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ABSTRACT 

Advances in high-performance sensing technologies enable 

the development of wind turbine condition monitoring 

systems to diagnose and predict the system-wide effects of 

failure events. This paper presents a vibration-based two-

stage fault detection framework for failure diagnosis of 

rotating components in wind turbines. The proposed 

framework integrates an analytical defect detection method 

with a graphical verification method to ensure diagnosis 

efficiency and accuracy. The efficacy of the proposed 

methodology is demonstrated with a case study using the 

gearbox condition monitoring Round Robin study dataset 

provided by the National Renewable Energy Laboratory 

(NREL). The developed methodology successfully detected 

five faults out of a total of seven with accurate severity 

levels and without producing any false alarm in the blind 

analysis. The case study results indicate that the developed 

fault detection framework is effective for analyzing gear and 

bearing faults in wind turbine drivetrain systems based on 

system vibration characteristics. 

1. INTRODUCTION 

Maintaining wind turbines in top operating condition 

ensures not only continuous revenue generation but a 

reduction in electric power drawn from non-renewable and 

more polluting sources. Despite the large capital cost of 

establishing a wind farm, the operation cost of wind turbines 

is one of the primary contributors to wind energy costs 

(Ebeling, 1997; Tamilselvan, Wang, & Twomey, 2012; 

Tamilselvan, Wang, & Wang, 2012; Tamilselvan & Wang, 

2013). Unexpected breakdowns can be prohibitively 

expensive, as they immediately result in lost production and 

poor customer satisfaction. The need is becoming critical for 

effective wind turbine condition monitoring (CM) systems 

that enable accurate early-stage failure diagnosis to facilitate 

optimum maintenance planning. Advances in high-

performance sensing and signal-processing technologies 

enable the development of wind turbine health monitoring 

systems and failure diagnosis tools that can be applied to 

detect, diagnose, and predict the system-wide effects of 

wind turbine failure events.  

Maintenance activities for wind turbines can be broadly 

classified into two categories, namely, corrective 

maintenance and preventive maintenance. Corrective 

maintenance is carried out after a failure event, whereas 

preventive maintenance is done before the occurrence of a 

potential failure (Nielsen & Sorensen, 2010). Preventive 

maintenance can be further classified into scheduled 

maintenance and condition-based maintenance (CBM). 

Scheduled maintenance can be minor or major and is carried 

out at fixed scheduled times. Some examples of minor 

scheduled maintenance for wind turbines include change of 

filters, lubrication, etc. (Nilsson & Bertling, 2007). CBM is 

a form of preventive maintenance that involves continuous 

health monitoring of a wind turbine unit. Currently, the 

most common maintenance practice for wind farms is 

scheduled maintenance. However, with recent developments 

in the field of sensing and signal-processing techniques, 

CBM has been gradually adopted into maintenance decision 

making for wind farms (Byon, Perez, Ntaimo, & Ding, 

2010). In CBM, condition monitoring systems are installed 

on different system components, such as the gearbox, 

bearings, drivetrain, and generators, to record various 

sensory signals in order to determine the physical states of 

these components. Different types of sensory signals can be 

used for CM purposes, such as vibration and electrical 
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signals. Usually, CBM of wind turbines can be executed 

based on vibration monitoring (Shi, Wang, Zhuo, & Liu, 

2010; Gebraeel, Lawley, & Liu, 2002; Randall, 2011; 

Randall & Antoni, 2011; McFadden & Smith, 1984; Antoni, 

2002; Harris, 2001; Lebold, McClintic, Campbell, 

Byington, & Maynard, 2000), oil analysis (Lu & Chu, 

2010), or electrical signature analysis (Yang, Tavner, & 

Wilkinson, 2008). With the help of wind turbine health 

information provided by CM systems, optimal operation and 

maintenance (O&M) planning strategies can be ascertained 

to prevent system failures and improve wind turbine 

availability. 

Vibration analysis is one of the most commonly used 

mechanisms for CM of wind turbines (Shi, Wang, Zhuo, & 

Liu, 2010). It is mainly utilized to identify the present 

condition of wind turbine components, such as the gearbox, 

drivetrain, bearings, and so on, and estimate their damage 

growth over time. In vibration analysis, vibration signals 

produced by the rotating wind turbine components whose 

current health conditions need to be diagnosed are 

commonly analyzed either by broadband-based methods or 

spectral line analysis methods (Lu & Chu, 2010). In 

broadband analysis, parameters such as root mean square, 

peak value, or kurtosis are calculated based on the obtained 

output signals. Component failure can be estimated by the 

changes observed in the values of the above calculated 

parameters. Spectral line analysis is based on the theory that 

each component exhibits different vibration signatures 

frequencies. These frequencies vary for each component, 

such as the gear mesh, shaft harmonics, or bearing 

harmonics. Component failure is said to occur if there is a 

measurable increase in the frequency of the impulse signals 

for individual components. 

Research on real-time failure diagnosis, which interprets 

data acquired by smart sensors and utilizes these data 

streams in making critical decisions, provides significant 

advancements for wind turbine fault detection so that the 

health condition of a wind turbine can be determined before 

unexpected failures are developed (Tamilselvan, Wang, & 

Jayaraman, 2012; Tamilselvan & Wang, 2012; Tamilselvan 

& Wang, 2013; Byon et al., 2010). Among the many 

mechanisms for wind turbine CM, one of the most vastly 

used is vibration-based health monitoring systems, which 

detect wind turbine component faults based on the vibration 

signals produced by the rotating components during 

operation. Although effective health diagnosis for wind 

turbines provides various benefits, such as improved 

reliability and reduced turbine maintenance costs, analysis 

of massive heterogeneous vibration signals leading to 

accurate early-stage detection of wind turbine component 

failure remains a challenge.  

This paper presents a vibration-based two-stage fault 

detection framework and integrates an analytical defect 

detection method with a graphical verification method to 

ensure efficient and accurate failure diagnosis. The 

proposed methodology is demonstrated with NREL’s wind 

turbine gearbox CM Round Robin study, and the results are 

discussed. The rest of the paper is organized as follows. 

Section 2 presents the proposed vibration-based CM 

framework. Section 3 introduces the Round Robin gearbox 

CM experiment, and Section 4 details the data 

preprocessing. The analytical diagnosis method and the 

graphical verification method are detailed in Sections 5 and 

6, respectively. Section 7 reports the CM Round Robin 

study results, and Section 8 briefly summarizes the work. 

2. VIBRATION-BASED HEALTH DIAGNOSIS FRAMEWORK 

The framework for the proposed vibration-based two-stage 

health diagnosis is shown in Figure 1. The developed 

framework is composed of three essential modules: (i) data 

preprocessing for conversion of time domain vibration 

signals to frequency domain signals; (ii) an analytical 

diagnosis module for the detection of defects in the rotating 

components using sideband and kurtosis evaluation, as 

shown in the bottom left shaded box, which includes the 

severity factor and matrix determination process; and (iii) a 

graphical diagnosis module to determine the level of 

severity of the defect. 

 

Time Domain 

Vibration Sensor Data 

from Rotating 

Components

Time Domain 

Vibration Sensor Data 

from Rotating 

Components

Analytical Diagnostics

Severity Factor 

Determination 

Severity Matrix 

Determination 

Graphical Diagnostics

Severity Level 

Determination 

Data Preprocessing

Desired Frequency 

Determination 

Frequency Domain 

Conversion

Failure Modes and 

their Severity Levels

 

Figure 1. Vibration-based two-stage health diagnosis 

framework 

The time domain vibration sensory signals from the rotating 

components are preprocessed and converted into frequency 

domain signals for further CM analysis. The sideband- and 

kurtosis-based detection method is employed to analyze the 

frequency data to detect failures of the rotating components. 

The results of the analytical diagnosis are used as inputs to 

the graphical diagnosis process. The failure modes and their 

severity levels are determined from the frequency domain 

signals by graphical diagnosis. 

2.1. Vibration Data Preprocessing 
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The preprocessing of vibration data involves three steps, as 

shown in Table 1. The first step of the vibration analysis is 

to calculate the desired frequencies for the rotating 

components. For instance, the gear meshing frequencies 

(GMF) and shaft rotation frequency (SRF) are desired 

frequencies for gears, and ball passing frequency in outer 

race (BPFO), ball passing frequency in inner race (BPFI), 

and ball spinning frequency (BSF) are desired frequencies 

for bearings. The next step involves the identification of the 

relationship between the sensors and the components. Based 

on the identified relationship, the sensors related to different 

failure modes are segregated, and their corresponding 

desired frequencies are noted. The final preprocessing step 

is to develop the frequency spectrum from the raw time 

domain vibration signal using the fast Fourier 

transformation (FFT) process for the desired sensors. 

Step 1 Calculate GMF for gears and bearing frequencies 

Step 2 
Determine relationship between sensors and 

components 

Step 3 Develop FFT plot for desired sensors in each case 

Table 1. Procedure for vibration data preprocessing 

2.2. Analytical Diagnosis 

The online analytical diagnosis approach identifies defects 

or failures in the rotating components from the preprocessed 

frequency domain data. The developed analytical diagnosis 

method helps to narrow down the whole frequency spectrum 

to potential failure modes and their frequencies. The 

developed method with sideband- and kurtosis-based online 

defect detection processes the frequency data analytically; 

the stepwise procedure is shown in Table 2.  

The maximum amplitude values for the desired frequencies, 

the sidebands, and the kurtosis values for the sidebands are 

determined to calculate the severity factors to formulate the 

defect severity matrix. The failure modes and their severity 

levels from the frequency domain signals are determined by 

the defect severity matrix. The results from the analytical 

diagnosis are given as inputs to the graphical diagnosis 

process. 

Step 1 
Determine maximum amplitude values for 

sidebands and desired frequency 

Step 2 Determine kurtosis values for sidebands 

Step 3 Calculate severity factors 1, 2, and 3 

Step 4 Formulate defect severity matrix 

Table 2. The analytical diagnosis procedure 

2.2.1. Sideband and Kurtosis Analysis 

The sidebands are indicators of the failure modes in the 

frequency spectrum of each rotating component based on 

their spread on both sides of the desired frequency. The 

rising and inequality of the sidebands correspond to 

component defects; moreover, the severity of these defects 

can be identified based on the frequency sideband features, 

as listed in Table 3. 

The height and sharpness of the peak amplitudes in each 

frequency spectrum are measured by kurtosis. The spread of 

the sidebands on either side of the desired frequency can be 

analyzed using kurtosis values. Differences in kurtosis 

values for both sidebands denote their inequality. The 

kurtosis ratio, KR, is the ratio of the left side of the j
th 

frequency spectrum, where the desired frequency is KLj, to 

the right side of the j
th

, where the desired frequency is KRj, 

as shown in Eq. 1. Similarly, the ratio of maximum 

amplitude of the sideband on the left and right sides of the 

j
th

 frequency is determined as AR, as shown in Eq. 1. 

 ;    
Lj Lj

Rj Rj

K A
KR AR

K A
   (1) 

 

Frequency Sideband Feature Severity Level 

Rising of sidebands around 

desired frequency 
Low 

Unequal sidebands on both 

sides 
Medium 

Higher sideband amplitude than 

frequency amplitude  
High 

Table 3. Sideband-based damage severity definition 

(SpectraQuest, 2006)  

2.2.2. Severity Factors 

The different failure modes and their severity levels are 

determined from the converted frequency domain signal 

through sideband and kurtosis analysis. Table 3 shows the 

different severity levels based on the frequency sideband 

features. The three severity factor metrics developed for 

online defect detection are as follows. 

Severity factor 1 (SF1) ensures equal spread of the sidebands 

using the kurtosis ratio metric, as shown in Eq. 2. The 

threshold kurtosis ratio, KRT, is considered to be 0.6. The 

value of SF1 < 1 denotes the unequal spread of sidebands 

and vice versa. Severity factor 2 (SF2) ensures equal 

maximum amplitude of the sidebands on both sides of the 

desired frequency, as shown in Eq. 3. The threshold 

amplitude ratio, AT, is considered to be 0.9. The value of SF2 

< 1 denotes the unequal frequency amplitudes on both sides 

of the sidebands and vice versa. 

 
1

1

Min ( , )j j

T
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Severity factor 3 (SF3) ensures that the maximum desired 
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frequency amplitude is higher than the maximum amplitude 

of the sideband, Amax, as shown in Eq. 4, where AF is the 

maximum amplitude at the desired frequency. The value of 

SF3 < 1 denotes the frequency amplitude of the sideband, 

Amax, which is higher than the desired frequency, AF. 

 
3

Max ( , )

F

Lj Rj

A
SF

A A
  (4) 

The conditions SF1 ≤ 1, SF2 > 1, and SF3 > 1 show that the 

component has a low (L)-severity defect. The severity factor 

characteristics of the medium (M)-severity defect are: SF1 ≤ 

1, SF2 ≤ 1, and SF3 > 1; and SF1 > 1, SF2 ≤ 1, and SF3 > 1. 

Similarly, the high (H)-severity defect conditions are: SF1 ≤ 

1, SF2 ≤ 1, and SF3 ≤ 1; SF1 > 1, SF2 ≤ 1, and SF3 ≤ 1; SF1 ≤ 

1, SF2 > 1, and SF3 ≤ 1; and SF1 > 1, SF2 > 1, and SF3 ≤ 1. If 

all three severity factors are greater than one, then the 

component has no defect (N). Based on these rules, the 

severity levels and the failure modes of the components are 

identified based on each sensor. The procedure for assigning 

severity levels is clearly shown as a flowchart in Figure 2. 

The determined severity level will be assigned to the 

corresponding component u at level g through sensor m 

(Sugm). Similarly, the FFTs of different sensors are analyzed, 

and Sugm values are determined for all desired components. 
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Figure 2. Flowchart of the severity-level assigning 

procedure 

2.2.3. Severity Defect Matrix 

The failure modes and the severity levels of the rotating 

components based on each sensor are identified with 

different severity metrics. However, the same defect of a 

rotating component can be identified by different sensors in 

and around the component location. Therefore, there is a 

need to develop a unified metric to make decisions on the 

failure mode and its severity level. The combination of 

results for all the components from the different sensors 

leads to the development of a defect severity matrix. The 

desired component matrix T is shown in Eq. 5. 

 

Desired Component 1

Desired Component 2

Desired Component 

T

U

 
 
 
 
 
 

 (5) 

The desired component matrix and the severity factor levels 

of all the components are utilized to develop a defect 

severity matrix. The severity ratio of component u at 

severity level g, Sug, is represented as Eq. 6, where g 

represents the different severity levels (i.e., low, medium, 

high), and Sugm represents the severity level of component u 

at level g through sensor m. 

 

3

1 1 1

M M

ug ugm ugm

m g m

S S S
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   (6) 

The defect severity matrix, DS, represents the defect 

component and its severity level in the matrix format as 

shown in Eq. 7, where rows of the matrix represent each 

desired component, and columns represent the severity level 

of the components (i.e., low, medium, high). The analytical 

results are further fine-tuned using the graphical diagnosis 

process. 
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 (7) 

2.3. Graphical Diagnosis 

The unified defect severity matrix results provide initial 

insights about the component defects and their severity 

levels. However, false identifications are possible in the 

analytical methodology due to the overlap of different 

frequencies and their harmonic levels. Therefore, there is a 

need to verify identified component defects graphically. The 

frequency spectra of the predetermined component defects 

are verified graphically based on the sideband amplitudes 

and their spread. The developed two-stage fault detection 

framework is demonstrated with NREL’s Round Robin 

gearbox CM study in the next section. 
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3. GEARBOX DIAGNOSIS ROUND ROBIN STUDY 

The NREL Round Robin gearbox reliability collaborative 

(GRC) test turbine drivetrain (Sheng et al., 2011; Sheng, 

2012) is shown in Figure 3. The time domain vibration 

signals from the sensors placed on the gearbox are used for 

CM to determine the defects in the gears and bearings of the 

GRC test gearbox. 

 

Figure 3. GRC test turbine drivetrain (Sheng, 2012) 

 

 

Figure 4. GRC gearbox internal nomenclature and 

abbreviations (Sheng, 2012) 

The GRC gearbox has an overall gear ratio of 1:81.491. It 

has one planetary stage and two parallel stages, namely, a 

high-speed stage (HS-ST) and an intermediate-speed stage 

(IS-ST), as shown in Figure 4. The main shaft is connected 

to the planetary arm of the gearbox, and the high speed 

pinion of the gearbox is geared to the generator. The 

experiment was conducted at two speed levels: 1200 rpm 

and 1800 rpm.  

Test Case 

Electric 

Power     

(% of rated) 

Duration 

(min) 

Speed 

(rpm) 

CM_2a 25% 10 1200 

CM_2b 25% 10 1800 

CM_2c 50% 10 1800 

Table 4. Test case data description 

The three test cases were conducted at different power 

ratings and speed levels, as shown in Table 4. Data for each 

sensor placed on the gearbox were collected as ten 1-minute 

datasets for each test case. 

 

Damage # 
Component / 

Location 
Mode 

1 HSS gear set Scuffing 

2 
HSS downwind 

bearing (DWB) 
Overheating 

3 ISS gear set 

Fretting corrosion, 

scuffing, polishing 

wear 

4 
ISS upwind 

bearing (UWB) 

Assembly damage, 

plastic deformation, 

scuffing, contact 

corrosion 

5 ISS DWB* 

Assembly damage, 

plastic deformation, 

dents 

6 

Annulus/ring 

gear or sun 

pinion 

Scuffing, polishing 

and fretting corrosion 

7 
Planet carrier 

UWB** 
Fretting corrosion 

* Damage was on the spacer, not on the bearing 
** Damage was only on the non-rolling surfaces of the bearing 

Table 5. Actual damages in the wind turbine gearbox 

(Sheng, 2012) 

 

 

Figure 5. Test gearbox high-speed-stage gear damage 

(Sheng, 2012) 

Gearbox CM was carried out by mounting 12 sensors at 

various locations around the drivetrain. The vibration data 

was collected at 40 kHz per channel using a National 

 

 

 

 

Generator 

Hub 
Main 

Bearing 

Main 

Shaft 

Brake 
Generator 

Shaft 
Gearbox 

Bed Plate 

Annulus 

Planet 

Sun 

Gear 

Gear Pinion 

Pinion 

PLC 

Low Speed Stage 

LS-ST 

High Speed Stage 

HS-ST 

Intermediate Speed Stage 

IMS-ST 

Low Speed Shaft 

LS-SH 

Intermediate Speed 

Shaft 

IMS-SH 

High Speed 

Shaft  

HS-SH 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

6 

Instruments PXI -4472B high-speed data acquisition system 

(DAQ); further details about the experimental setup can be 

found in Sheng (2012). NREL provided the real damage 

results for the GRC gearbox (Errichello & Muller, 2012), 

and those damages selected for vibration analysis algorithm 

performance evaluation in the Round Robin study are listed 

in Table 5, in which HSS denotes the high-speed shaft, ISS 

denotes the intermediate-speed shaft, and LSS denotes the 

low-speed shaft. Figure 5 shows the real damage on high-

speed gear. 

4. DATA PREPROCESSING 

The Round Robin study involves three speed stages: low 

speed (LS-ST), intermediate speed (IS-ST), and high speed 

(HS-ST). Among the total sensors from the Round Robin 

GRC gearbox, the desired sensors for the analysis of the LS-

ST, IS-ST, and HS-ST are AN3 and AN5 to AN10. The 

relationships between these sensors and the components are 

determined based on sensor location and proximity to the 

rotating components as listed in Table 6. The damages 

which are capable of being detected by each sensor are also 

listed. 

Sensor 

Name 
Gear Shaft Bearing Damage 

AN3-

planet 

radial 

180 

Planet 

gear & 

sun 

pinion 

Planet 

arm 

Planet 

carrier 

UWB and 

DWB 

Planet gear 

defect, planetary 

arm bearing 

defect, planet 

bearing defect 

AN5-

LSS 

radial 

IS-ST 

gear 
LSS 

LSS 

UWB and 

DWB 

LSS bearings 

defect, ISS gear 

defect 

AN6-

ISS 

radial 

IS-ST 

pinion & 

HS gear 

ISS ISS 

ISS bearings 

defect, IS pinion 

defect, HS gear 

defect 

AN7-

HSS 

radial 

HS-ST 

pinion 
HSS HSS 

HSS bearings 

defect, HS pinion 

defect 

AN8-

HSS 

radial 

HS-ST 

pinion 
HSS 

HSS 

UWB 

HS pinion defect, 

HSS UWB 

defect 

AN9-

HSS rear 

radial 

HS-ST 

pinion 
HSS 

HSS 

DWB 

HS pinion defect, 

HSS DWB 

defect 

AN10-

carrier 

rear 

radial 

Planet 

gear & 

sun 

pinion 

Planet 

arm 

Planet 

UWB and 

DWB 

Planet gear 

defect, planetary 

arm bearing 

defect 

Table 6. Sensor and component relationship 

Gear 

Element 

# of 

Teeth 

Speed 

(rpm) 
GMF 

(Hz) 
SRF 

(Hz) 

Ring gear 99 Fixed NA NA 

Planet gear 39 14.74 
29.45 

0.25 

Sun pinion 21 
84.15 1.4025 

LSS gear 82 

115 Intermediate 

pinion 
23 

300 5 

ISS gear 88 
440 

HSS pinion 22 1200 20 

Table 7. Desired gear frequencies at 1200 rpm 

 

Location Type 
Speed 

(rpm) 
BPFI 

(Hz) 
BPFO 

(Hz) 
BSF 

(Hz) 

Planet 

carrier 

UWB 
14.74 

6.11 5.44 2.11 

DWB 6.65 5.88 1.99 

Planet 

DWB 

& 

UWB 

45.31 7.81 5.78 2.46 

LSS 

UWB 

84.15 

42.19 37.75 13 

DWB 30.6 26.9 
10.1

5 

ISS 
UWB 

300 
49 35.9 15.6 

DWB 84.6 70.4 26 

 HSS 
UWB 

1200 
197 143 62.5 

DWB 228 172 66.5 

Table 8. Desired bearing frequencies at 1200 rpm 

The desired gear and bearing frequencies are determined 

and listed in Tables 7 and 8, respectively, where UWB and 

DWB refer to the upwind bearings and downwind bearings, 

respectively. The defects from the bearings and gears can be 

identified from their corresponding desired frequency 

amplitudes in the frequency spectrum. FFT converts the 

time domain vibration signal into a frequency domain signal 

and helps to analyze each desired frequency based on its 

amplitude and its harmonics. 

5. ANALYTICAL DIAGNOSIS 

The analytical diagnosis process identifies the bearing and 

gear defects in the GRC gearbox from the preprocessed 

frequency domain data. The developed analytical diagnosis 

method is used to determine the severity factors and defect 

matrix and confine the whole frequency spectrum into 

different potential failure modes. Based on the rules 

specified in Section 2.2 about the severity levels and the 

failure modes of the components, severity factors 1, 2, and 3 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

7 

for the different gears and bearings of the GRC gearbox are 

determined. The severity factor analysis of sensor AN6 for 

case 2a is listed in Table 9. 

Component 
ISS 

Gears  

ISS 

UWB 

ISS 

DWB 

HSS 

UWB 

HSS 

DWB 

Desired 

Frequency 
GMF BPFI BPFO BPFO BPFI 

SF1 0.49 0.98 0.86 0.58 0.72 

SF2 0.97 0.73 0.42 1.06 0.58 

SF3 0.46 2.85 2.94 0.23 1.67 

Low 0 0 0 0 0 

Medium 0 1 1 0 1 

High 1 0 0 1 0 

Table 9. Severity factor analysis of sensor AN6 for case 2a 

 

 

Planet gear and sun pinion

Planet carrier upwind bearing

Planet carrier downwind bearing
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ISS gear and ISS pinion
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T 

ng
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 (8) 
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  (9) 

 

The desired component matrix T for the GRC gearbox is 

shown in Eq. 8. The unified defect severity matrix for the 

Round Robin study is determined using the proposed 

severity factors and is shown in Eq. 9. The analytical 

diagnosis results indicate that there are no defects in the 

LSS UWB and DWB. In this study, the severity level of the 

damage has been evaluated quantitatively based on the 

vibration signals, specifically the frequency sidebands. 

Although it falls outside the scope of this work, it will also 

be very interesting to investigate how different severity 

levels defined and measured in this study relate to the 

maintenance recommendations in practice in future studies. 

The defect severity matrix values show that the IS gear and 

pinion each have a high-severity defect; the HS gear and 

pinion each have a medium-severity defect; and the ISS 

UWB, ISS DWB, and HSS DWB each have a medium-

severity defect. The HSS UWB severity matrix values show 

that there exists a high-severity defect. These defect results 

are used as the input information for the graphical diagnosis 

process, and the analytical results are further verified and 

fine-tuned, as introduced in the next section. 

6. GRAPHICAL DIAGNOSIS 

The frequency spectra of the predetermined component 

defects are verified graphically based on the sideband 

amplitudes and their spread. The graphical diagnosis results 

are shown as frequency plots (Figures 6–10) for the 

identified damages. 

Figure 6 shows the HSS gear GMF (660 Hz) and its 

sidebands for the AN7 HSS radial sensor. The unequal high 

sidebands on both sides with GMF maximum amplitude 

show that there is a high-severity failure in the HSS gear. 

Similarly, Figure 7 shows the second harmonic of the BPFO 

(172 Hz) of the HSS DWB at (344 Hz) for the AN6 ISS 

radial sensor. The Amax of the right sideband is almost two 

times the Amax of the left sideband; moreover, the high 

amplitude of the right sideband is almost eight times the 

high amplitude of the desired frequency. These inferences 

from the figure prove that there is a high-severity failure in 

the outer raceway. Because the sideband amplitudes are 

found in the second harmonic, there is a chance of 

misalignment of the bearing. Figure 8 shows the ISS gear 

GMF (115 Hz) and its sidebands for the AN5 LSS radial 

sensor. The rise of the sidebands on both sides of the GMF 

maximum amplitude show that the ISS gear is in an early 

stage of failure.  

The damage of the ISS UWB is verified graphically using 

the frequency plot shown in Figure 9. The sensor value used 

is the AN6 ISS radial, and the BPFI is 53.8 Hz. The 

sideband amplitudes rise around the amplitude of the BPFI 

in the second harmonic frequency. The frequency plot 

clearly shows that there is an early inner raceway failure and 

bearing misalignment. Similarly, Figure 10 shows the BPFO 

of the ISS DWB at 73.7 Hz for the AN6 ISS radial sensor. 

The sideband amplitudes rise around one side of the 

maximum amplitude of the BPFO. These inferences from 

the figure prove that there is a high-severity failure in the 
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outer raceway. Thus, the component defects are identified 

graphically, and the results are discussed in the next section. 

 

Figure 6. Damage 1, HSS pinion 

 

 

Figure 7. Damage 2, HSS DWB BPFO 

 

 

Figure 8. Damage 3, ISS gear AN5 LSS radial 

 

Figure 9. Damage 4, ISS UWB BPFI 

 

Figure 10. Damage 5, ISS DWB BPFO 

7. DIAGNOSIS RESULTS 

The results from the online analytical defect detection 

method are used as an input to the graphical diagnosis. The 

failure modes and their severity levels from the frequency 

domain signals are verified graphically, and the results are 

unified to the component level, with their corresponding 

severity levels, as shown in Table 10.  

Damage Component Mode Severity 

1 HSS pinion 
Gear tooth failure 

of HSS pinion 
High 

2 HSS DWB 

Outer race failure 

and bearing 

misalignment 

High 

3 ISS gear 
Early stages of 

gear failure 
Low 

4 ISS UWB 

IR failure and 

bearing 

misalignment 

Medium 

5 ISS DWB OR failure High 

Table 10. Gearbox fault diagnosis blind analysis results 
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Figure 11. Comparison of damage results (Sheng, 2012) 

The tabulated results were identified before receiving 

knowledge of the actual failure modes from NREL. The 

possible number of failures that can be identified from the 

vibration analysis for this Round Robin study is about 

seven, as listed in Table 5. The developed two-stage CM 

approach identified five failures and their severity levels. 

Moreover, the failures identified by the proposed vibration 

analysis approach do not have any false identification. The 

blind analysis results were submitted to NREL’s gearbox 

Round Robin competition. A comparison of the results is 

shown in Figure 11. In the result comparison chart, this  

approach is masked as partner 1, which successfully 

detected five faults with accurate severity levels without 

producing any false alarm in the blind analysis. Further 

details on the NREL gearbox Round Robin study can be 

found in Sheng (2012). 

 

Figure 12. Damage 6, planet gear / sun pinion 

After the blind analysis, the damage results were provided 

by NREL. The defects that were not identified in the blind 

analysis are defects in the upwind planet carrier and 

annulus/sun pinion. These defects are verified graphically, 

and the defect of the planet gear/sun pinion is identified 

with low severity as shown in Figure 12 (due to the high 

maximum amplitude at the desired frequency and the rise of 

the sidebands around the desired frequency), but the upwind 

planet carrier bearing defect was not identified in Figure 13. 

Please note that the upwind planet carrier bearing defect was 

not detected by the proposed method, as the damage was 

actually found to be on the non-running surface of the 

bearing. 

 

Figure 13. Damage 7, planet carrier UWB BPFO 

 

Damage Component Mode Severity 

6 
Planet gear / 

sun pinion 

Early stages of 

gear failure 
Low 

Table 11. Additional faults identified during post-analysis 

The additional defect component detected during the post-

result analysis has been listed in Table 11, denoted as 

damage 6 in the damage analysis report. Because the desired 
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frequencies of the upwind and downwind planet bearings 

and upwind and downwind planet carriers are less than 10 

Hz, the sidebands of these desired frequencies could most 

likely be overlapped with each other. Therefore, it is not 

quite effective to trace upwind planet carrier defects 

analytically or graphically. 

8. CONCLUSION 

This research showed that the developed vibration-based 

two-stage fault detection framework integrating both 

analytical diagnosis and graphical diagnosis is quite 

effective for analyzing gear and bearing faults in wind 

turbine transmissions, as demonstrated by the CM Round 

Robin study results. The proposed methodology detected the 

most faults (five out of seven) with correct severity levels in 

the blind analysis, and more importantly, did not produce 

any false alarm. Moreover, the post-result analysis was able 

to identify one more fault. The presented study was carried 

out without the use of any baseline information. The 

proposed approach could be further improved and verified 

using healthy gearbox testing data that NREL is going to 

provide as baseline data. 

During the study, we found that it is quite useful to identify 

an initial set of potential failure modes using the analytical 

diagnosis method, which will substantially reduce the 

workload in processing massive high-frequency vibration 

data. With the preliminary results from the analytical 

diagnosis method, the graphical verification can be 

extremely useful to ensure correct diagnosis and avoid 

potential false identifications. 

With the lessons learned from this CM Round Robin study, 

research on wind turbine condition monitoring can be 

further extended to failure prognostics through continuous 

CM and failure prediction, which will ultimately lead to 

automation of the wind farm maintenance decision-making 

process to reduce costs. Further study could also focus on 

developing a complex system design framework that can 

leverage the results of this study to quantify the 

functionality, reliability, and cost benefits of CM techniques 

and integrate them into a system-level wind turbine design 

practice, which may serve a fundamental solution of 

enhancing reliability and reducing wind turbine life-cycle 

cost. 
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