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ABSTRACT

The problem we were trying to solve in 2013 PHM Soci-
ety Conference Data Challenge competition 1 is closely re-
lated to remote monitoring and diagnostics in industrial ap-
plications. This data was generated from an industrial piece
of equipment with a sensor network to measure several pa-
rameters and an onboard condition monitoring system. The
measured data goes through a control logic in order to mon-
itor the equipment’s operating regime. At any time instant
when some of these parameters meet a specific condition,
the control system generates an unique event id/code. Each
case is described by a set of event codes which character-
ize the atypical operating condition of the equipment. Some
of these cases with specific event code combinations may be
operationally significant and could be indicative of “Prob-
lem Types”, some of which are assumed to be known to the
subject matter experts. As a response to these problems, do-
main experts recommend appropriate diagnostic measures (or
maintenance actions) depending on the problem types. The
goal of this data competition is to build an automated sys-
tem that can recommend particular maintenance action(s) to
mitigate these problem(s).

1. RECOMMENDER SYSTEMS

Though active research has been conducted in recommender
systems for the last two decades, more recently this field has
gained tremendous attention particularly in service industry.
In simple terms the intention of building recommender sys-
tems is to effectively suggest users on possible items of inter-
est with some prior understanding of the contextual informa-
tion on that user’s and/or similar user’s and/or similar item’s
profile. The recommended item(s) is the one with highest es-
timated “utility metric” that best represents user’s notion of
interest. Such “utility metric” include user’s rating expressed
explicitly in terms of symbols (stars) or numbers (binary, cat-
egorical). In more formal terms, the objective is to maxi-
mize user’s utility function (Fu) in the joint user-item space
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(U×C → ℜ) defined by a set of U users where any user u ∈ U
and a set of C items/commodities where any item c ∈ C. The
recommender system’s goal is to propose a new item c∗ ∈ C
to the user u, such that Fu(c, u) is maximized over all c ∈ C.

In this paper we have demonstrated the application of col-
laborative filtering technique to recommend maintenance ac-
tions. However, first we will provide a comprehensive
overview on some of the popular recommendation tech-
niques. Based on the literature (Koren & Bell, 2011; Koren,
Bell, & Volinsky, 2009; Adomavicius & Tuzhilin, 2005), rec-
ommender systems are broadly classified into three groups,
namely content filtering, collaborative filtering and hybrid ap-
proach which is essentially a combination of collaborative
and content filtering. Here filtering is synonymous to estimat-
ing Fu(c, u) using either item’s content based features e.g.,
keyword weights or user’s explicit feedback on items e.g., rat-
ings. In a loose sense, content filtering based approach uses
low level information whereas collaborative filtering uses
high level information to accomplish the job. Content filter-
ing assumes access to item’s content (Dc). In this approach
the first step is content based information retrieval where a
set of attributes/features (Ac) that best describes an item c are
extracted. This is followed by estimating Fu(c, u) based on
the extracted features of items. We will elaborate this with an
example. In the aviation safety domain, suppose an aviation
safety officer (end user) is interested in reading a particular
class of text reports written by the flight crew/passengers, for
example turbulence related reports, then our goal is to rec-
ommend the safety inspector with similar reports on turbu-
lence related topic based on his/her preference. In order to do
that, we first need to know what are the important keywords
that best describes turbulence related topic, e.g., “mountain’,
“clear-air”, “convective” etc. There are several approaches
in retrieving such information (keywords) and the choice of
the approach typically depends on the nature of the data. For
example, if we intend to find the keywords from a corpus
of (only) turbulence related documents, we may use “Term
Frequency-Inverse Document Frequency (TFIDF)” to mea-
sure the importance of the words across of the whole corpus.
We will provide further details on TFIDF in another section.
However if the document corpus contains various topics (e.g.,
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weather, maintenance, turbulence, mechanical failure etc.) in
varying proportions, then a complex machinery like “Latent
Dirichlet Allocation (LDA)” is required to obtain a set of key-
words to describe each topic. We refer the reader to the paper
(Blei, Ng, & Jordan, 2003) for further details as it is beyond
the scope of this paper. Once we obtain the key features (Ac)
then the remaining task is to adopt a heuristics or a model
based approach to compute the score of the utility function
Fu(Ac,Dcj ) over all new items’ content Dcj . The item with
the highest score or the n top scoring items are recommended
to the user. In the above example, the contents of new reports
that closely match the description of turbulence related topic
are presented to the safety officer.

As mentioned earlier collaborative filtering based approach
does not assume access to item’s content Dc, instead it ex-
pects user’s explicit feedback (ratings rc) on items i.e. user-
item interactions (Yûĉ). One can think of Yûĉ as a matrix
whose rows represent the set of users û ⊂ U who have pro-
vided ratings on a subset of items ĉ ⊂ C and the columns rep-
resent the set of items, each of which has been at least rated
by one or more users. Since users generally provide feedback
not necessarily on every items but a small subset of items,
Yûĉ tends to be extremely sparse. In collaborative filtering a
new item is recommended to a user ûk based on the ratings of
other users ûj having similar taste. In heuristics based collab-
orative filtering we first retrieve neighboring users uj and uk

and then use an aggregate function to compute an average rat-
ing for each item from ĉ. The item with maximum weight (in
this case rating) is recommended to user uk. The readers are
advised to consult the following literatures (Koren & Bell,
2011; Koren et al., 2009; Adomavicius & Tuzhilin, 2005) for
detailed description of variations on aggregation functions.

Model based collaborative filtering however relies on map-
ping the user-item interaction to a latent space to achieve this
goal using techniques like matrix factorization (Hoyer, 2002;
Wold, Esbensen, & Geladi, 1987; Hoyer, 2004; Lee & Seung,
2001; Berry, Browne, Langville, Pauca, & Plemmons, 2006;
Su & Khoshgoftaar, 2009; Cichocki & Zdunek, 2007; Ko-
ren & Bell, 2011; Koren et al., 2009), probabilistic mixture
model (Condliff, Lewis, & Madigan, 1999) etc. In this paper
we will restrict our discussion to matrix factorization meth-
ods only. In general matrix factorization methods are easy
to understand and interpret from a mathematical perspective
and also flexible in many sense. We will elaborate on some of
these advantages. In these techniques we represent the user-
item interaction Yûĉ as a product of two entities, one repre-
senting a collection of mixing factors (basis vectors) and the
other represents target profiles. In some occasions these la-
tent factors can be interpretable. In the “blind source sepa-
ration” literature a frequently cited example is the “cocktail
party problem” where sounds (signals) from multiple sources
are mixed up resulting in a combined sound (signal) and the
problem to solve is to separate these unique sound (signal)

sources. With the assumption that the observed sound is a
linear combination of the signals from unique sound sources,
our objective is to find a way to compute not only the mix-
ing profiles (basis vectors/latent factors) but also the unique
sound sources. In some other domain these latent factors
can be completely unobserved and at the same time not in-
terpretable. In general matrix factorization techniques maps
the given user-item interaction Yûĉ into a low dimensional
(m) latent factor space defined by the inner product of Wûm

and Hmĉ, where Wûm represents the item-latent factor rela-
tionship and Hmĉ infers to what extent an user is interested in
any item when expressed in terms of that item’s relationship
with one or more latent factor(s).

There are a wide variety of literatures (Hoyer, 2002; Wold
et al., 1987; Hoyer, 2004; Lee & Seung, 2001; Berry et al.,
2006; Su & Khoshgoftaar, 2009; Cichocki & Zdunek, 2007)
on matrix factorization. Some of the popular and widely
used algorithms in matrix factorization include Spectral Value
Decomposition (SVD), Spectral Decomposition Algorithm
(SDA) (Srivastava & Buntine, 1995), Non-Negative Ma-
trix Factorization (NMF), Independent Component Analysis
(ICA) and Principal Components Analysis (PCA). Although
the fundamental idea is same but these machineries consider
varying mathematical properties. For example, classical PCA
results in a factorization of the matrix into a set of m orthog-
onal basis vectors. In addition this decomposition technique
allows the elements of Wûm and Hmĉ to be either positive
or negative. On the other hand Non-Negative Matrix Factor-
ization finds this decomposition using squared reconstruction
error criterion while preserving the non-negativity property
over the entire solution space. As we will later demonstrate,
some of these properties can be very useful in understanding
the underlying data generating process. Researchers typically
choose their favorite algorithm based on their understanding
about the domain and depending on their goal. However stan-
dard matrix factorization techniques must be applied judi-
ciously considering the amount of data or availability of priori
knowledge or confidence on the observed data or issue related
to over fitting and bias. The research community have pro-
posed several variations (Cichocki & Zdunek, 2007; Koren
& Bell, 2011; Koren et al., 2009; Adomavicius & Tuzhilin,
2005) of the standard matrix factorization techniques to take
care of the above mentioned issues. Below we provide an
overall summary of the state-of-the-art technologies on rec-
ommender systems. Further details on each of these bullets
can be found in (Koren & Bell, 2011; Koren et al., 2009;
Adomavicius & Tuzhilin, 2005).

1. Content filtering[Content based information retrieval,
Content feature based information filtering]

(a) Heuristics based[Similarity on item’s content based
features: e.g., cosine]

(b) Model based[on item’s content based features: e.g.,
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classification, clustering etc.]
2. Collaborative filteringRating based information re-

trieval, Rating based information filtering]
(a) Heuristics based[Aggregation/similarity on user’s

explicit feedback (item’s ratings): e.g., aver-
age/weighted average, cosine etc.]

i. Variations of aggregation/similarity functions
(b) Model based[on User’s explicit feedback (item’s

ratings): e.g., latent factor based approach]
i. Introducing sparsity

ii. Introducing bias
iii. Incorporating user’s implicit feedback
iv. Incorporating confidence on user’s feedback
v. Any combination of the above

3. Hybrid filtering[2 + 1]

2. THE COMPETITION PROBLEM

The problem we are trying to solve in this data challenge
competition is closely related to remote monitoring and di-
agnostics in industrial applications. We were provided with
three data sets for training. This data was generated from an
industrial piece of equipment and no additional information
was provided due to proprietary reasons. The equipment has
a sensor network to measure several parameters with an on-
board condition monitoring system. The measured data goes
through a control logic in order to monitor the equipment’s
operating regime. At any time instant when some of these pa-
rameters meet a specific condition onboard, the control sys-
tem generates an unique event id/code. It is possible that the
control system concurrently triggers multiple events codes if
all the necessary conditions are met at the same time instant.
To clarify it further: think of any particular case as a set of ob-
servations either created by an automated system or manually
by an engineer. Each case is described by a set of event codes
which characterize the atypical onboard operating condition
of the equipment. Some of these cases with specific event
code combinations may be operationally significant and could
be indicative of “Problem Types”, some of which are assumed
to be known to the subject matter experts. As a response to
these problems, domain experts may recommend appropriate
diagnostic measures (or maintenance actions) depending on
the problem types described by a set of the events which have
been flagged as a result of atypical operating condition. The
goal of this data competition is to build an automated sys-
tem that can recommend particular maintenance action(s) to
mitigate these problem(s).

As mentioned earlier some of these cases are indicative of
known “Problem Types” to the subject matter experts. How-
ever there could be many examples where a set of cases were
not instructive enough to be acted on and hence termed as
“Nuisance Cases”. These cases were mostly created by au-
tomated systems and were presented to an subject matter ex-

pert who determined that the symptom was not sufficient to
notify the customer of the identified “Problem Types”. The
task of recommending a particular maintenance action, gets
relatively easier when these cases have less redundancies in
the event combinations. The two major sources of redun-
dancies in this analysis are strong background information of
“Nuisance Cases” and overlapping events between “Problem
Types”. Given the context, the goal is to accurately recom-
mend confirmed “Problem Types” and avoid making any rec-
ommendations for historical “Nuisance Cases”. In this com-
petition the metric used to measure success was in terms of
the number of useful outputs. In equation form, the perfor-
mance of the recommender system (M ) was assessed using
the following score:

Score(M) = No −Nmc −Nn (1)

where No, Nmc and Nne denotes the total number of outputs,
the number of incorrect outputs and the number of nuisance
outputs respectively. The number of incorrect outputs is es-
sentially the penalty due to misclassifications i.e. the number
of outputs where the true labels and recommender system’s
inferred labels do not match. On the other hand the number
of nuisance outputs introduces the penalty due to false pos-
itives i.e. where the recommender system infers any truly
“Nuisance Cases” as one of the “Problem Types”, other than
”none”. While evaluating the Score (refer Eqn.1) the number
of cases with confirmed problems and nuisance test cases are
essentially balanced. For the training set, the ground truth is
know and hence Nmc and Nne are known. However for the
test set, a total of 174 cases were correctly labeled by the sub-
ject matter experts with the known “Problem Types” and the
rest as “Nuisance Cases”, although these label information
were not available to the participants during the competition.
For the test case, the total number of outputs are compared
with the known “Problem Types” (174 cases) and a fixed ran-
dom sample of 174 “Nuisance Cases”. Below we have pro-
vided a summary on the data sets provided for training and
test purposes.

1. Train:
(a) Case to Problem (F tr

cp ) : file contains the different
problems associated with each case. (used for train-
ing purpose with known “Problem Types”)

(b) Nuisance Cases (F tr
cn) : file contains a set of cases

that were not instructive enough to be acted on.
(used for training purpose with unknown “Problem
Types”)

(c) Case to Events and Parameters (F tr
ces) : file contains

the mapping between cases and events and snap-
shots of the parameters corresponding to each event.

2. Test:
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Input: F tr
cp , F tr

cn, F tr
ces, F tst

cp

Step A: Data preparation
Step B: Information retrieval feature selection
Step C: Building model
Step D: Test set evaluation
Output: Unknown Labels on Test set

Figure 1. In this figure we show the basic steps of our ap-
proach while accomplishing the goal to predict a good num-
ber of unknown “Problem Types” which are truly operational
while ignoring the majority of the test cases which may just
be nuisance cases.

(a) Case to Problem (F tst
cp ) : file contains the different

problems associated with each case. (used for test-
ing purpose with unknown “Problem Types”)

3. SUGGESTED APPROACH

With explicit feedback (preferences) from subject matter ex-
perts we want to predict a good number of unknown “Prob-
lem Types” which are truly operational while ignoring the
majority of the test cases which may just be nuisance cases.
There can be several ways one can approach this problem.
For example, one can pose this as a binary classification prob-
lem where the objective will be to separate the truly oper-
ational cases from the nuisance cases using the class labels
provided by the subject matter experts, followed by a sub-
categorization of the identified “Problem Types”. In our ap-
proach, we assumed that the values of the parameters cor-
responding to each event may not be very useful on the first
hand as the event id/code itself summaries the parameters set-
tings for a specific condition. We also hypothesized that most
of the “Problem Types”, whether they are correctly identified
or not, has to be inferred based on their observed event dis-
tributions. Apart from that, we have adopted a more generic
approach where the key idea is to estimate the likelihood that
a subject matter expert will accept a recommended mainte-
nance action by characterizing both “Problem Types” and
“Cases” in the event space. This approach also opens up
further possibilities of ranking all of the potential choices of
maintenance actions according to their likelihood. However
in this competition we have recommended the maintenance
action corresponding to the highest likelihood to the subject
matter expert.

3.1. Data Preparation

In figure 1 we have shown the steps to accomplish the ob-
jective described above. In the very first step we construct
the subject matter expert’s understanding about the “Problem
Types” given the corresponding cases i.e. “Problem Types”-
“Case” correspondences Ypc from F tr

cp and similarly the ob-
served “Event”-“Case” correspondences to Zec from F tr

ces.
As mentioned earlier, we have ignored the values of the pa-

Input: F tr
cp , F tr

cn, F tr
ces

Step 1: [logcp, logces, logcn] = LOAD F tr
cp ,F tr

ces,F tr
cn.

Step 2: [logcp, logces, logcn] = FILTER logcp, logces,
logcn by MISSING case number ;

Step 3: logec = EXCLUDE parameters FROM logces;
Step 4: conCase = UNION logec, logcn;
Step 5: logs = JOIN logcp and conCases BY case number;
Step 6: grpd = GROUP logs BY case number;
Step 7: FOREACH grpd GENERATE logs;
Step 8: uniqueCase, uniqueEventId, uniqueProblem =

UNIQUE logs.Case, logs.EventIds, logs.Problems;
Step 9: Mec := FOREACH uniqueCase COUNT

logs.EventIds;
Step 10: Zec := Mec(Mec > 1)=1
Step 11: Ycp := FOREACH uniqueCase GENERATE

logs.Problems;
Output: Ycp, Zec

Figure 2. In this figure we provide the pseudo code of the
data preparation steps. We were provided with three data files
for training: file containing the different problems associated
with each case, a second file containing a set of cases that
were not instructive enough to be acted on and finally a file
containing the mapping between cases and events and snap-
shots of the parameters corresponding to each event. The test
file contains the different problems associated with each case.

rameters corresponding to each event while constructing Zec.
F tr
cp has 164 rows and two columns, namely case number and

corresponding “Problem Types”. F tr
cp has 10925 rows with

the nuisance case numbers . The file (F tr
ces) consisting of case

to events mapping and parameter information has 1316653
rows and 32 columns. The columns represent case num-
ber, it’s corresponding event id/code and 30 measured sen-
sor values or parameters, the details of which are unknown.
Figure 2 shows the detailed steps to construct Ypc and Zec.
The data preparation recovered 10459 unique train cases and
their corresponding 13 unique “Problem Types” and 1242
unique event ids. This means Ypc and Zec are of the size
of 10459 × 13 and 1242 × 10459 respectively. The test set
F tst
ces was processes following the same logic as described in

figure 2 to construct the “Event”-“Case” scenario (Ztst
ec ), ex-

cept that we considered the same set of unique events ids from
training set and ignored the rest of the events to maintain con-
sistency. The size of Ztst

ec is 1242× 9358.

3.2. Information Retrieval Feature Selection

In the field of information retrieval, the similarity between
two entities is often measured by treating each entity as a
vector of their occurrences as observed and computing dis-
tance between them using some heuristics. In this context,
we can think of the columns from Zec matrix as vectors rep-
resenting the occurrences of the corresponding events over all
cases that has been observed. In text mining, documents are
often treated as collections of statistically independent words
with varying frequencies i.e. documents can be represented
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as vectors of frequencies with various word observed over the
entire corpus. However not all these words are equally infor-
mative similar to the event id/cases in our problem. In the
text mining paradiagm, to successfully retrieve the most rele-
vant document from the entire collection we need to consider
building a query using informative words which best describe
the document (or similar documents) and at the same time
minimize the background noise (avoid redundant words). In
text mining community, Inverse Document Frequency (IDF)
(Papineni, 2001) is one of the most popular measures of a
word’s importance. IDF of a word is measured by taking the
logarithmic ratio of counts of total documents to the counts of
documents that contains the specific word. Words which ap-
pear very frequently across documents are given lower weight
as compared to words that appear less frequently among doc-
uments. The intuition is that highly frequent words across
documents are not a good discriminator. Following the same
analogy we generate the IDF scores of each event from Zec

and ranked them based on their scores. In our training data
we have examples of both nuisance cases and problem cases.
These nuisance cases along with the problem cases should
be examined to determine which event features are redundant
and not useful for discriminating “Problem Types” from the
rest. The selection of event(s) is based on how the model (M )
performs on the training data itself and the metric to evaluate
the performance is shown in Eqn. 1; i.e. our goal is to maxi-
mize Score(MÊ). This means we select a subset ê of the total
events set e based on their IDF scores and use these events as
features to build a model MÊ such that score 1 is maximized.
The redundant events are all set to zeros. We will revisit this
discussion again in the result section.

3.3. Building Model

In this section we will start discussing our model building ap-
proach in a more generalized way. However as we proceed
further we will simplify the model to fit our problem. This
is intentionally done to ensure that the intuition of the math-
ematical formulation is still consistent with the discussions
above. We will start with a matrix decomposition algorithm
that can reduce the number of dimensions in the observed
signal and here we assume that a set of stationary signals is
mixed through a linear mixing matrix. The result of this mix-
ing matrix is the observed signal. The linear model can be
expressed as:

Y = WH + E (2)

In this formulation, Y ∈ Rp×c is a matrix of observed data or
signals,W ∈ Rp×e is the matrix of mixing or basis vectors,
H ∈ Re×c represents the hidden source and the E ∈ Rp×c

matrix represents the noise sources. Here we also assume
that there are a total of e stationary components of H. We

will need to solve for W and H given the Y matrix. Our
objective will be to minimize the square Euclidean distance
D(Y∥W,H ) = 1

2 ||Y − WH||2. From the nature of the ob-
served data we know Y is definitely sparse in nature but H
may not. We don’t make any assumption about the sparsity
of W. Instead we introduce L − 2 regularization terms. In
this context it is worth mentioning that the choice of L − 2
regularization is very instinctive as we intend to restrict large
value components and hence reduce chances of over fitting.
The modified cost function looks like,

D(Y∥W,H )λ1,λ2 =
1

2
||Y − WH||2 + λ1∥|W∥|2 + λ2∥|H∥|2 (3)

where λ1 and λ2 are user defined regularization parameters.
We are essentially minimizing a cost function which is a reg-
ularized least-square function. It should be noted that we
will also make non-negativity assumptions on W and H. The
above cost function can be made more general by introducing
additional constraints like sparsity, offsets, weighting func-
tions etc.

The decomposition procedure starts by assuming a random
starting point for W, computing H and then re-computing
W given the current estimate of H. The updates of W
and H happen in such a fashion that the cost function
is D(Y∥W,H )λ1,λ2 is minimized.The update equations are
based on a least-squares solution to the problem and are de-
rived from the gradients of the cost function (Eqn. 3) with
respect to W and H. When λ1 > 0 and/or λ2 > 0, the update
scheme takes their effect into account and the cost function
gets compensated as a result of the regularized terms. Al-
though there exists several update schemes for W and H (e.g.,
multiplicative update (Lee & Seung, 2001)), least-squares so-
lutions in particular are extremely favorable to large scale
problems. The pseudo code of the update scheme is shown
in Fig. 3. The above algorithm is also known as Alternating
Least Square (ALS) NMF (Cichocki & Zdunek, 2007; Ko-
ren et al., 2009) with the non-negativity constraint on W and
H. For many applications the non-negativity assumption pre-
serves important properties of the observed data and can lead
to superior results in some cases. This may also lead to better
and more interpretable solutions (Hoyer, 2002; Wold et al.,
1987; Hoyer, 2004; Srivastava & Buntine, 1995; Cichocki &
Zdunek, 2007; Koren & Bell, 2011).

Matrix factorization techniques feature an easy way to incor-
porate prior knowledge. For example, suppose we have the
initial guess of the either matrix W or H. The first estimate of
W or H will result in the optimal (in the least squares sense)
result given the initial guess. Subsequent iterations will lead
to further refinements in the previous estimates of W or H. In
the current scope of this data challenge, we intend to demon-
strate the applicability of the above mentioned algorithms to
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Input: Y, m (desired rank),W, H, Q (stopping
criteria),λ1 ≥ 0 and λ2 ≥ 0 (regularization parameter)
Step 1(: Initialize W, H.
Step 2: Whilenot Q)

a) Update W:=
(YHT )

(HHT + λ1I)
;

b) W = W. ∗ (W >= 0);

c) Update H:=
WT Y

(WT W + λ2I))
;

d) H = H. ∗ (H >= 0);
end

Output: H, W

Figure 3. Pseudo code for NMF Algorithms with alternating
least squares update using both regularization parameters as
shown in Equation 3.

map Y into a low dimensional (e) event space defined by the
inner product of “Problem Types”-events relationship matrix
W and events -“Case” relationship H. Unlike test data the
training data contains known ground truth for all the cases
that correspond to “Problem Types” or “Nuisance Cases” and
therefore we can compute Y = Y T

cp following the logic ex-
plained in (refer Step 11) Fig. 2. If we assume that the blind
sources are same as the event combination for each case, then
they are essentially known to us, i.e. we can assign H = Zec

(refer Step 10 in Fig. 2). With Y and H known the problem
statement boils down to a simple estimation of W and hence
we do not update H (Step 2c in Fig. 3) and set λ2 = 0, while
W was estimated using Step 2a (Fig. 3) with λ1 ≥ 0.

With W estimated we can reconstruct Ỹ and compare it with
Y to evaluate the prediction performance using Eqn. 1. In the
feature selection stage, the relevant events ê from e are chosen
based on their IDF scores for which the model Mê maximizes
score prediction performance on the training data. However
selecting the features using this mechanism may sometimes
lead to over fitting.

3.4. Results and Discussion

To infer the “Problem Types”, we first preprocess the test data
to obtain Ztst

ec following the same logic described in Fig. 2
and then estimate Ytst=W Htst, where Htst = Ztst

ec . For this
experiment the regularization parameter λ1 was tuned to 4. In
Table 1 we present the outcome of the recommender for both
the training and the test set. The first column of Table 1 repre-
sents the identified “Problem Types” and the second and forth
column represent the ground truth of the training and test sets
respectively. Column 3 & 5 represent the percentage of the
accurately predicted “Problem Types” (expressed in %) of all
the train and test cases for which the ground truth is know. In
the training set there are 13 unique “Problem Types” and a to-
tal of 164 cases. However the test set has 14 unique “Problem
Types” and a total of 174 cases for which the prediction has

to be made. It should be noted that the training data does not
contain any examples for P0932 and P6880 types present in
the test set and the model is not expected to make any kinds
to predictions on these types as they have been anyway elim-
inated from F tr

ces while computing Ztst
ec during the prepro-

cessing stage. Beside P2651 type, the prediction accuracy
for the rest of the “Problem Types” are considerably worse.
The overall accuracies of the prediction on the training and
the test sets are 87.5% and 49.3% respectively. There can
be may reasons to this poor accuracy on test set, like limited
examples of overall “Problem Types” as compared to “Nui-
sance Cases” in the training set, skewness in the examples of
“Problem Types” or even over fitting due to poor selection of
tuning parameters. The selection of the tuning parameters can
be handled in many different ways as described in (Cichocki
& Zdunek, 2007). There exists a huge scope in improving the
generalized performance of the ALS NMF based prediction
algorithm. It requires some experimentation with different
variations of the above mentioned cost function along with
an appropriate set of features and correct parameter settings
before we obtain the model that best fits this data set.

4. CONCLUSION

This paper has demonstrated the application of a popular col-
laborative filtering based technique to recommend mainte-
nance actions. In this paper we have discussed the use of stan-
dard algorithms like ALS NMF to extract mixture matrix (ba-
sis vectors) as a necessary step to predict “Problem Types”.
The above mentioned algorithm has demonstrated the abil-
ity to predict unknown “Problem Types” for new event se-
quences. Though ALS NMF based algorithm is better suited
for large scale problems, a key weakness of the algorithm,
however, is that it assumes that the mixing between W and
H is linear. It may be the case that a nonlinear mixing have
occurred. Depending on the nature of the nonlinearity, this
algorithm may not correctly capture the appropriate basis fac-
tors. Another venue to explore is to inspect 2 or 3 top scoring
(probable) “Problem Types” for misclassified examples from
training set.
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