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ABSTRACT 

To reduce the maintenance cost, avoid catastrophic failure, 

and improve the wind transmission system reliability, online 

condition monitoring system is important.  Developing 

effective online fault detection methodology is important.  

In this paper, an adaptive filtering technique is applied for 

enhancing the fault impulse signals-to-noise ratio in wind 

turbine gear transmission systems.  Multiple statistical 

features designed to quantify the impulse signals of the 

processed signal are extracted for rotating machine fault 

detection.  The multiple dimensional features are then 

transformed into one dimensional feature. A minimum error 

rate classifier will be designed based on the transformed one 

dimensional feature to identify the gear transmission system 

with defect.  Vibration signals collected from wind turbines 

in the real operation will be used to demonstrate the 

effectiveness of the presented methodology.  

Keywords: Adaptive filtering, Fault detection, Fault 

diagnosis, Condition monitoring, Gear transmission system, 

Statistical features, Pattern classification, Wind turbine 

transmission system.  

1. INTRODUCTION  

Wind Power is the world’s fastest growing renewable 

energy source. With the developing and growing of wind 

power, reducing the cost of generating the wind energy 

becomes a critical issue.  As wind turbines are often located 

in remote locations, the operation and maintenance costs are 

usually high.  According to a survey on the failures of the 

Swedish wind turbines (Ribrant et al., 2007), more than 

30% of the failures are mechanical failures.   The repair 

costs of the mechanical failure are relatively high comparing 

to other failures such as sensor issue, and electric related 

issues (Hyers et al., 2006) (Nilsson and Bertling, 2007).  

Thus deploying condition based monitoring (CBM) system 

could prevent catastrophic machine failure, improve the 

reliability and decrease the maintenance costs.   

For wind turbine transmission system condition monitoring, 

different types of signals such as vibration, acoustic 

emission, temperature, oil debris, power performance and so 

on could be used (Han & Song, 2005), (Zhu et al., 2012) , 

(Schlechtingen et al., 2013), (Abouhnik & Albarbar, 2012)  

Among them, vibration signals are currently widely used 

technique for mechanical fault detection and diagnosis. In 

the real applications, one type of rotating mechanical fault, 

for instance bearing surface defect, gear tooth crack, 

chipped gear tooth, generate impulse signals (McInerny and 

Dai, 2003) (Wang, 2001) (Endo, H., and Randall, 2007). 

When these faults develop inside rotating machinery, each 

time the rotating components pass over the damage point, an 

impact force will be created. The impact force will cause a 

ringing of the support structure at the structural natural 

frequency.  By effectively detecting those periodic impulse 

signals, one group of rotating machine faults could be 

detected.  In real complex machines it is not always possible 

to place the sensors directly on the rotating components.  

Thus the fault impulse signals collected by the sensors 

installed at some distance away from the rotating 

components are usually relatively weak and buried in the 

background noise and other rotating components, such as 

shaft, blades, and gears and so on.  Moreover, wind turbine 

transmission systems work under dynamic operating 

conditions.  The changing of rotating speed introduces 

smearing effects to the Fourier spectrum (Wang and Heyns, 

2011).  This will further increase the difficulties in fault 

detection and diagnostics.  Finding a way to increase the 

impulse signal-to-noise ratio (SNR) is important for wind 

turbine transmission system fault detection.  Another 

difficulty in online monitoring of wind turbine system is 

how to analyze the data in a large volume efficiently.  For 

example, a typical condition monitoring system for wind 

turbine mechanical transmission consists about six to eight 

sensors on different locations and for each sensor, there are 

about two to four measurement readings with different 

setups.  Usually every 10 to 120 minutes, different key 
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features values will be collected and sent back to the server 

for trend analysis purpose and every 8-12 hours, time 

waveforms and spectrums will be captured and send back to 

the server for detail analysis purpose.  For a wind farm with 

size of 100 turbines, when all the operating conditions met 

the requirement of activating the condition monitoring 

system, there will be about 7200 to 23040 extracted trend 

values for just one key feature and about 2400 to 9600 time 

waveforms usually with 4096 or 8192 sampling points and 

spectrums with 1600 to 6400 frequency lines daily for 

analyzing.  Let us assume that it will take approximately 20 

seconds to 30 seconds for an experienced human expert to 

analyze the spectrum for machine fault detection purpose.  

That means it will take a human vibration expert about 13 

hours to 80 hours to analyze all the daily collected signals.    

Thus develop an effective automatic way on analyzing the 

signals and making decision will be in great need. 

In this paper, an online automatic fault detection 

methodology has been developed.  The methodology uses 

the adaptive filtering technique for enhancing the fault 

impulse signals-to-noise ratio in wind turbine gear 

transmission systems.  Then multiple statistical features 

designed to quantify the impulse signals of the processed 

signal are extracted for detecting one type of rotating 

machine faults which generate impulse signals.  The 

multiple dimensional features are transformed into one 

dimensional feature.  A minimum error rate classifier is then 

designed to identify the type of faults which generate 

periodic impulses signals.  Wind turbine vibration signals 

collected from the real operation will be used to demonstrate 

the effectiveness of the presented methodology.  The 

remainder of the paper is organized as follows.  Section 2 

explains theoretical basis of the methodology.  The analysis 

results on vibration signal collected from wind turbine 

systems are provided in Section 3.  Section 4 summarizes 

the work done and concludes the paper.  

2.  THEORETIC BASIS  

2.1. Self-adaptive Noise Cancellation  

 

Self-adaptive noise cancellation (ANC) (Widrow et al., 

2005) is used in this paper.  Its structure is shown in Figure 

1. The technique has been widely used in biological signal 

processing (Rahman et al., 2011), (Inan et al., 2010), 

(Thakor & Zhu, 1991) to remove the electrical interference, 

in the audio signal processing (Greenberg, 1998), (Sambur, 

1978) to improve the quality of interested voice signal, in 

the non-destructive testing area (Zhu & Weight, 1994) to 

improve the SNR for the acoustic emission signal, and the 

vibration signal based rotating machine fault detection (Li & 

He, 2011) , (Antoni & Randall, 2004) , and (Bechhoefer et 

al., 2009) to enhance the impulse fault SNR.  

 

Figure 1. The scheme of the adaptive noise cancellation 

The idea here is to use the adaptive filter to track the 

periodic components inside the signal and then remove it 

from the original vibration signal.  The parameters of the 

filter are adaptively updated by using the error signal, 

expressed in Eq. (1).  The way for calculating the optimal 

parameters of the prediction model is to minimize the mean 

squared error between the original signal and the predicted 

signal.  

)()( kykye ek     (1) 

where y(k) is the input vibration signal at time k, )(kye  is 

the estimated output signal, ek is error between the estimated 

signal and the input signal at time k. 

To adaptively adjust the coefficient of the prediction model, 

the least mean squared algorithm is applied to update the 

coefficients online.  The update equations, presented in 

section 1 of the book (Benesty & Huang, 2003) are shown 

in Eq. (2) and Eq. (3).  

k

T

ke XWny )(   (2) 

kkkk XeWW 21   (3) 

where, )](),...,(),([ 21 kwkwkwW lk   is the parameters vector 

of the adaptive filter at time k, l is the length of the filter, 

))]1((),...1(),([  lkykykyX k  is the 

delayed version of input y(k),   is the delay time and is   

is the learning step size.  

A simulation is used here for demonstration purpose.  A sine 

waveform, impulses and Gaussian noise are used to 

compose the simulated signal.  The adaptive noise 

cancellation was then applied to the simulated signal.  Both 

the simulated signal and the processed signal are shown in 

Figure 2.   In Figure 2, x-axis represents the time and y-axis 

represents the amplitude of the signal.  The top red curve 

stands for the simulated signal.  The blue curve stands for 

the processed signal.  From Figure 2, one could easily see 
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that the adaptive noise cancellation algorithm effectively 

remove the periodic component, the sine waveform.   

 

Figure 2. The simulated signal and the processed signal 

2.2. Statistical Feature extraction 

To design a classifier, quantification values are needed.  As 

the purpose in this paper is for impulse signal detection, five 

statistical values commonly used for rotating machine fault 

detection and diagnosis (Lei et al., 2008) (Samanta, et al., 

2001) (Medjaher et al., 2012) , were used here to quantify 

the processed impulse signal enhanced signal.  They are 

Kurtosis, Crest Factor, Root Mean Square (RMS), Impulse 

Factor, and Skewness (Norton et al., 2003).   

Kurtosis is the fourth statistical moment.  It is a good 

indication of the “peakedness” of the signal.  The Kurtosis is 

defined as, 
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The Crest Factor is the ratio of the peak value to the RMS 

value.  It is a good measurement of spikiness of a signal. 

The Crest Factor is defined as, 
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The RMS value is usually used to represent the overall 

energy of the signal. The RMS is defined as, 





n

i
irms x

n
x

1

21

   (6) 

The Impulse factor is the ratio of the absolute peak value to 

the absolute mean value of the signal. It is sensitive for 

detection of bearing problem (Yiakopoulos et al., 2011).  

The Impulse factor is defined as, 
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The Skewness is a third statistical moment.  Skewness is 

usually used to measure the symmetry of the signal.  The 

Skewness is defined as, 
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In Eq. (4) to (8), x is the signal with n samples. x  is the 

mean value of x .  

2.3. Linear Discriminant Analysis 

Linear discriminant analysis (LDA) (McLachlan, 2004) is a 

well known technology which is widely used for feature 

extraction and dimension reduction.  Many successful 

applications are presented in various research papers (Swets 

and Weng, 1996) (Martinez and Kak, 2001) (Lu et al., 

2003).  LDA projects the data sets with multiple classes into 

a lower-dimensional vector, which provides maximized 

separation between the classes.  In this paper, as only two 

classes, health state and fault state are considered, multiple 

class LDA will not be discussed and only two classes LDA 

will be considered. 

Let’s assume that we have a set of d-dimensional n 

samples  nssss ,...,, 21 .  N1 of them belong to class C1.  N2 

of them belong to class C2.  If we define a transformation 

matrix w, then we could obtain a scalar y by projecting the s 

onto a line, 

swy T   (9) 

y is a set of n samples  nyyyy ,...,, 21 . N1 of them belong 

to class CT1.  N2 of them belong to class CT2. 

To find the scalar which maximizes the separation between 

the two classes, the following objective function is adopted 

(McLachlan, 2004).  By maximizing the objective function 

in Eq. (9), we could obtain the projecting which provides 

best separation between the two classes.  
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Through maximizing process, the transform matrix could be 

calculated as, 
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3. DATA COLLECTION AND EXPERIMENTAL RESULTS  

 

Recently, a number of SKF IMx-W, WinCon units (SKF, 

2011) were installed on a fleet of wind turbines to perform 

the online condition monitoring.  The SKF IMx-W, WinCon 

unit is a modern industrial product specialized designed for 

on-line vibration monitoring.  It has been successfully 

applied to online monitor the wind turbine mechanical faults 

all around the world.  The key features of the system include 

(SKF, 2011): 

(1) Lightning protection.  

(2) Wall-mounted.  

(3) Sixteen analogue inputs and two digital inputs.  

(4) Simultaneous measurement of all channels.  

(5) Multi-parameter gating.  

The monitored wind turbine mechanical transmission 

systems consist of main bearing, gear transmission system 

and generator.  A simplified transmission system with one 

planetary gear stage is shown in Figure 3.  The monitoring 

system used two accelerometers on the main bearing, four 

on the gearbox, and two on the generator.  The system also 

measured the rotating speed of the high speed shaft to 

provide the speed reference. 

 

Figure 3. The simplified typical wind turbine transmission 

system 

During our daily monitoring process, bearing defects on the 

intermediate shaft from four wind turbines have been 

captured.   After the detection, the bearings have been 

scheduled to replace with the new bearing of the same type.  

In this paper, the acceleration signal collected from the 

intermediate shaft of four of the wind turbines with bearing 

issue will be investigated.  The SKF series accelerometers 

were used for the data collection.  This type of sensor has 

100mv/g sensitivity and the frequency range is about 0.5 Hz 

to 10 kHz.  The sampling frequency for the intermediate 

acceleration measurements were set to be 5120 Hz and 

about 1.6 seconds long signal was collected for each data 

collection.  Routinely, the vibration signals will be collected 

every 8 hours during the normal daily collection.   

For analysis purpose, 20 vibration signals before the 

replacement and after the replacement were randomly 

selected from the database of each turbine from the signals 

collected during the past 6 month.  A typical vibration signal 

collected from a healthy gearbox is shown in Figure 4 and 

that collected from a gearbox with defect is shown in Figure 

5.  Figure 6 shows the picture of the damaged bearing inner 

race.  The crack on the surface could be clearly seen from 

both figures.   

 

 

 

 

 

 

 

 

 

Figure 4. The vibration signal collected from a healthy 

gearbox 

 

 

 

 

 

 

 

 

 

Figure 5. The vibration signal collected from a gearbox with 

bearing inner race defect 
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Figure 6. (a) Damaged Bearing with Crack on the Whole 

Inner Race of Wind Turbine #1. (b) Damaged Bearing with 

Crack on the Surface the Inner Race of Wind Turbine #2. 

(c) Damaged with hair line Crack on the Surface of the 

Inner Race of Wind Turbine #3. (d) Damaged with Crack on 

the Surface of the Inner Race of Wind Turbine #4 

 

The ANC was applied to process the vibration signals and 

sample results of the vibration from the healthy state and the 

damaged state are shown in Figure 7 and Figure 8. 

 

 

 

 

 

 

Figure 7. The processed results of the healthy gearbox 

 

 

 

 

 

 

 

 

 

 

Figure 8. The processed results of the gearbox with bearing 

inner race defect 

 

Comparing the results shown in Figure 7 (b) and Figure 8 

(b), one could easily see the periodic fault impulses in 

Figure 8 (b).  The periodic frequency of those impulses is 

related to the bearing inner race defect.  This is a clear 

indication of there being a bearing inner race defect.  In 

Figure 8 (a), one could see some of the impulse signals 

appearing in the original vibration signal, but due to the low 

impulse SNR, the analysis on the time waveform is hard to 

find the periodic behavior of the impulses.  However, from 

the processed results shown in Figure 8 (b), the impulses 

signals (the red circled one) could be easily identified.  By 

simple analysis on processed time wave form, the potential 

fault could be identified.   

The comparison between the ANC and the widely used 

envelope analysis (McInerny and Dai, 2003) are 

investigated in this paper.  The bandwidth of the band-pass 

filter of the envelope analysis is important and many 

research papers have presented ways to select the optimal 

bandwidth (Sawalhi et al., 2007) (Eric et al., 2011).  

However, this is beyond the research scope of this paper.  In 

this paper, the bandwidth is set to between 500 Hz and 2 

kHz.  Ten vibration signals collected on the wind turbines 

with known bearing fault have been randomly selected.  For 

demonstration purpose, the Fourier spectrums of both 

algorithms of one of the bearing fault signals were shown in 

Figure 9 (a) and (b).  Figure 9 (a) shows the Fourier 

spectrum of the envelope analysis and Figure 9 (b) shows 

the Fourier spectrum of the ANC.  From Figure 9 (a) and 

(b), the high peak at the bearing inner race defect frequency 

and its harmonics could be easily observed on both the 

spectrum.  Both algorithms effectively capture the bearing 

defect.   

 

 

Figure 9. The spectrum of (a) the envelope analysis and (b) 

the adaptive noise cancellation algorithm 

To quantify the performance of the two algorithms, the 

quantification value is calculated by the following equation. 
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where iA  is the amplitude of the thi  harmonics of the 

bearing fault frequency of the spectrum and RMSS is the 

RMS value of the spectrum.  

In our case, as the bearing is with inner race defect, the 

inner race defect frequency of the bearing is used for 

calculation.  The higher the qI  value is the better 

performance the algorithm has.  The results of the qI  value 

are shown in Table 1.  The percentage of the difference 

between qI values is the ratio of the subtraction of qI  of the 

adaptive noise cancellation from that of the envelope 

analysis to the qI  of the envelope analysis.  From the results 

shown in Table 1, one could see that adaptive noise 

cancellation algorithm has slightly higher qI  value of the 

traditional envelope analysis.   

 

Table 1. The qI  value of the traditional envelope analysis 

and the adaptive noise cancellation 

 

 

The Kurtosis, Crest Factor, Impulse Factor, RMS, and 

Skewness of the processed signal were calculated for both 

the healthy vibration signal and the vibration signal with 

damaged components.  The mean and the standard deviation 

value of the statistical values were shown in Table 2. Those 

feature values were then transformed into one dimensional 

feature vector by using the LDA.  To quantify how well the 

individual statistical features, listed in Table 2, separate the 

healthy states from the fault states, the percentage of the 

difference between the two states are calculated.  The 

percentage of the difference is the ratio of the absolute 

difference between the healthy states and the fault states to 

the feature value of the healthy states.   The values are 

shown in Table 2.  To obtain a general ideal on the 

computational requirement of the developed methodology, 

tests were conducted on a pc with a 2.60 GHz CPU and 3 

GB RAM.  By processing the 8192 point vibration signals, 

the processing time was approximately 0.5 seconds.   

The histogram of the transformed feature of both the healthy 

machine and the damaged machine is shown in Figure 10.   

In Figure 10, the x-axis represents the amplitude of the 

transformed feature.  The y-axis represents the numbers of 

the machine in the group.  The purple group stands for the 

fault states and the red group stands for the healthy states.   

Table 2. The calculated values of the processed signal of 

healthy gearbox and the gearbox with defect 

 

Traditional 

Envelope 

Adaptive 

Noise 

Cancellation 

Percentage of 

difference (%) 

16.33 16.36 0.16 

15.50 16.30 5.18 

12.93 14.68 13.57 

11.92 12.91 8.29 

16.15 17.94 11.05 

11.54 13.21 14.48 

17.72 19.29 8.85 

17.27 18.00 4.22 

14.51 15.30 5.46 

13.50 14.27 5.71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. The histogram of the transformed feature of the 

healthy machine and the machine with damaged 

components 

 

The decision boundary is then determined by the minimum 

error rate rule.  As in this paper, only two classes, healthy 

state and damaged state are used, the prior probability 

determines how likely the unknown observation belongs to 

each state.  For example, if we define the prior probability 

value to be 0.5. Then the probability of the unknown 

extracted feature belongs to healthy state is 0.5 and that of 

the damage state is 0.5.  In this paper, three different 

boundaries were calculated by using three different prior 

probability values.  They are 0.1, 0.5, and 0.9.  The results 

are shown in Figure 11.  In Figure 11, the x-axis represents 

the number of the samples.  The y-axis represents the 

amplitude of the transformed feature.  Four different shapes 
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are used to represent different wind turbines.  The stars, 

circles, diamonds, and squares represent wind turbine #1, 

wind turbine #2, wind turbine #3, and wind turbine #4, 

respectively.  The color of the shapes represents the state of 

the wind turbine.  The red represents the wind turbine is in 

healthy state.  The purple represents the wind turbine in 

fault state.  The blue dash line represents the decision 

boundary for 0.1.  The value of the boundary is -0.070.  The 

green dot line represents the decision boundary for 0.5.  The 

value of the boundary is -0.081.  The pink solid line 

represents the decision boundary for 0.9.  The value of the 

boundary is -0.088.  From Figure 11, one could see that the 

boundary for 0.1 is the most fault sensitive boundary among 

the three boundaries which identified several healthy states 

as damaged state.  The boundary for 0.9 is the most fault 

insensitive boundary among the three boundaries which 

misclassified several damaged states as healthy state.   

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 11. The transformed feature and the decision 

boundaries with different prior statistics (blue line: 

P(Healthy)=0.1, green line: P(Healthy)=0.5,pink line: 

P(Healthy)=0.9) 

 

The confusion matrix of three decision boundaries is shown 

in Table 3.  In real online condition monitoring applications 

with large volume of data, determination of the decision 

boundary is important.  Fault sensitive boundary will 

potentially cause more false alarms while fault insensitive 

boundary tends to miss the true faults.  Thus determination 

of the boundaries in real applications is based on the 

following rule.  When the system is deployed to a newly 

created wind farm, the less fault sensitive boundary should 

be used.  With aging of the wind farm, the boundary will be 

adjusted to more fault sensitive one.   

 

 

 

 

Table 3. The confusion matrix of the different boundaries 

 

  
Calculated 

Healthy 

Calculated 

Fault 

0.1 

Boundary 

True Healthy 75 5 

True Fault 0 80 

0.5 

Boundary 

True Healthy 80 0 

True Fault 1 79 

0.9 

Boundary 

True Healthy 80 0 

True Fault 2 78 

 

From Table 3, one could see that 96.875%, 99.375%, and 

98.750% of accuracy are achieved for 0.1, 0.5, and 0.9 

boundaries, respectively.   

4. CONCLUSIONS  

In real applications, effective fault detection algorithms are 

an essential part of the condition monitoring system, 

especially for the online continuous monitoring systems, 

like wind turbine condition monitoring systems.  In this 

paper, an effective automatic fault detection methodology 

has been developed.  The methodology uses adaptive 

filtering technique to improve the fault SNR and LDA to 

reduce the features’ dimensions.  Wind turbine vibration 

signals obtained in real operation were used to demonstrate 

the effectiveness of the presented methodology.  

Currently, the developed methodology will continue testing 

on the vibration signals of wind turbines with different 

designs.  In future work, it will be interesting to study the 

effectiveness of the developed method on a variety of 

rotating equipments in different industries and applications, 

such as ranging arms in the mining industries, pumps in the 

paper mill, and motors in the food industries, and so on.     
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