into the test lubricant and the coils inside 

the sensor body magnetically force the piston back and forth 

a predetermined distance.  By alternatively powering the 

coils with a constant force, the round trip travel time of 

piston is measured. An increase in viscosity is sensed as a 

slowed piston travel time. The time required for the piston 

to complete a two way cycle is an accurate measure of 

viscosity. The practical unit of viscosity is centipoises (Cp), 

which is identical to the MKS unit mPa s (The viscosity of 

water is approximately 1 Cp).  The viscosity sensor and its 

data acquisition system are shown in Fig.3. As we 

programmed according to the use manual that comes with 

the sensor. The sensor will send out analogue output 

including absolute viscosity, temperature compensated 

viscosity and the according temperature along with the date 

and time.  

The dielectric constant sensor from Gill Sensor Inc. 

measures the capacitance of the test liquid then calculate the 

dielectric constant by the equation D=Coil/Cair, which is 

the capacitance of the test liquid divided by the capacitance 

of air, then output a voltage accordingly.  The output analog 

signal was captured by LabJack U12 which was the data 

acquisition unit for the sensor and the voltage signal was 
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recorded with Logger and Scope, software that comes with 

the U12. 

 

Figure 3. Viscometer and its data acquisition system 

The dielectric constant sensor and its data acquisition 

system along with the entire experiment setup are shown in 

Fig. 4 and 5. 

 

Figure 4. Dielectric constant sensor and the LabJack U12 

data acquisition system 

 

Figure 5. Experimental setup 

Also needed for the tests are temperature control units.  For 

the Dielectric constant test, we used a Hotplate from 

Thermo Scientific.  It is a ceramic hotplate with temperature 

control and digital indication of temperature on the contact 

surface. However, since the viscometer had to be installed 

with sensor side facing up, we installed the sensor on a steel 

container and heated the oil inside with a liquid heater. In 

both situations, the test oils were preserved in a temperature 

controlled container and heated from around 25 to 

approximately 60 degrees Celsius.  Instant temperatures 

were recorded along with the according viscosity and 

dielectric constant.  

2.1.4. The Validation Results 

In order to validate the physical models, viscometer and 

dielectric constant sensor readings under different water 

contamination levels with varying temperatures were 

compared with those computed from the physical models 

under the same conditions. 

During the experiment, Castrol SAE 15W-20 lubrication oil 

was selected to perform the physical model validation. The 

healthy SAE 15W-20 lubrication oil kinematic viscosity in 

relation with temperature was obtained from the 

experimental tests as following: 

                                             ;                  (5) 

Also, the healthy SAE 15W-20 lubrication oil dielectric 

constant in relationship with temperature was obtained from 

the experimental tests as following: 

                                               ;                    (6) 

Fig. 6, 7, 8, and 9 show the plots of the kinematic viscosity 

obtained from the experiments and the physical models at 

water contamination level of 0.5%, 1%, 2%, and 3%, 

respectively. 40 data points were used to validate the 

viscosity physical model. 

 

Figure 6. Kinematic viscosity comparison between 

simulated 0.5% water contaminated oil and measured 0.5% 

water contaminated oil 
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 Judging from the kinematic viscosity curves, the 

experiment result validated the simulation result. For a fixed 

water contamination level, as temperature increases the 

viscosity drops, the measured viscosity variation follows the 

pattern of the simulated kinematic viscosity curves.  

 

Figure 7. Kinematic viscosity comparison between 

simulated 1% water contaminated oil and measured 1% 

water contaminated oil 

 

Figure 8. Kinematic viscosity comparison between 

simulated 2% water contaminated oil and measured 2% 

water contaminated oil. 

 

Figure 9. Kinematic viscosity comparison between 

simulated 3% water contaminated oil and measured 3% 

water contaminated oil 

Fig.10 shows the plots of the dielectric constant obtained 

from the experiments and the physical models at water 

contamination level of 0.5%.  40 data points were used to 

validate the dielectric constant physical model. Similar to 

the case of kinematic viscosity, the experiment result 

validated the simulation result.  For a fixed water 

contamination level, as temperature increases the dielectric 

constant increases, the dielectric constant variation follows 

the pattern of the simulated dielectric constant curves. The 

dielectric constant physical model has been validated by 

Jakoby and Vellekoop (2004) for lubrication oil 

applications. 

 

Figure 10. Dielectric constant comparison between 

simulated 0.5% water contaminated oil and measured 0.5% 

water contamination oil 

2.2. Lubrication Oil RUL Prediction Using Particle 

Filters 

Using particle filter for RUL prediction is a recent 

development in combining both physics based and data 

driven approaches for prognostics (He et al., 2012).  

Applications of particle filters to prognostics have been 

reported in the literature, for example, remaining useful life 

predication of a mechanical component subject to fatigue 

crack growth (Zio and Peloni, 2011), online failure 

prognosis of UH-60 planetary carrier plate subject to axial 

crack growth (Orchard and Vachtsevanos, 2011), 

degradation prediction of a thermal processing unit in 

semiconductor manufacturing (Butler and Ringwood, 2010), 

and prediction of lithium-ion battery capacity depletion 

(Saha et al., 2009).  The reported application results have 

shown that particle filters represent a potentially powerful 

prognostics tool due to its capability in handling nonlinear 

dynamic systems and non-Gaussian noises using efficient 

sequential importance sampling to approximate the future 

state probability distributions.  Particle filters were 

developed as an effective online state estimation tool (see 

Doucet et al., 2000; Arulampalam et al., 2002).  In this 

paper, an integrated approach using particle filters for 

lubrication oil RUL prediction is presented. 
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2.2.1. Particle Filter for State Estimation 

Applying particle filters to state estimation will be discussed 

first.  Particle filters are used to estimate the state of a 

dynamic system using state and observation parameters. The 

state transition function represents the degradation in time 

of the lubrication oil.  The observation or measurement 

represents the relationship between the degradation state of 

the lubrication oil and the health monitoring sensor outputs. 

To apply particle filtering method, state estimation problem 

should be formulated first as stated by Yoon (2012). The 

problem of state estimation (a.k.a. filtering) is to estimate 

the dynamic state in terms of the posterior probability 

density function (pdf), based on all available information, 

including  the sequence of measurements up to the current 

time step k. Let us introduce                  which 

represent system state vector and observation (or 

measurement) vector at the current time k respectively, 

where    and    are the dimension of the corresponding 

state vector and observation vector;   is a set of real 

numbers;     is the time index; and   is the set of natural 

numbers. Consider the following discrete-time hidden 

Markov model (a.k.a state transition and observation 

model): 

                              (7) 

                    (8) 

where                 is the sequence of the system 

state up to time    , and                 is the 

sequence of observation that is available up to current time 

k. Note that the above notation    is sometimes represented 

as     . Also, the state transition and the state observation 

models can be rewritten in functional form as follows: 

                   (9) 

             (10) 

where                   denote the process noise 

and measurement noise at time k respectively;           

are white noise; the initial state distribution       
         is assumed known. Note that the state transition 

function is a mathematical representation of the lubrication 

oil degradation in time. Also, the observation model 

represents the health monitoring sensor outputs indicating 

the degradation state of the lubrication oil.  

Then, the marginal pdf of the state can be recursively 

obtained in two steps: prediction and update. In the 

prediction step, suppose the state estimate at the time     

             is known. Then the prediction (or prior) pdf 

of the state is obtained involving the system model via the 

Chapman-Kolmogorov equation as: 

                                        (11) 

In the update step, the new measurement    becomes 

available and the posterior pdf can be obtained via the Bayes 

rule as follows: 

         
                  

          
 (12) 

where the normalizing constant is: 

                                  (13) 

The above obtained recursive propagation of the posterior 

pdf is a conceptual solution; it cannot analytically 

determined.  

In any state estimation problem, based on the desired 

accuracy and processing time, a wide variety of tracking 

algorithms can be utilized. Especially, particle filter (a kind 

of suboptimal filter) increases accuracy while minimizing 

assumptions on the dynamic and measurement models. Due 

to its general disposition, particle filter became widely used 

in various filed. In the particle filter process, the marginal 

posterior density at time k can be approximated as follows: 

            
        

  

 

   

 (14) 

where    
    

  
   

 
 represents the random measure of the 

posterior pdf         ;    
           is a set of support 

points with associated weights    
                 is a 

Dirac delta function; and sum of weights    
 

   . Since 

we are not able to directly sample from the posterior 

          itself, associated weights   
  are computed by 

introducing importance density           which is chosen 

easily sample from (normally transitional prior is used): 

  
  

    
     

    
     

 (15) 

Thus, the desired posterior and weight update can be 

factorized in recursive forms as: 

                                        (16) 

  
      

 
       

      
      

  

    
      

     
 

(17) 

Note that, after the weights are obtained via (11), weight 

normalization is required (   
 

   ) to satisfy the nature 

of probability density function (   
 

   ) as follows: 

  
  

  
 

   
 

 

 (18) 

It can be shown that          
    

  
   

 
          . 
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2.2.2. Particle Filter for RUL Prediction 

In order to apply particle filter to estimate the remaining 

useful life (RUL), an l-step ahead estimator is required.  An 

l-step ahead estimator will provide a long term prediction of 

the state pdf                          , where T is 

the time horizon of interest (i.e. time of failure).  In making 

an l-step ahead prediction, it is necessary to assume that no 

information is available for estimating the likelihood of the 

state following the future l-step path         , that is, future 

measurements                    cannot be used for 

updating the prediction.  In other word, the desired state pdf 

of particular future time            can be factorized with 

the current posterior pdf          to desired            
and the state transition function            as 

            
   
     . By combining Eq. (7) and (10), an 

unbiased l-step ahead estimator can be obtained as stated by 

Zio and Peloni (2011), as well as Orchard and Vachtsevanos 

(2009). 

          

               

   

     

            

     

   

 
(19) 

Despite the fact that an unbiased estimator provides the 

minimum variance estimation, solving equation (13) can be 

either difficult or computationally expensive.  Thus, a 

sampling based approximation procedure of the l-step-ahead 

estimator is provided by Zio and Peloni (2011).  

Assume that the state      represents the particle 

contamination level at the current time k, the particle 

contamination level increases by time and     is the 

object’s remaining usable time before it fails (or needs 

maintenances). If an l-step-ahead state from the time k 

(i.e.        ) goes across a pre-specified critical value    

(i.e.          ), the object’s RUL at the time k can be 

computed as                . At each time step 

before its failure (i.e.      ), the state        would be 

projected up to the future time of failure      . In this 

manner, estimating       is equivalent to 

estimating       , rewriting as:  

                            (20) 

When RUL (l-step-ahead prediction) is implemented using 

particle filter as stated by He, et al. (2012) corresponding 

weights are computed by introducing an estimated 

measurement        according to Eq. (10) (i.e. measurement 

model) as:  

                   (21) 

where n is a future time step      . Then, the updating 

process is accomplished by Eq. (12) and (13). While RUL is 

computed, no measurement errors for the estimated 

measurements       are considered. Note that the actual 

system has not been altered. Zero measurement errors are 

only applied in order to predict l-step-ahead state          
      because the future observation values are never 

accessible. In this paper, an integrated prognostic technique 

using the l-step-ahead RUL estimating particle filter is 

exploited.  

2.3. Simulation Case Study 

In order to validate and demonstrate the effectiveness of the 

particle filter technique based lubrication oil RUL prediction 

approach, a simulation case study was conducted.  In this 

simulation case study, a scenario of lubrication oil 

deterioration due to water contamination was simulated with 

the physical models presented in Sections 2.1.1 and 2.1.2.  

In this scenario, a temperature template was used to 

simulate a daily temperature variation of the wind turbine as 

shown in Figure 11.   

 

Figure 11. Temperature variation template 

 

The other aspects of the simulation were defined as follows: 

1. The deterioration state of the lubrication oil was defined 

as the water contamination level P. 

2. The viscometer and dielectric constant sensor outputs 

were defined as observation data. 

3. The lubrication oil deterioration process was simulated 

for 30 days (720 hours). 

4. At the end of the simulation, the water contamination 

level P reached at 5%. 

5. The sampling time interval was set to be every hour. 

6. The failure threshold was set as 3% which was defined 

as the industry water contamination level limit. 

7. At approximately the 525
th

 hour, the water 

contamination level reached 3%. 

Fig. 12 shows the water contamination propagation over 

720 hours during the simulation with the given temperature.  
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Figure 12. Water contamination propagation template 

2.3.1. Particle Filter Implementation for RUL Prediction 

To implement a particle filter for the RUL prediction of the 

lubrication oil in the simulation case study, the state 

transition function was defined as Eq. (22). It is generated as 

progression of the state of interest which in our case is the 

water contamination. 

                                           (22) 

Two observation functions could be established using 

kinematic viscosity and dielectric constant physical models 

as Eq. (23) and (24). 

Note that Eq. (23) is the observation function expressed in 

terms of kinematic viscosity and Eq. (24) the observation 

function expressed in terms of dielectric constant.   

Generalized observation function could be established 

by combining kinematic viscosity and dielectric constant as 

Eq. (25).  

 

                
                                                                      (23)              

             
               

                     
      

                     
                             

       
  

…… (24) 

    
          

   
   

         
         

   
         
         

  

 
              

                                                  

          
               

                     
      

                     
                                   

 
                                           (25) 

 

In the implementation of the particle filter, number of 

particles was fixed as 50 and the prediction started at time 

point 425
th

 hour during the simulation with l being 100 time 

steps. The reason for selecting 50 particle populations is to 

balance accuracy and processing time. The particle 

population impact will be discussed in the Section 2.4.2. 

In order to reduce observation data fluctuation and RUL 

prediction variation, a temperature compensation module 

was integrated into the physical models. With a reference to 

30 degree Celsius, which was the median temperature of the 

operating condition over a 24 hours cycle, the observation 

data was adjusted according to viscosity or dielectric 

constant functions with respect to the temperature. For 

example, at a certain temperature, the temperature 

compensated viscosity was the true value of the viscosity 

plus the theoretical viscosity difference between 30  and 

current temperature. The compensated value can be 

obtained from the following equations: 

                     
    

   

        
                                            (26) 

  
                              ;       (27) 

                     
    

   

        
                                     (28) 

  
                           ;       (29) 

Fig. 13 and Fig. 14 present the observation variation before 

the temperature compensation. 

 

Figure 13. Observation data (kinematic viscosity) 

fluctuation before temperature compensation 
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Figure 14. Observation data (dielectric constant) fluctuation 

before temperature compensation 

 

Figure 15. Observation data (kinematic viscosity) 

fluctuation after temperature compensation 

 

Figure 16. Observation data (dielectric constant) fluctuation 

after temperature compensation 

Fig. 15 and Fig. 16 present the observation data variation 

after the temperature compensation. 

In comparison of Fig. 13 with Fig.15, and Fig. 14 with 

Fig.16, it is obvious that the observation data fluctuation is 

greatly reduced after the temperature compensation and the 

data are ready for RUL prediction. Figure 17 summarizes 

the implementation of particle filter technique for 

lubrication oil RUL prediction. 

 

 

Figure 17. Particle filtering technique implementation. 
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2.3.2. RUL Prediction Results Using one Sensor 

Observation 

Using the particle filter technique, RUL of the lubrication 

oil was predicted with either the viscosity or dielectric 

constant sensor observation.  The prediction results are 

provided in Fig. 18 and Fig. 19, respectively. The x axis 

represents the true simulation time step.  The y axis 

represents the time steps until failure. The blue line is the 

true remaining useful life and the red dots are our prediction 

mean while the vertical red bars are the 90% confidence 

intervals. From Fig. 18 and Fig. 19, one can see that with a 

certain degree of fluctuation at the beginning, the prediction 

becomes more and more accurate towards the end for both 

predictions. For a comparison purpose, the RUL prediction 

results with 200 particles are provided in Fig. 20.  As one 

can observe, using the same dielectric constant sensor 

observation under the same condition, a larger particle 

population provide better accuracy. However, larger particle 

population requires more processing times. The relationship 

between particle population and processing times is shown 

in Table 2. 

 

Figure 18. RUL prediction with only kinematic viscosity 

observation data (particle population=50) 

 

Figure 19. RUL prediction with only dielectric constant 

observation data (particle population=50) 

 

Figure 20. RUL prediction with only dielectric constant 

observation data (particle population=200) 

Particle Population (N) Prediction Time 

50 3 minutes 49 seconds 

75 4 minutes 40 seconds 

100 5 minutes 47 seconds 

150 7 minutes 59 seconds 

200 10 minutes 16 seconds 

Table 2. Particle population and prediction time relationship 

with only dielectric constant observation data 

2.3.3. RUL Prediction Results Using Multiple Sensor 

Observation 

The RUL prediction results presented in previous section 

were obtained using only one sensor.  In order to combine 

the two sensors into a particle filter based RUL prediction, a 

multivariable Gaussian distribution is used: 

            
 

    
 
    

 
 

      
 

 
                (30) 

where   is the covariance matrix of observations,     is the 

determinant of  .  Note that yk in Equation (30) represents 

the sensor output data   . 

By applying the probability density function, each particle 

will be assigned a weight according to its observation and 

updated similarly.  The RUL prediction results of 

combining two sensors are provided in Fig. 21.  As one can 

see from Figure 18, Figure 19, and Figure 21, in comparison 

with the RUL prediction results using only one sensor, the 

RUL prediction variation in combining two sensors has 

been reduced from the beginning until the end. Moreover, 

the accuracy of the prediction has also been improved 

significantly. The shortcoming of utilizing particle filtering 
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algorithm is that it is considered a computational expensive 

algorithm.  However, using particle filtering algorithm in 

combination with viscosity and dielectric constant based 

physical models would provide a feasible and effective 

solution for RUL predication of lubrication oil.  

 

Figure 21. RUL prediction with both kinematic viscosity 

and dielectric constant observation data (particle 

population=50) 

3. CONCLUSIONS 

Lubrication oil condition monitoring and RUL prediction is 

important for reliability and availability improvement of the 

wind turbines and reduction of maintenance costs for the 

wind industry. However, up to today, no effective physics 

based tools for online condition monitoring of lubrication 

oil and RUL prediction using viscosity and dielectric 

constant sensors have been reported.  In this paper, a 

solution for online lubrication oil condition monitoring and 

RUL prediction using viscosity and dielectric constant 

sensors along with the particle filtering technique is 

presented.  In particular, physics models for lubrication oil 

degradation with both viscosity and dielectric constant as 

performance parameters have been developed and validated 

with lab oil test data.  These lab validated oil deterioration 

models were integrated with a particle filtering algorithm to 

develop an effective RUL prediction tool for water 

contaminated lubrication oil.  The effectiveness of 

developed RUL prediction tool was validated with a 

simulation case study based on lab verified models. 

The RUL prediction results of the simulation case study 

showed that when only one sensor was utilized, the RUL 

prediction with particle filtering had a slight fluctuation 

around the true RUL at the beginning of the prediction 

process. When both viscosity and dielectric sensors were 

used, the prediction fluctuation at the beginning was 

reduced and the RUL prediction accuracy was greatly 

improved throughout the entire prediction process. Also, 

larger particle population increase prediction accuracy. 

However, as particle population increases, the 

computational time for RUL prediction increases along with 

it.  
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