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ABSTRACT 

Multiple premature failures of a gearbox in a wind turbine 

pose a high risk of increasing the operational and 

maintenance costs and decreasing the profit margins. 

Prognostics and health management (PHM) techniques are 

widely used to assess the current health condition of the 

gearbox and project it in future to predict premature failures. 

This paper proposes such techniques for predicting gearbox 

health condition index extracted from the vibration signals. 

The progression of the monitoring index is predicted using 

two different prediction techniques, adaptive neuro-fuzzy 

inference system (ANFIS) and nonlinear autoregressive 

model with exogenous inputs (NARX). The proposed 

prediction techniques are evaluated through sun-spot data-

set and applied on vibration based health related monitoring 

index calculated through psychoacoustic phenomenon. A 

comparison is given for their prediction accuracy. The 

results are helpful in understanding the relationship of 

machine conditions, the corresponding indicating features, 

the level of damage/degradation, and their progression. 

1. INTRODUCTION 

There is a growing interest in renewable energy systems 

with increased concerns over climate change. Wind energy 

has an attractive share in renewable energy because it 

diversifies a resource portfolio and improves overall 

security of the power system. However, the engineering 

challenge for the wind industry is to design a reliable wind 

turbine to harness wind energy and turn it into electricity. 

Despite all technological advancements in wind turbine 

design and installation, there is a price to pay in maintaining 

the wind turbine in harsh operating environments and 

reduced accessibility. According to two large surveys of 

European wind turbines, conducted over a span of 13 years, 

gearbox failure is one of the highest risk events in wind 

turbines (C. C. James, 2011). Hence, there is a need for 

efficient condition monitoring system for wind turbine 

gearbox. Condition monitoring is a good tool to assess the 

damage early in time in order to plan the maintenance 

activities in a better way. Condition monitoring can be 

combined with opportunity maintenance to reduce the 

turbine’s unexpected downtimes.    

Typically, faults in wind turbine gearbox arise while in 

operation. Therefore, it is vital to detect, diagnose and 

analyze these faults as early as possible. The process should 

be non-destructive in nature to avoid wind turbine’s 

disassembly. This study presents fault detection, features 

extraction, and prognostics for wind turbine gearbox based 

on vibration analysis. Vibration analysis is a non-destructive 

testing (NDT) technique widely used in the industry and in 

academia.  

1.1. Classification of Vibration Signals 

Vibration signals emanating from the rotating gearbox are 

analyzed to ascertain the current condition of the gearbox.  

Vibration signals can be classified into stationary and non-

stationary, and based on this classification, the nature of 

their analysis methods differ. For stationary signals, 

vibration analysis methods are divided into two domains, 

namely time and frequency. Time-domain methods include 

statistical, model based, and signal processing based 

methods. Frequency-domain methods include spectrum and 

cepstrum based methods. For non-stationary signals, joint 

time-frequency vibration analysis methods such as short 

time Fourier transform (STFT) and wavelet analysis (WA) 

(Hui Li et al., 2011) are used for fault detection in 
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gearboxes. Other methods of non-stationary analysis for 

gearboxes include Wigner-Ville distribution, Hilbert-Haung 

transform, and kurtogram analysis (Jerome Antoni, 2007). 

1.2. Features Extraction 

The features extraction system extracts characteristic 

signatures from raw vibration signals emanating from 

gearbox. The extracted features should reflect the changes in 

the gearbox’s health conditions over time. As discussed 

earlier, the vibration based signal processing analysis is one 

of the most common non-destructive techniques. Also, with 

suitable vibration analysis, we can detect many different 

faults related with gearboxes. We use vibration based 

features extraction to extract the information that best 

represents the faulty conditions present in the monitored 

equipment. Different methods for vibration based features 

extraction in gearbox fault diagnosis framework have been 

proposed in research (Halima, E. B. et al, 2008, J. Rafiee et 

al, 2010). In time-domain, vibration based features such as 

kurtosis and spectral kurtosis are extensively used (F. 

Combet et al, 2009). Other studies including statistical-

based and transient-based features detection are performed 

in the past (Hiram Firpi and George Vachtsevanos, 2008; V. 

Indira et al, 2010). A comprehensive list of time-domain and 

frequency-domain features for fault detection and diagnosis 

of gearboxes is discussed in (Yaguo Lei et al, 2010). 

1.3. Prognostics 

Prognostic plays a very important role in an accurate and 

reliable decision making. Prognostics can be used 

effectively in utilization and maintenance of machinery 

systems. Prognostics uses different machines health related 

indices including temperature (Jamie Coble et al, 2010), oil-

debris analysis (Richard Dupuis, 2010), acoustics, and 

vibration (Eric Bechhoefer et al, 2010). Among these, 

vibration based prognostics is quite common. In (B. 

Samanta and C. Nataraj, 2008), researchers have used 

different health monitoring indices in gearboxes such as 

gear-wear, gear-chipped, gear-crack, gear-pitting, and shaft 

misalignment for projecting the gearbox health information 

in future. They have used neuro-fuzzy approaches for 

modeling and prediction of gearbox dynamics. A 

comprehensive review on prognostics is presented in 

(Andrew K.S. et al, 2006), where decision making process 

based on diagnostics and prognostics is discussed. 

Prognostic is performed by estimating the temporal 

evolution of the features over time (Wang W., 2007). In 

vibration based prognostics, vibration signals emanating 

from sensitive components inside the gearbox are recorded, 

health related features are extracted, and time series 

prediction techniques are applied to the features trends for 

prognostics (L. Gelman et al, 2012). Statistical, evolutionary 

and soft computing approaches are used to estimate the 

predictors and the use of neural networks and neuro-fuzy 

methods are very common. 

This paper proposes a novel method to extract machine’s 

health related vibration features based on psychoacoustic 

phenomenon along with neural networks and neuro-fuzzy 

approaches for prognostics. In this study, other than 

vibration features, we also use sunspot data for measuring 

the performance of the designed predictors. The rest of the 

paper is organized as follows. Section 2 is the methodology 

section where we propose the novel feature extraction 

technique based on psychoacoustics phenomenon followed 

by wavelet smoothing and prediction approaches. Section 3 

simulates the proposed techniques on sunspot data and real-

world vibration data emanating from a planetary gearbox 

inside a wind turbine. Finally, section 4 concludes the paper. 

2. THE METHODOLOGY 

The process of vibration based features extraction and 

prognostic is shown in Figure 1. Below we discuss each 

module one by one.  

 

Figure 1. The process of prognostic 

2.1. Transient Based Features Extraction 

The vibration features extraction algorithm presented in this 

section works on the principle of transient analysis. 

Transients are very short and abrupt changes in sound waves 

due to non-linearity. Non-linearity could be mechanically 

introduced disturbances in electromechanical systems or 

unwanted clicks in transmission lines. The transient analysis 

algorithm calculates a real time estimate of transients caused 

by non-linearity as perceived by the human ear. The 

analyzer uses the knowledge about human ear’s nature of 

filtering the signals as presented in (E. Zwicker, and H. 

Fastl, 2009). The filtering operation ensures that the 

transients are detected in a way that matches the nature of 

the cochlea and thereby as perceived by the human ear. 

Transient analysis gives a much better correlation to the 

perceived quality of sound than traditional measurements 

based on frequency analysis. 

The vibration features extraction algorithm uses principles 

of auditory models developed by the auditory physiologists 

(S. Seneff, 1988). According to psychoacoustic theory, 

pulses with short rise time or fall time contain a broad 
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spectrum of frequencies. Therefore, it is possible to detect 

the instantaneous energy in frequency bands in the transient 

range of the ear. A common method for doing this is to use 

a filter bank containing a group of band-pass filters covering 

the frequency interval of interest. The purpose of the band 

pass filters is to detect the pulses in the frequency band 

where the pulses have most energy as perceived by the 

human ear. It will be the filter where the shape of the 

impulse response of the band-pass filter matches best the 

shape of the pulses but reverse in time.  A gammatone filter 

bank is used in this study as shown in Figure 2. First 

designed by Patterson and Holdworth (R. D. Patterson et al, 

1992), gammatone filter bank is an array of band-pass filters 

which simulates the response of the human ear’s cochlea. At 

each point along the cochlea, a psychoacoustic measure of 

the width of the auditory filter is represented by an 

equivalent rectangular bandwidth (ERB). 

 

Figure 2. The gammatone filter bank 

The ERB is a psychoacoustic measure of a filter’s 

bandwidth in the filter bank. The bandwidth of a filter 

increases with an increase in its center frequency. The 

relationship between ERB and center frequency 
c

F  Hz is 

given by the following equation 

 

24.7 0.108 .cERB F                   (1) 

 

The impulse response of a band-pass filter is defined by the 

following relation (R. D. Patterson et al, 1992): 

 

   1 2
cos 2 .

N mt

ch t Rt e F t


 
 

                 (2) 

 

Where R  is an arbitrary factor that is typically used to 

normalize the peak magnitude transfer to unity, N is the 

filter order, m  is a parameter that determines the duration of 

the impulse response and thus the filter’s bandwidth, 
cF  is 

the filter’s center frequency, and   is the phase of the tone. 

Figure 3 shows an impulse response of a gammatone filter 

with 1000cF Hz , 125m Hz  and 4N  . To detect the 

energy in the channels the output signals from the band-pass 

filter bank are Hilbert transformed. Hilbert transform detects 

the envelopes of the band-pass filtered signals and extracts 

the instantaneous energy of the faulty pulses. Hilbert 

transform can be expressed as  

1 1 ( )
ˆ( ) ( ) * .

x
x t x t d

t t




  





 


        (3) 

Hilbert transform creates an artificially complex signal ( )u t
 

from ( )x t . The real part ( )x t  of the ( )u t
 
is the original 

signal and the imaginary part ˆ( )x t  is the Hilbert transform 

of the real part. Thus, ( )u t
 
is defined as ˆ( ) ( ) ( )u t x t jx t  . 

The magnitude and phase of ( )u t
 
is computed as 

2 2
ˆ( ) ( ) ( )A t x t x t 

 
and 

ˆ( )
( ) arctan

( )

x t
t

x t
  . The 

magnitude ( )A t
 
is the envelope of the signal and is always 

a positive function. 

 

Figure 3. Gammatone filter impulse response 

After the pulses are extracted through envelope detection or 

Hilbert transform, feature extraction block follows. In the 

feature extraction block, amplitudes and slopes of the pulses 

are calculated as per Eq. (4) and Figure 4.   

  .r

High Reference Level Low Reference Level
S

Rise Time


  (4) 

 

Figure 4. Calculation of amplitude and slope of a pulse 

Amplitude (maximum magnitude) is a linear detector for 

pulses in the full frequency area. Slope is very sensitive for 

catching nonlinear sounds in the high frequency area. Both 
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metrics can be summarized to a logarithmic index 

expressing the amount and size of the pulses. The index may 

be based on either the magnitudes or the slopes of the pulses. 

It is expected that pulses with a short rise time will be more 

annoying to the ear, than pulses with longer rise times. Thus, 

by considering the pulse envelope, it seems reasonable to 

focus the measure on the slope in the leading edge. Every 

transient detected is characterized by the 80% amplitude and 

the maximum slope in the leading edge. In order to obtain 

an equal number of detected transients in each frequency 

bands, the output from the transient analyzer is split into 

blocks of a pre-specified duration. The duration is found as 

a trade-off between preserving the complexity of the 

measurement and having an equal number of detected 

transients in each channel. In each block, only the transient 

with the maximum slope is gathered. The maximum slope is 

found by differentiating the signal and finding maximum 

amplitude of the differentiated signal. The logarithmic index 

is calculated as follows 

 
2

, 1

10 2

1

10.log .

BN

max ij
i channels jB C

ref

S

S
N N

Vb
S




 
 
 
 
 
 

 
       (5) 

Where 
S

Vb  is vibration steepness index, i  is index for band 

pass filter and 
C

N
 
is total number of band pass filters used. 

Index of sub-blocks in a band pass filtered signal is j  and 

B
N  is the total number of sub-blocks. The maximum 

steepness in band pass filter i  and sub-block j  is  max ij
S . 

The argument for squaring the maximum steepness in Eq. (5) 

is simply to put the large steepness values in favor.  1refS   

if the measured amplitude is acceleration. For amplitude 

index 
AVb ,  max ij

S in Eq. (5) is replaced by  max ij
A

where 
maxA  is the maximum amplitude of the non-

differentiated envelope signal. The vibration features 

extracted are de-noised through wavelet de-noising 

techniques and normalized before prediction. 

2.2. Wavelet Denoising 

Features extracted from real signals emanating from 

complex dynamical systems pose a serious problem of 

noise. Therefore, it is important to de-noise the extracted 

features before modeling is performed (Uros Lotric and 

Andrej Dobnikar, 2005). De-noising the signal is one of the 

most effective applications of wavelets in signal processing. 

The wavelet transform-based de-noising methods can 

produce much higher de-noising quality than conventional 

methods. Furthermore, the wavelet transform-based 

methods retain the details of a signal after de-noising 

(Edmundo G. de Souza e Silva et al, 2010). Wavelets are 

limited duration, undulatory mathematical functions. The 

time integral of wavelet functions equals to zero.  Figure 5 

plots some common wavelets. Similar to Fourier transform, 

where we use sines and cosines as basis functions, wavelet 

transform uses wavelets as basis functions. Wavelets are 

used in many different fields including compression, signal 

processing, and de-noising (Graps, A, 1995). In Fourier 

analysis, we approximate a function  f x  by sines and 

cosines functions with different frequencies and amplitudes. 

Thus, the approximation equation becomes   

      
1

^

sin cos .o i i

k

f x a a kx b kx





         (6) 

Where,
oa , 

ia , and 
ib  are calculated from Fourier 

transform as 

   ω .
j t

F f t e dt








          (7) 

Wavelet analysis is performed in the similar way as Fourier 

transform but with scaled and translated versions of mother 

wavelet  x  as basis functions. Mother wavelet can be 

any one from Figure 5 and the scaling and translation is 

defined as child wavelets and can be calculated as 

   , 2 .
j

j k x x k           (8) 

Where  is a constant, k  is wavelet translation and 2
j
is 

scale translation. We can estimate  f x  from the following 

equation in wavelet analysis  

   
,

^

,

,

.
j k j k

j k

f x c x
 

   

       (9) 

Where, 
,j k

c are the wavelet coefficients and are obtained 

through the wavelet transform as 

   , , .j k j kc f x x dx



       (10) 

Each coefficient ,j kc  obtained in Eq. (10) is a contribution 

of the wavelet  ,j k x  in the whole approximation for the 

original signal. If the value of this coefficient ,j kc  is very 

small and its contribution to the approximation is considered 

negligible, we can omit the corresponding child wavelet 

 ,j k x  from the approximation. This procedure is called 
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thresholding and it forms the basis for the wavelet de-

noising. Wavelet analysis basis functions are finite and 

limited to one size and this makes wavelet analysis useful 

technique for detecting local features like discontinuities 

and spikes in a signal. On the other hand, Fourier analysis 

basis functions are infinite in nature and an approximation 

of a specific part of the signal affects the entire signal. 

Wavelet analysis is joint time-frequency analysis technique 

as contrast to the Fourier transform that is purely frequency 

analysis. This feature makes wavelet analysis to detect when 

in time a particular event took place. Wavelet smoothing or 

wavelet trend analysis is used to remove high frequency 

components from the extracted features which can be 

assumed as noise. 

 

 

 

 

 

Figure 5. Commonly used wavelets (a) Daubechies           

(b) Gaussian (c) Morlet 

2.3. Time Series Prediction 

The prediction of time series  x t  at r  time steps ahead, 

t rx 
, is obtained based on its values at present and past time 

steps 
    21 2

, , ..., , ,[ , ]t mr t r t r tt m r t m r
x x x x x x     

 as 

    21 2
, , , ..., , , .( )t r t mr t r t r tt m r t m r

x x x x x x x      
  Where 

  is a predictor functions and can be approximated through 

various conventional, statistical and artificially intelligent 

techniques like Bayesian, support vector regression, 

adaptive neuro-fuzzy inference system (ANFIS) and neural 

networks (NN). This paper uses a dynamic neural network 

called the nonlinear autoregressive model with exogenous 

inputs (NARX) and ANFIS techniques to approximate the 

predictor function  . 

2.3.1. The NARX 

The NARX is a dynamic neural network, used for modeling 

nonlinear dynamical systems. The NARX can be 

represented mathematically as 

 
   
     

, ..., 1 ;
1 .

, 1 , ..., 1

y

u

y n y n d
y n f

u n u n u n d

 
 

  

 
 
  

      (11) 

Where,  nu  and  ny  are the input and output of the 

system at time step n , while 1ud   and 1yd  , u yd d , 

are the input-memory and output-memory orders.  Equation 

(11) can also be written in compact form as 

     1 ;y n f n n    y u  , where  nu  and  ny  are 

the input and output regressor vectors respectively. The 

nonlinear mapping function  .f  is approximated through a 

multi-layer perception (MLP) algorithm trained with plain 

back propagation algorithm. This research deals with 

nonlinear univariate time series prediction and for this we 

set 0yd  . This reduces the NARX network to time delay 

neural network (TDNN) architecture and Eq. (11) reduces to 

(T. Lin et al, 1997)  

       1 , 1 ,..., 1 .uy n f u n u n u n d          (12) 

Figure 6 shows the way the NARX is trained and tested. 

During the training phase, the feedback loops (dotted lines 

in Figure 6) are not used. During the testing or prediction 

phase, if multistep-ahead predictions are required, the output 

values are fed back to both the input regressor  nu  and 

the output regressor  ny  at the same time. Thus, the 

resulting predictive model contains two feedback loops, one 

for the input regressor and another for the output regressor. 
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2.3.2. The adaptive neuro-fuzzy inference system 

The basic structure of the ANFIS is shown in Figure 7. The 

ANFIS has m  inputs  1 2, ..., mx x x , each with n  

membership functions (MFs), R  rules and one output y . 

When the ANFIS predicts a time series, the inputs are 

 ( 1) ( 2) 2, , , ..., , ,t mr t m r t m r t r t r tx x x x x x        and the output 

of the ANFIS is 
t ry x  . In the above mentioned case, the 

ANFIS predicts the time series r  time steps ahead based on 

current and the previous m  values. We use a Sugeno-fuzzy 

type inference system with five layers and 4m   inputs. 

Number of nodes N  in layer 1 is the product of number of 

inputs m  and the input MFs n  for each input, i.e., .N m n

. Number of nodes in layers 2-4 is equal to the number of 

rules R  in the fuzzy rule base. Layer 1 is a fuzzufication 

layer and it transforms the crisp inputs 
ix  to linguistic labels 

ijA . The examples of the linguistic labels are small, 

medium, large etc., and the transformation occurs with some 

degree of the MFs as  1

ij ijO x . Where, 1,...,i m , 

1,...,j n  and ij  represents the thj  membership function 

for the input 
ix . Different types of MFs are used like 

triangular, trapeziodal, Gaussian etc. Layer 2 of the ANFIS 

is a product layer, where for each node k , the output 

represents weighting factor or firing strength of the rule R  

 
Figure 6. NARX training and testing 

(Feedback loops are required only during testing) 

 
Figure 7. Basic structure of ANFIS 
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associated with k . The output 
kw  of this layer is 

 2

k ik iO x , and it is the product of all its inputs 

scaled according to the MFs 
ik .Where 1,...,i m  and 

1,...,k R . Layer 3 is a normalization layer and the output 

of each node k  in this layer represents the normalized 

weighting factor 

__

kw  of the thk rule as 
3 k
k

kk

w
O

w



 . 

Where 1,...,k R . Layer 4 is a de-fuzzification layer and 

the output of each node in this layer is a weighted output of 

the first order Sugeno-type fuzzy if-then rule as 

__
4

k k kO w f

. Where k kj j k

j

f p x r  , 1,...,j n , 1,...,k R , 
kf  

is the output of the thk  rule, and the parameters kjp  and 

kr  are called consequent parameters. Layer 5 is the final 

output layer and it contains only one node inside. The 

output of the layer 5 is an overall output y  of the network 

as
__

5

k k

k

O w f . It is also a sum of all the weighted 

outputs of the rules. We need a training dataset of desired 

input/output pairs  1 2, ,..., ,mx x x y to train the ANFIS or 

model the target system. In training phase, the ANFIS 

adaptively maps the input features space  1 2, ,..., mx x x   

to the corresponding output y . The mapping in the ANFIS 

system is done through the membership functions (MFs), 

the rule base and the related parameters that emulate the 

training dataset. The training phase of the ANFIS uses 

hybrid learning method. It uses the gradient descent 

approach for fine tuning the parameters that define the MFs 

and applies the least squares method to identify the 

consequent parameters that define the coefficient of each 

output equation in Sugeno-type fuzzy rule base. The training 

process continues till the desired stopping criteria is 

reached, i.e., number of epochs or error tolerance. 

3. SIMULATIONS AND DISCUSSIONS 

In this section, the prediction accuracy of both the time 

series predictors, NARX and ANFIS is compared using 

standard dataset of sunspot activity for years 1749-2012 

(RWC Belgium World Data Center, 2012). The sunspot 

activity data has non-linear, non-Gaussian and non-

stationary characteristics and is suitable to test the 

performance of the predictors. The entire dataset of sunspot 

activity was normalized between [0 - 1] and used for 

training and testing both NARX and ANFIS predictors. To 

get a reliable prognosis, the data need to be less sensitive to 

noise. This requirement can be reached using selected signal 

processing techniques such as wavelet smoothing or 

denoising discussed in section 2.2. For wavelet denoising, 

we use Daubechies wavelet (db4) with nine levels. The 

threshold technique is set to soft threshold, and the threshold 

rule used is universal. The universal threshold rule is 

defined as 2 log( )L . Where L is the signal length. We 

also set the rescaling method as single level where the 

algorithm considers the noise as white and estimates the 

standard deviation of the noise from the wavelet coefficient 

at the first level. We use the normalized Akaike Information 

Criteria (AIC) for assessing the prediction performance. The 

AIC can be formulated as (Akaike H. 1974). 

2 2
ln .

u
AIC

P
    (13) 

Where 
2

 is the variance of the prediction error, u is the 

number of model parameters to be updated and P is the 

total number of data points in the predicted dataset. A 

smaller value of AIC indicates better prediction 

performance. The sunspot activity data contains 3166 

points. For both types of predictors, 70% data is used for 

training, 15% for testing, 15% for validation, and 500 

training epochs. Computation was carried out in MATLAB
®

 

environment on a PC with Intel Core i7 with 8GB of RAM. 

One step ahead prediction is performed and in one step 

ahead prediction, the target ( 1)y n  is calculated from 

previous four values, ( )x n , ( 1)x n  , ( 2)x n  , and ( 3)x n 

.The input memory we use is 4ud  . Table 1 shows the 

mean absolute error (MAE) and AIC for NARX and ANFIS 

for sunspot data. The number of membership functions for 

ANFIS is 3 with 16 fuzzy rules and 104 parameters. The 

AIC achieved is -4.457. The neuro-fuzzy system proposed 

in (Wang WQ 2004) with the same datasets produced AIC 

of 1.527. The ANFIS method gave better prediction 

performance as compared to (Wang WQ 2004) for the same 

datasets. The sunspot training and test datasets were also 

used for assessing the prediction performance of NARX. 

For NARX, MAE of testing is 0.0034.  

Figure 8(a) shows the sunspot activity data along with 

wavelet smoothing. NARX and ANFIS prediction results 

are shown in Figure 8(b) and 8(c) along with error box-plots 

in Figure 8(d), respectively. In Figure 8(d), the medians of 

the box-plots are centered at zero for both NARX and 

ANFIS predictors and the 2.698  lines are at 0.01  

showing about 99.3% of the error observations within the 

range of 0.01 . Where   is the error’s standard deviation. 

There are some outliers for both NARX and ANFIS cases 

and NARX depicts better performance as compared to 

ANFIS in this case. In the case of NARX, the MAE value is 

approximately same as ANFIS (sunspot data-set) in Table 1.  

In the framework of machine condition monitoring, it is 

very important to know well in advance the expected 

behavior of a machine system for its proper operation and 
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maintenance scheduling without any major interruptions. 

Several approaches are adopted to monitor the system 

behavior and vibration-based approaches are quite popular 

for condition monitoring.  

 

 

 

 

Figure 8. Sunspot data, wavelet smoothing and prediction 

The desirable monitoring index should be highly sensitive to 

the fault-related vibration with low sensitivity to noise. The 

selection of monitoring index involves different steps of 

signal processing and feature extraction. These also greatly 

depend on the type of machine faults. The vibration index 

we use is proposed in section 2.1. The experimental 

vibration data  emanate from a planetary gearbox inside a 

wind turbine. The data are provided by the National 

Renewable Energy Laboratory (NREL), through a 

consortium called the Gearbox Reliability Collaborative 

(GRC) (H. Link et. al. 2011). The gearbox under test is one 

of two units taken from the field and redesigned, rebuilt and 

instrumented with over 125 sensors. The gearbox first 

finished its run-in in the NREL dynamometer test facility 

(DTF) and later was sent to a wind plant close to NREL for 

field test, where two oil losses occurred.  

 

 

Figure 9. (a) Planetary gearbox (b) GRC Drive train 

Configuration  

(Courtesy of National Renewable Energy Laboratory) 

 

The test turbine in the field is a stall-controlled, three-

bladed, upwind turbine with a rated power of 750kW. The 

turbine generator operates at 1200 RPM and 1800 RPM 

nominal on two different sets of windings depending on the 

power. The planetary gearbox has an overall ratio of 

1:81.491. It is composed of one low speed (LS) planetary 

stage and two parallel stages as shown in Figure 9. This 

study uses data from test case CM_2a with main shaft speed 

of 14.72 RPM and high speed shaft (HSS) speed of 1200 

RPM. The data are collected at a sampling frequency of 

40KHzsF  . Figure 10(a) shows an example of a raw 

(b) 

(c) 

(d) 

(a) 

(b) 

(a) 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

9 

vibration signal, 1sec (40000 samples) in length, collected 

from the gearbox inside the windmill.  

 

 

 

 

Figure 10. (a) Raw vibration signal (one sample)               

(b) Vibration index trend (350 samples) (c) one-step 

prediction NARX (d) one-step prediction ANFIS 

A total of 350 such vibration signals are analyzed in this 

section. Vibration indices are calculated as proposed in 

section 2.1. For both types of predictors, 70% data is used 

for training, 15% for testing, 15% for validation, and 500 

training epochs. Computation was carried out in MATLAB
®

 

environment on a PC with Intel Core i7 with 8GB of RAM. 

Figure 10(a) shows an example of a raw vibration signal, 

1sec (40000 samples) in length, collected from the gearbox 

inside the windmill. A total of 350 such vibration signals are 

analyzed in this section. Vibration indices are calculated as 

proposed in section 2.1. Figure 10(b) shows the vibration 

index trend with wavelet smoothing. The vibration index is 

gradually increasing with time. It is because of the oil loss 

occurred in the field test. The oil loss caused the gearbox to 

run dry and consequently, a gradual increase in the overall 

vibration levels and vibration index is observed. Figure 

10(c) shows one step prediction for NARX and Figure 10(d) 

shows one step prediction for ANFIS. In one step ahead 

prediction, the target ( 1)y n    is calculated from previous 

four values, ( )x n , ( 1)x n  , ( 2)x n  , and ( 3)x n  .The 

input memory we use is 4ud  .  

 

 

Figure 11. One-step ahead recursive prediction (a) NARX              

(b) ANFIS 

NARX seems to exhibit more promising results as 

compared to ANFIS in this case. Also, the MAE error value 

for NARX is less as shown in Table 1 (vibration index data-

set). We can also use one step recursive prediction for 

NARX and ANFIS to predict as many future values as we 

want as shown in Figures 11(a) and 11(b). For multi-step 

recursive prediction, we have to loop the output values back 

as discussed in section 2.3.1 in the NARX case (feedback 

(b) 

(c) 

(d) 

(a) 

(b) 

(a) 
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dotted lines in Figure 6). Similar strategy is adopted in the 

ANFIS case. 

4. CONCLUSION 

Two different techniques are used for predicting the wind 

turbine gearbox health related vibration based index trend. 

The prediction performance of the predictors, NARX and 

ANFIS, is illustrated on two data-sets, sunspot activity and 

vibration index. Both the NARX and ANFIS predictors 

perform quit well in this study. Results show the 

effectiveness of the predictors in estimating the variations of 

the monitoring indices. In this work, one-step-ahead and 

recursive multi-step ahead prediction is considered for both 

the NARX and ANFIS cases. Although, the k step ahead 

prediction is not performed in this research, it can be done 

easily by predicting the target ( )y n k with the previous 

values ( )x n , ( )x n k , ( 2 )x n k , ( 3 )x n k and so on.  

The potential application of these techniques for the 

development of on-line prognostic and estimation of 

remaining useful life (RUL) for machine condition is under 

consideration for further work. 
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