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ABSTRACT

Despite been introduced about more than 30 years ago, the
Stochastic-Resonance (SR) theory has only been gaining con-
siderable attention in the field of condition based mainte-
nance (CBM) in recent years. SR is a nonlinear physical phe-
nomenon where weak signals (i.e. signals with low signal-
to-noise ratio) can be enhanced by a cooperative interaction
of noise and periodic excitation (stimulus) in particular non-
linear systems, e.g. “bistable” systems. In other words, SR
serves as a non-linear filter that can amplify a (periodic) sig-
nal of interest heavily masked by a large background noise
by adjusting both the parameters of the nonlinear bi-stable
system and the intensity of artificially generated noise to be
added to the measurement signal. This paper discusses an
improvement of SR filtering with multi scale noise tuning
recently published for multi-fault diagnosis of a rolling ele-
ment bearing subjected to low rotational speed and low load.
Prior to application of the SR filtering, gear-related signals
are removed from a measured acceleration vibration signal
(i.e. signal pre-whitening) by means of the cepstra-based dis-
crete components removal. The pre-whitened signal is fur-
ther processed by employing an optimized SR filter in which
the filter parameters are pre-determined based on the faulty
data. Finally, features defined as the ratio between the peaks
around the corresponding bearing fault frequencies and the
background noise level are extracted from the spectrum of
the output signal obtained from the SR filtering. A number
of experiments have been carried out on a gearbox dynamics
simulator with healthy and faulty bearings in order to demon-
strate and verify the effectiveness of the proposed approach
for bearing fault detection under low shaft rotational speed
(348 rpm) and low load (1.2 Nm). For comparison purpose,
the experimental data have been analyzed both with the well
known “envelope” method and the proposed framework. The
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experimental results show that the proposed framework out-
performs the envelope method.

1. INTRODUCTION

1.1. Background

Rolling element bearings are one of critical components of-
ten reported as the major cause of total breakdowns in ro-
tating machineries. In order to avoid any total breakdown
in such machineries, an accurate and robust bearing condi-
tion monitoring and diagnostic system is therefore necessary.
Nowadays, a number of bearing diagnostic techniques rang-
ing from physically-inspired to data-driven approach have
been developed and reported in literature. Among those ex-
isting techniques, the optimized High Frequency Demodula-
tion (HFD)/envelope technique comprising several advanced
signal processing steps, e.g. cepstra based discrete compo-
nent removal (prewhitening), minimum entropy deconvolu-
tion (MED) and spectral kurtosis analysis, is one of the
most successful technique. Interested readers are referred
to (Randall & Antoni, 2011) for a comprehensive tutorial of
this optimized envelope technique.

When a damage occurs on one of the elements (e.g. outer
race, inner race or rolling element) of a bearing subjected
to low rotational speed and low load, it can be argued that
the damaged-induced vibration signal (i.e. impulsive signal)
is severely masked by a large background noise originating
from other machine components and the operating environ-
ment. As the signal-to-noise ratio (SNR) of the damaged-
induced vibration signal is low, bearing fault detection un-
der such circumstances is a very challenging task. Although
the envelope technique has been successfully applied for a
wide range of applications, it appears that the envelope tech-
nique has some limitations when applied on bearings under
low speed and low load, as will be shown in the next section.
Therefore, an alternative approach needs to be developed for
fault detection of rolling element bearings under low speed
and low load.
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One possible solution for fault detection of bearings subjected
to low speed and low load is stochastic-resonance based sig-
nal enhancement. The concept of stochastic resonance (SR)
was originally introduced about more than 30 years ago by
Benzi et al. (Benzi, Sutera, & Vulpiani, 1981) and has been
matured by different researchers (McNamara & Wiesenfeld,
1989; Jung & Hänggi, 1991; Gammaitoni, Hänggi, Jung, &
Marchesoni, 1998) to explain an amplification of signals with
low SNR resulting from a cooperative effect of noise and pe-
riodic excitation (stimulus) in nonlinear systems (i.e. bistable
systems). From the signal processing point of view, SR can
thus be seen as a non-linear signal filtering where the filter
characteristics depend on the parameters of a bistable sys-
tem and the input signal consisting of periodic driving signal
and artificially generated noise. In contrast to linear filtering
where any increase in the input noise will result in a decrease
in the output SNR, an important property of SR is that the
output SNR first increases with increased input noise, then
reaches the maximum and finally decreases again, so it is sim-
ilar to a “resonance-like phenomenon”.

Since the last decade, this signal processing tool has been at-
tracting the attention of many researchers in the CBM/PHM
field because of its nature to enhance fault-induced signals
embedded in large background noise and increasing compu-
tational power (H.-L. He, Wang, Leng, Zhang, & Li, 2007;
Tan et al., 2009; Q. He, Wang, Liu, Dai, & Kong, 2012; Lei,
Han, Lin, & He, 2013; Li, Chen, Du, Fang, & He, 2013).
However, the performance of SR filtering for fault detection
strongly depends on the parameters of the bistable system
and the noise characteristics/intensity. Different strategies
have been proposed in recent years to determine the optimal
parameters for realizing SR, namely (i) simultaneous opti-
mization of system parameters and noise intensity (Xu, Li, &
Zheng, 2003; Wu, Jiang, & Repperger, 2006), (ii) frequency-
shifted and rescaling (Tan et al., 2009), (iii) multi scale noise
tuning (Q. He et al., 2012) and (iv) adaptive method based
on sliding window (Li, Chen, & He, 2013). Among the
aforementioned strategies, the multi scale noise tuning ap-
proach (Q. He et al., 2012) is particularly interesting since
there is only one parameter to be tuned and the authors be-
lieve that this approach seems to be appropriate for practical
implementation.

1.2. Problem statement

The bearing diagnostic technique based on SR with multi-
scale noise tuning was originally developed by He and co-
workers (Q. He et al., 2012). They experimentally verified
their method on faulty bearings subjected to moderate rota-
tional shaft-speed (700 and 1700 rpm) and high load. They
have shown that this method outperforms other state-of-the
art methods. The SR based diagnostic method was developed
for a case where only a single fault is present. However, in
practice, multiple faults can simultaneously occur, so their

method is not readily applied for multiple-fault diagnosis.
Moreover, they also derived the diagnostic conclusion based
on visual interpretation on the spectrum of the enhanced sig-
nal. Hence, an automatic diagnostics cannot be generated in
this manner.

1.3. Objectives

To remedy the three aforementioned gaps, this study aims at
mainly improving the bearing diagnostic technique based on
the SR with multi scale noise tuning, described in (Q. He et
al., 2012), such that multiple-fault diagnosis becomes possi-
ble. Secondly, the objective of this study is to verify whether
SR with multi scale noise tuning is relevant and robust for
fault diagnosis of bearings subjected to low rotational speed
and low load. Finally, features have been developed in this
study in order to objectively diagnose different possible faults
that may occur in a bearing. In this way, an automatic diag-
nostics can be realized.

1.4. Paper organization

The remainder of the paper is organized as follows. Section 2
briefly reviews the theory of classical SR and then zooms in
the theory of SR with multi scale noise tuning. Section 3 dis-
cusses a new procedure for determining the optimal tuning
parameter in case of multiple faults and proposes features al-
lowing automatic bearing fault detection. Section 4 discusses
the experimental method for verification of the performance
of the proposed framework. Section 5 discusses the results
obtained from the proposed framework and then compares
the results with the ones obtained from the envelope tech-
nique. Finally, some important remarks of this study that can
be taken up for future work are summarized in Section 6.

2. SR WITH MULTISCALE NOISE TUNING

To provide some basic understanding of the concept, this sec-
tion first reviews briefly the classical SR theory based on a
bistable system. Subsequently, the SR based on multi scale
noise tuning is discussed.

2.1. Classical SR based on a bistable system

Let us consider the bistable double-well potential of a particle
illustrated in Fig. 1(a) in the absence of any external stimulus
(excitation), which is expressed as

U (x) = −a
2
x2 +

b

4
x4, (1)

where a and b denote the barrier parameters with positive real
values, the potential minima are at ±c = ±

√
a/b and the

barrier height is ∆U = a2/4b. Suppose that the particle is
heavily damped so that it will come to rest at one of the two
minima of the potential which are located at x = ±c. In
the presence of a moderate amount of random excitation, the
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particle will still spend most of its time near x = ±c, but will
occasionally cross the potential barrier ∆U located at the cen-
ter x = 0. When the random excitation, D, is increased, the
rate of transition (jumping) from one well to another one, ρ,
increases. Typically, ρ grows very rapidly with D at first, but
once D is large enough the barrier becomes relatively easy
to overcome, ρ grows more slowly as D is further increased.
This transition rate can be approximated with the Kramers
rate ρK defined as

ρK =
a√
2π

exp
(
−2∆U

D

)
. (2)

−c +c
x

U
(x

)

∆U

(a)

−c +c
x

U
(x

)
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ε ≠ 0, φ = 180o
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Figure 1. (a) Double-well potential with two minima at ±c
and barrier height ∆U . (b) Sinusoidally modulated potential
(ε 6= 0) at two times 1800 out of phase.

Assume now that a periodic (sinusoidal) excitation with the
frequency of ω0 is applied to the particle. As shown in
Fig. 1(b), this additional excitation has the effect of tilting
the potential first clockwise (φ = 00), so the particle is more
likely to be located at +c, and then counter-clockwise in half
a cycle later (φ = 1800). Since it is presumed through-
out of this paper that the amplitude of periodic excitation is
small enough that, in the absence of any noise, it is insuffi-
cient to force the particle to move from one well to another
one. It is also assumed that the period of excitation is longer
than some characteristic intra-well relaxation time for the sys-
tem (McNamara & Wiesenfeld, 1989). The periodic excita-
tion has the effect on modulating the jumping (transition) rate,
making the rate out of the + well (located at x = +c), ρ+,

oscillate out of phase with the rate out of the − well (located
at x = −c), ρ−. For very small random excitation, these
rates are still to slow for there to be appreciable hopping and
the small periodic excitation does not play a significant role.
The characteristic rate associated with this bistable system is
given by ρ = ρ+ + ρ−. As D is increased from a very low
value, both ρ+ and ρ− increase, thus consequently increas-
ing ρ. When D is increased further such that ρ ≈ ω0, there
is a cooperative phenomenon taking place where incoherent
noise power is feeding into the coherent motion of the par-
ticle. It becomes likely that, for example, the particle in the
+ well to jump to the − well in the first half a cycle and it is
likely to jump back to the + well in another half a cycle. This
way, the motion of the particle from one well to another one
that is coherent with the periodic excitation is considerably
pronounced. With too much noise excitation, the cooperative
phenomenon subsides, and the noise in feeds the noise out.

In the presence of a sinusoidal excitation, the double-well po-
tential U (x, t) of Fig. 1(b) has the form of (McNamara &
Wiesenfeld, 1989)

U (x, t) = −a
2
x2 +

b

4
x4 − xεcos (ω0t+ φ0) , (3)

where ε, ω0, and φ0 are respectively amplitude, driving fre-
quency and initial phase of the periodic excitation. In the
case of large damping (i.e. the inertia effect is negligible,
d2x/dt2 → 0), the equation of motion of the particle under
random (white noise) excitation is

dx

dt
= −∂U (x, t)

∂x
+ ξ(t). (4)

Here ξ(t) represents Gaussian white noise such that
〈ξ(t) = 0〉 and 〈ξ(t)ξ(t+ T )〉 = 2Dδ(T ) with the opera-
tor 〈•〉 standing for statistical expectation, and D denotes
the noise intensity. From Eqs. (1) and (4), the equation of
overdamped motion of a particle under random excitation
(also called as a Brownian particle) in sinusoidally modulated
double-well potential can then be rewritten as

dx

dt
= ax− bx3 + εcos (ω0t+ φ0) + ξ (t) . (5)

From signal processing point-of-view, the system described
above can be seen as a non-linear filtering process applied on
a noisy periodic signal. Here, three essential equivalences are
revealed, where (i) the periodic excitation εcos (ω0t+ φ0) is
equivalent to a periodic signal of interest, (ii) white noise ex-
citation ξ(t) is equivalent to measurement noise and (iii) the
barrier parameters of a, b are equivalent to a non-linear filter
parameters. When a noisy periodic signal is inputted to such a
non-linear filter, the asymptotic output response 〈x(t)〉as can
be approximated as (Gammaitoni et al., 1998)

〈x(t)〉as = Xcos (ω0t− φ) , (6)
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where the amplitude X and the phase lag φ in function of
noise intensity D can be expressed as

X (D) =
ε
〈
X2
〉
0

D

2ρK√
4ρ2K + ω2

0

, (7)

φ (D) = φ0 + arctan
(
ω0

2ρK

)
, (8)

with
〈
X2
〉
0

denoting the D-dependent variance of the sta-
tionary unperturbed system (i.e. ε = 0).

Figure 2 schematically illustrates the amplitude and phase
response of SR filtering applied on a periodic signal with
the frequency ω0 at different noise intensity D according to
Eqs. (7) and (8). As seen in Figure 2(a), a resonance-like
phenomenon is revealed, where the amplitude of the peri-
odic signal first increases, then reaches its maximum value
at D = Dr, finally decreases for D > Dr. Regarding the
phase response, it is seen that the phase decreases asymptoti-
cally when the noise intensity is further increased.

D
r

D

X

(a)

D
r

D

φ

(b)

Figure 2. (a) Amplitude response and (b) phase response of
SR filtering of a periodic signal with the frequency ω0 as a
function of input noise intensity D. The resonance-like phe-
nomenon occurs at D = Dr.

In the above theoretical analysis of the bistable SR model,
it is assumed that the frequency and the amplitude of a pe-
riodic signal as well as the noise intensity are all smaller
than one (McNamara & Wiesenfeld, 1989; Gammaitoni et
al., 1998). Nevertheless, through an appropriate transforma-
tion on the above-discussed bistable system, a parameter tun-
ing approach can be derived for making the classical SR fil-

tering capable of enhancing a high frequency signal heavily
masked by background noise (Leng, Leng, Wang, & Guo,
2006; Tan et al., 2009). Let us introduce two scaled vari-
ables y = x

√
b/a, and τ = at, and define a scaling factor

K =
√
a3/b, hence Eq. (5) can be rewritten in a normalized

form as

dy

dτ
= y − y3 +

1

K

[
εcos

(ω0τ

a
+ φ0

)
+ ξ

(τ
a

)]
. (9)

From the normalized expression, it is obvious that the fre-
quency of the signal is scaled down to 1/a times of the orig-
inal frequency ω0 in the new model and the frequencies of
the noise are also normalized in the same form. By choosing
an appropriate value for the parameter a, a high frequency
(> 1 Hz) can be scaled down to be much smaller than one,
thus allowing detection of a weak signal containing high fre-
quency components.

2.2. SR with multi scale noise tuning

The classical SR filtering discussed in the previous section
assumes that the measurement noise or noise to be added
is white Gaussian noise. As pointed out by He and co-
workers (Q. He et al., 2012), white noise adjustment for SR
filtering in some cases cannot effectively induce the SR effect.
To remedy this, they proposed the use of a band-limited noise
at different scales, also called multi scale noise, as both types
of noise result in spectra with the Lorentzian distribution
(i.e. 1/f distribution) when applied to a SR filtering. Mul-
tiscale noise with 1/f distribution can be constructed from
white noise by means of orthonormal wavelet decomposition
such that the variance of the detailed wavelet coefficients dj
at the scale j respects the following rule (Flandrin, 1992)

Var (dj) = σ22j , (10)

with Var (•) and σ2 respectively being the variance operator
and a positive constant.

For enhancing a noisy periodic signal x(t) with multi scale
noise tuning, the signal is first decomposed into J scales by
discrete wavelet transform (DWT) as proposed by (Q. He et
al., 2012). The decomposition of the signal is formulated as
follows

aj (k) =

∫
x (t)vj,k (t) dt, (11)

dj (k) =

∫
x (t)w∗j,k (t) dt, (12)

where vj,k and wj,k respectively represent the scaling func-
tion and the primary wavelet function, while aj and dj re-
spectively denote the approximation coefficients and the de-
tail coefficients, with j being the decomposition scale. The
level of decomposition J is predetermined such that dJ cov-
ers the frequency of interest in the signal f0 = ω0/2π. Math-
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ematically, the decomposition level J is calculated according
to the following formula

J = arg
{
j ∈ Z+ :

fs
2j+1

≤ f0 ≤
fs
2j

}
, (13)

with fs denoting the sampling frequency and Z+ denoting a
set of positive integers.

Once the signal is decomposed onto level J , a set of detail co-
efficients ∆s = {ds,1, ds,2, . . . , ds,J} is obtained. In a simi-
lar way, artificially generated white noise ξ(t), with the same
length as the signal and with unit standard deviation, is also
decomposed onto level J resulting in another set of detail co-
efficients ∆n = {dn,1, dn,2, . . . , dn,J}. For multi scale noise
realization, the two sets of detail coefficients are merged to
become a new one ∆̃ = {d̃1, d̃2, . . . , d̃J} such that the re-
quirement for 1/f noise expressed in Eq. (10) can be satis-
fied. Let us transform Eq. (10) into the 2-base logarithmic
form as below

log2
[
Var
(
d̃j

)]
= j + α, (14)

with j = {1, 2, . . . , J} and α = log2(σ2). Here, α is the
tuning parameter of the multi scale noise. Thus, a new detail
coefficients d̃j at scale j can be computed as

d̃j = ρ1,jds,j + ρ2,jdn,j , (15)

where ρ1,j and ρ2,j are weighting factors being defined as

ρ1,j =


[

2j+α

Var(ds,j)

] 1
2

, if j = J ;

1, if j < J ,

(16)

and
ρ2,j = 2

j+α
2 − [Var(ds,j)]

1
2 . (17)

Note that the approximate coefficients a′js (i.e. lower fre-
quency band) are not adjusted since they do not contain any
information corresponding to the frequency of interest.

A multi scale-noise tuned signal can be reconstructed based
on the adjusted detail coefficients d̃j and the approximate co-
efficients of the signal aj . This reconstructed signal is then
inputted to the normalized SR filter, described in Eq. (9) with
the barrier parameters of a = 1 and b = 1, for signal enhance-
ment. To determine an optimal tuning parameter αopt that can
optimally enhance the signal corresponding to the frequency
of interest f0, a grid search method is employed. Here, the
following objective value η has been defined in (Q. He et al.,
2012) as the criterion for determining the optimal parameter

η =
X (α, f0)

X (α, fp)
, (18)

where X (α, f0) represents the spectrum magnitude of the

output signal at the frequency of interest f0 and at given pa-
rameter α and X (α, fp) represents the highest magnitude
(peak) in the spectrum of the output signal at the frequency
fp and at given parameter α. Hence, the optimal parameter
αopt can now be determined by identifying the parameter αk

giving the largest value on η(αk) in a predefined finite set of
reasonable values αl ≤ αk ≤ αu, k = 1, 2, . . . , N . Mathe-
matically, identification of the optimal parameter αopt can be
formulated as

αopt = argmax {η (αk) : αl ≤ αk ≤ αu} . (19)

3. METHODOLOGY

This section first discusses the overall methodology proposed
in this work. Subsequently, a procedure for determining the
optimal tuning parameters required in the proposed method is
zoomed in. Finally, features corresponding to different local-
ized faults in a bearing (i.e. inner race fault, outer race fault
and rolling element fault) are formulated.

Let us assume that the optimal tuning parameters, αopt,n;n =
1, 2, the decomposition level J , and artificially generated
white noise ξ with the record length of the vibration signal,
are given for a certain operating condition. Based on the the-
ory of SR with multi scale noise tuning discussed in the pre-
vious section, a procedure for multiple fault diagnosis of a
bearing subjected to low speed can be developed, which is
schematically described in Figure 3. It is seen in the figure,
the overall methodology consists of three main steps.

Vibration Data 

of Operation p

Cepstra-based 

Prewhitening

Full-band Envelope 

Estimation 

Spectrum 

Estimation

Feature 

Calculation

λ(fi)

Normalized White 

Noise, ξ

αopt,n, J
Multi-scale Noise 

tuning and Signal 

Reconstruction

SR Filter

a = 1, b = 1

fi

Step I

Step II

Step III

Figure 3. Signal processing steps and feature calculation
given the optimal parameter αopt
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In the first step, a raw vibration signal is prewhitened in or-
der to remove strong periodic components (typically coming
from the dynamics of gears and shafts) in the signal. Due to
its capability of removing periodic components and the side-
bands with a less computational burden, the cepstra-based
technique (Randall & Sawalhi, 2011) is employed in this pa-
per. Note that the prewhitening is a necessary step since
the frequencies of the periodic components (harmonics and
sidebands) in some cases are close to the theoretical bearing
fault frequencies. Then, the full-band enveloped signal is es-
timated by means of Hilbert transformation.

In the second step, given αopt,n;n = 1, 2, J and ξ, SR filter-
ing with multi-scale noise tuning as discussed in the previous
section is then applied to the enveloped signal for the signal
enhancement. Note that the level of wavelet decomposition
J is calculated using Eq. (13) based on the target frequency
(i.e. frequency of interest) f0, Daubechies 4 wavelet (db4) is
employed for the multi scale noise tuning and the barrier pa-
rameters are fixed to one, i.e. a = b = 1.

In the third step, bearing fault features that will be discussed
in Section 3.2 are calculated from the spectrum of the en-
hanced signal. Here, the feature values can be seen as the
representation of different localized faults in a bearing (i.e. in-
ner race fault, outer race fault and rolling element fault). In
this way, multi fault diagnosis of a bearing can be realized in
an automatic way.

3.1. Parameter tuning

As in practice the inner race fault frequency (BPFI), outer
race fault frequency (BPFO) and ball damage frequency
(BDF) are close to each other (typically BPFO < BDF <
BPFI), while the cage damage frequency (FTF) is typi-
cally much lower than those three frequencies (i.e. FTF ≈
BPFO/n, with n denoting the number of rolling elements),
two target frequencies can therefore be proposed for multi
fault diagnosis purpose. The first target frequency f0,1 corre-
sponds to FTF and the second one f0,2 corresponds to the av-
erage of the other fault frequencies (BPFO, BDF and BPFI).
Hence, two tuning parameters αopt,1 and αopt,2 are required
for multiple fault diagnosis.

Figure 4 shows a flowchart for determining the optimal pa-
rameters αopt,1 and αopt,2 for a certain operating condition
p, where vibration signal obtained from measurements in a
faulty state is used as training data. In general, the flowchart
can be divided into four steps where the first two steps of
the parameter tuning are similar to the first two steps of the
overall methodology (compare Figures 3 and 3). In the third
step, a learning curve is generated by computing the objective
value η for the predefined finite set of αk ∈ [αl, αu]. In the
fourth step, the optimal parameters can be identified accord-
ing to Eq. (19).

Training Vibration 

Data of Operation p

Normalized 

White Noise, ξ

Cepstra-based 

Prewhitening

Full-band Envelope 

Estimation 

Multi-scale Noise 

tuning and Signal 

Reconstruction

SR Filter

a = 1, b = 1

Spectrum 

Estimation

η Estimation

k = N

STOP

Decomposition 

Level Calculation

 αl ≤  αk ≤ αu,

k = 1, 2, …, N

αk

k
 =

 k
 +

 1

No

Yes

J f0,n

 αk, ηk

k = 1, 2, …, N
Optimal α  

selection

αopt,n

Step I

Step II

Step IV Step III

Figure 4. Flowchart for determining the optimal tuning pa-
rameter αopt at a certain operating condition.

3.2. Feature definition and calculation

In a healthy state, the magnitudes of the spectrum around the
theoretical fault frequencies (BPFO, BDF, BPFI, and FTF)
are ideally zero. However, due to unavoidable noise, the spec-
trum magnitudes around those frequencies are more or less
the same as the floor noise level. Depending on the type of
fault present in a bearing, a high peak around the correspond-
ing fault frequency in the frequency spectrum is expected in a
faulty state. Moreover, peaks around some harmonics of the
fault frequencies may also appear in the spectrum. To quan-
titatively distinguish between the healthy and faulty state, a
feature dedicated to a specific fault is necessary. Based on
the preceding rationale, the feature can be defined as the ra-
tio between the spectrum magnitude around the correspond-
ing frequency (BPFO, BDF, BPFI, or FTF) and the averaged
floor noise level

λ (fi) =

3∑
k=1

[
Xp (kfi)

Xn

]
, (20)

where fi denotes the actual fault frequency (BPFO, BDF,
BPFI, or FTF), λ (fi) denotes the feature value corresponding
to a certain fault frequency fi, Xp (kfi) denotes the spec-
trum magnitude at kfi with k = 1, 2, 3 and Xn denotes
the averaged floor noise level. It can be argued that the ac-
tual fault frequencies in the spectrum typically deviate from
the theoretical ones (1-2%) due to slip of the rolling ele-
ments. The floor noise level Xn is computed as follows.
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First, the frequency range of interest is determined, which
is considered in this study as two times higher than BPFI
(i.e. 0 < f < 2×BPFI). Consecutively, all the local maxima
in this frequency range are identified and then removed from
the spectrum. Finaly, the floor noise level is estimated by
taking the average of the residual spectrum in the frequency
range of interest.

4. EXPERIMENTAL METHOD

To experimentally verify the proposed bearing diagnostic
method, vibration data have been collected from a gearbox
dynamic simulator (GDS) setup with healthy and faulty bear-
ings. The GDS is a dedicated test setup that enables one to
simulate a healthy and faulty gearbox with different type of
faults, namely localized bearing faults (i.e. inner race, outer
race and rolling element faults) and gear faults (eccentricity,
chipped tooth, missing tooth, cracked tooth, backlash, and
profile error). The test setup and the experimental procedure
are described in the forthcoming subsections.

4.1. Apparatus

Figure 5 shows the photograph and the schematic-top-view
of the test setup used in this study. The GDS consists of two
gearboxes connected to each other, namely a parallel-shaft
gearbox (3) and a perpendicular-shaft gearbox (4). The in-
put shaft (10) of the parallel-shaft gearbox is driven through a
flexible coupling by an induction electric motor (2) which is
controlled by a variable-frequency-drive (1). The shaft ro-
tational speed of the motor can be varied from 0 to 3000
rpm, with either a stationary mode or a transient mode (run-
up/run-down). The output shaft (13) of the perpendicular-
shaft gearbox is coupled with a magnetic-particle brake (5),
where the torque applied to the output-shaft can be adjusted
by the brake controller (8) from 0 to 50 Nm. The control
signals to the motor drive (1) and to the brake controller (8)
are sent out by a PC (7) using dedicated programs. Vibration
signals in the axial (perpendicular to the gearboxes wall) and
horizontal-radial directions are sensed by three triaxial piezo-
electric (ICP type) accelerometers, which are mounted at dif-
ferent positions; two of them (A#1 and A#2) respectively on
the drive side and non-drive side of the parallel-shaft gearbox
and the third one (A#3) on the drive side of the perpendicular-
shaft gearbox. The three accelerometers have the same sen-
sitivity of 100 mV/g with ±5 % response deviation in the
frequency range of 0.5 Hz to 5 kHz. An optical tachometer
system is used to measure the shaft rotational speed of the
motor where the light from the sensor head is directed to a re-
flective tape attached on the motor shaft, thus generating one
pulse signal per revolution. All the signals are synchronously
acquired by a National Instruments (NI) data acquisition sys-
tem (6) and then stored to the PC with a Labview program.

The parallel-shaft gearbox (3) was designed and built with

three parallel-shafts as seen in Figure 5(b). Four helical gears
are arranged in the gearbox such that it has two-stage reduc-
tions. Two straight bevel gears are assembled on their corre-
sponding shaft, in the perpendicular-shaft gearbox, so there
is only one-stage reduction. Some details of the gears assem-
bled in the two gearboxes are summarized in Table 1. Note
that the total reduction factor from the motor shaft to the out-
put shaft of the perpendicular-shaft gearbox can be easily cal-
culated based on the number of teeth of the gears, that is equal
to (100/29)× (90/36)× (40/20) = 18.2.

Component Number of teeth Comment

G#1 29 Helical
G#2 100 Helical
G#3 36 Helical
G#4 90 Helical
G#5 20 Straight bevel
G#6 40 Straight bevel

Table 1. Specifications of the assembled gears.

Two different bearing types are assembled in the test setup,
namely MB ER-14K and MB ER-16K. Two identical bear-
ings (B#1 and B#2) of the former type are mounted in the
parallel-shaft gearbox to support the input shaft (10) and
the other bearings (from B#3 to B#8) of the latter type are
mounted to support the other shafts, see Figure 5(b). They
all are deep-groove ball bearings with the same geometrical
specifications, thus the same theoretical fault frequencies as
listed in Table 2.

Number of rolling element 9
Diameter of rolling element 0.3125 inch
Pitch diameter 1.516 inch
FTF 0.402× fr Hz
BPFO 3.572× fr Hz
BDF 4.644× fr Hz
BPFI 5.430× fr Hz

Table 2. Specifications of the two bearing types and the shaft-
speed-dependent fault frequencies, with fr denoting the shaft
rotational speed in Hz. Note that the BDF is equal to two
times of the ball spin frequency (BSF).

4.2. Test Procedure

Faulty state simulation

In a faulty state, two bearings with localized damages were
concurrently mounted on the intermediate shaft (11) of the
parallel-shaft gearbox. One bearing with combined faults,
i.e. inner race fault, outer race fault and rolling element fault,
was mounted on the intermediate shaft (12) of the drive side
(B#3) while another one with single fault, i.e. rolling element
fault, was mounted on the same shaft but on the non-drive
side (B#4).
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Figure 5. Experimental apparatus: (a) photograph and (b) schematic top view

Operating condition

A clear distinction between a high speed and low speed ma-
chinery has been made in literature (Kim, Tan, Mathew, &
Yang, 2006; Kosse & Tan, 2006; Lin, Kim, & Tan, 2013),
where the speed border is around 600 rpm. To simulate a
machinery subjected to low speed, in this study, the shaft
rotational speed of the electric motor of the gearbox setup
was set to 1200 rpm. As the reduction ratio between the in-
put shaft and the intermediate shaft is of 100/29, the rota-
tional speed of the intermediate shaft, where the faulty bear-
ings were mounted, was of 1200 × 29/100 = 348 rpm
(i.e. fr = 5.8 Hz). This way, the criterion for low speed ma-
chinery was satisfied. In addition, all the experiments were
performed under a constant load, where the output torque of
the brake was set to 6 Nm. Hence, the acting torque on the
intermediate shaft was of 6× (20/40)× (36/90) = 1.2 Nm.
According to the aforementioned test specification (shaft ro-
tational speed and seeded faults), one may expect distinctive
peaks around three frequencies in the spectrum of the en-
hanced signal of the faulty state measurement. These fre-
quencies are listed in Table 3.

Frequency Value [Hz] Comment

f1 20.72 BPFO
f2 26.94 BDF
f3 31.50 BPFI

Table 3. Expected peak frequencies in the spectrum of the
enhanced signal.

Measurement settings

Prior to signal digitizing, each measured signal was low-pass
filtered with an anti-aliasing filter embedded in each chan-
nel of the used NI data acquisition system. This way, po-
tential aliasing problems resulting from high frequency noise
can be avoided. With this data acquisition system, the cut-off

frequency of the anti-aliasing filter is automatically selected
depending on the used sampling frequency. Later on, the fil-
tered signals were sampled at 51.2 kHz with a duration of 60
seconds. Finally, the digital data were stored in the PC and
then processed with Matlab programs as will be discussed in
the next section. Note that two datasets were recorded from
two successive runs (dataset#1 and dataset#2), where the time
difference between the two runs was 120 seconds.

5. RESULTS AND DISCUSSION

For benchmarking purpose, the diagnostic results based on
the optimized envelope method are first given. All the techni-
cal details of this envelope method are not discussed here but
they can be found in (Randall & Antoni, 2011) for a complete
overview. In short, all the signal processing steps of the enve-
lope method are summarized in Figure 6. Consecutively, the

Vibration Data 

of Operation p

Cepstra-based 

Prewhitening

 Minimum Entropy 

Deconvolution

Feature Calculation

Envelope Spectrum 

Estimation

Spectral Kurtosis 

Analysis

Band pass filtering and 

demodulation

Figure 6. Flowchart of the signal processing steps and feature
calculation of the optimized envelope method.

diagnostic results based on the SR with multiscale noise tun-
ing method are discussed and then compared to those of the
envelope method. As will be shown later, the SR with mul-
tiscale noise tuning based method outperforms the envelope
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based method.

5.1. Signal segmentation and analysis procedure

All the recorded vibration signals from the two datasets are
segmented with the window length of 6 seconds without over-
lapping, so there are 20 segments in total for the two datasets.
From now on, each segment is referred to the segment index
Si (i = 1, 2, . . . , 20). The signal segmentation of dataset#1
is illustrated in Figure 7, where the first window (solid line)
is employed both for identification of the optimal parameters
and feature calculation, and the other windows (dashed lines)
are used only for feature calculation. This way, the repeatabil-
ity and robustness of extracted features can be evaluated and
verified. It should be noted here that the raw vibration signal
is re-sampled differently for the two methods. The sampling
frequency of 25.6 kHz is used for the envelope method, while
the sampling frequency of 3.2 kHz is used for the SR method.

0 2 4 6 8 10 12 14 16 18 20
-0.06

-0.04

-0.02

0

0.02
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0.06

w

……………..
w

Training 

window

Shifted 

windows
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Figure 7. Illustration of the signal segmentation.

5.2. Envelope method

Figure 9 shows the signals and spectra of the faulty state vi-
bration data resulting from different signal processing steps
according to the flowchart the envelope method shown in
Figure 6. It should be mentioned that all the plots are ob-
tained from the analysis on the first window of dataset#1.
As seen in Figure 9(a), expected peaks around the theoreti-
cal fault frequencies (f1, f2, f3, see Table 3) in the spectrum
of the raw vibration signal are not obvious. After applying the
cepstra-based prewhitening on the raw signal, low-frequency
components of the signal are enhanced as can be seen in
the spectrum of Figure 9(b). The low-frequency components
are more pronounced after applying MED filtering as shown
by the spectrum in Figure 9(c). Subsequently, the MED-
filtered signal is bandpass-filtered around the frequency band
of 4233 - 4833 Hz and demodulated at the central frequency
of 4533 Hz. Here, the frequency band is determined based on
the spectral kurtosis analysis (Antoni & Randall, 2006) that
eventually results in the kurtogram given in Figure 8.

It is seen from the kurtogram that the spectral kurtosis of the
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Figure 8. Kurtogram of the signal processed after MED op-
eration

latter signal is maximum when the band of 4233 - 4833 Hz
is selected. Finally, the squared envelope signal is obtained
by simply taking the square of the resulting signal as shown
in Figure 9(d). The lower panel of the latter figure shows
the normalized envelope spectrum, where the normalization
is performed by dividing the spectrum magnitudes by the DC
magnitude. It is seen from the figure that peaks around f1
(BPFO) and the corresponding harmonics are evident, but it
is not the case for the other expected frequencies f2, f3 and
their harmonics.

Figure 10 shows the results obtained from the envelope anal-
ysis on the vibration data of the healthy state. Note that a
damage-induced impact is theoretically not generated in any
healthy state, so it can be argued that none of resonance fre-
quencies of the gearbox system is excited. In order to com-
pare the results of the healthy state and faulty state in a fair
manner, the frequency band obtained from the spectral kurto-
sis analysis on the faulty data is used for the envelope analysis
on the healthy data. It is seen in the figure that peaks around
the theoretical fault frequencies (f1, f2, f3, see Table 3) and
the harmonics in the envelope spectrum are not evident. In-
stead, the magnitudes around those frequencies and the cor-
responding harmonics are in the same level as the floor noise.

Furthermore, to quantitatively evaluate the performance of
the envelope method for diagnosing low-rotational speed
bearing, features are extracted from the envelope spectra of
the faulty and healthy state according to the feature defini-
tion given in Eq. (20). The comparisons between the ex-
tracted features for different faults obtained from the faulty
and healthy state are shown in Figure 14. It is evident from
the figure that the feature values corresponding to all the
seeded faults extracted from both the healthy and fault state
are not well separated. These results suggest that the features
extracted using the envelope method are not robust for diag-
nosis of a bearing subjected to low speed and load.
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Figure 9. Resulting signals and the corresponding spectra
obtained with the envelope method applied on the vibration
data of the faulty state. (a) raw signal and the spectrum,
(b) prewhitened signal and the spectrum, (c) MED filtered
signal and the spectrum, and (d) the squared envelope and the
normalized spectrum.
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Figure 10. Resulting signals and the corresponding spectra
obtained with the envelope method applied on the vibration
data of the healthy state. (a) raw signal and the spectrum,
(b) prewhitened signal and the spectrum, (c) MED filtered
signal and the spectrum, and (d) the squared envelope and the
normalized spectrum.
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5.3. SR based method

Prior to feature calculation based on the SR with multi scale
noise tuning method, the optimal tuning parameter need to be
identified. As the seeded faults in the experiments were outer
race fault f1, rolling element fault f2 and inner race fault f3,
only αopt,2 corresponding to the second target frequency f0,2
(i.e. averaged frequency of f1, f2 and f3) is required. To this
end, a search range of possible values αk ∈ [0, 38] is prede-
fined. By following the procedure described in Section 3.1,
the learning curve shown in Figure 11 can be generated. It
is worthwhile to emphasize here that the learning curve is
generated based on the training (segmented) signal described
in Figure 7. As can be seen from Figure 11, the objective
value η reaches its maximum when αk is about 16. There-
fore, the optimal parameter to enhance the bearing signals
corresponding the three fault frequencies (f1, f2 and f3) was
set to αopt,2 = 16.
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k
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opt

 = 16

Figure 11. The learning curve for determining the optimal
tuning parameter αopt,2.

Figure 12 shows the resulting signals and the spectra obtained
by the SR with multi scale noise tuning method of the faulty
case. For convenience, the pre-processed signals and spectra
(Cepstra-based prewhitened and full-band enveloped signals)
are not shown here. One can notice from Figure 12(a) that the
multi scale noise tuning with wavelet decomposition already
enhances the signal components corresponding to f1 (BPFO)
and f3 (BPFI). The two components are further enhanced af-
ter applying the SR filtering on the multi scale noise tuned
signal as can be seen in Figure 12(b). However, the signal
component corresponding to f2 (BDF) is not pronounced in
the spectra.

Figure 13 shows the resulting signals and the spectra obtained
by the SR with multi scale noise tuning method of the healthy
case. As expected, the spectrum magnitudes around the fault
frequencies f1, f2, f3 are the same as the floor noise level.
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Figure 12. Signal processing results of the faulty case. (a)
multi scale noise tuned signal of the full band envelope signal
and (b) the output signal of the SR filter.
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Figure 13. Signal processing results of the healthy case. (a)
multi scale noise tuned signal of the full band envelope signal
and (b) the output signal of the SR filter.
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Figure 14. Diagnostic results obtained with the optimized envelope method for: (a) the outer race fault, (b) the rolling element
fault, and (c) the inner race fault.
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Figure 15. Diagnostic results obtained with the SR method with multi scale noise tuning for: (a) the outer race fault, (b) the
rolling element fault, and (c) the inner race fault.
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For a quantitative comparison, the features corresponding to
BPFO, BDF and BPFI defined in Eq. (20) have been extracted
from both the faulty and healthy datasets. The feature values
obtained from both states, for different faults, are shown in
Figure 15. It is seen in the figure that good separations be-
tween the healthy and faulty case are revealed for the outer
race and inner race faults. This evidence suggests that the
two faults seeded on the outer and inner race are well detected
with the proposed method. Nevertheless, the seeded fault on
one of the rolling elements cannot be successfully detected
since the feature values of both the healthy and faulty state
are not well separated.

6. CONCLUSION

As reported in literature, the High Frequency Demodulation
(HFD)/envelope technique has been successfully applied for
fault diagnosis of rolling-element bearings used in different
applications. However, it has been shown in this study that
the envelope technique seems to fail for fault diagnosis of
bearings subjected to low rotational speed and low load. For
a bearing subjected to low rotational speed and low load,
it can be argued that the damaged-induced vibration signal
(i.e. impulsive signal) is severely masked by a large back-
ground noise originating from other machine components and
the operating environment. It appears that a low signal-to-
noise ratio inherent in the vibration signals of such an oper-
ating condition is one of the possible reasons of the limita-
tion of the envelope technique. In order to remedy the afore-
mentioned substantial gap, we have proposed an alternative
method.

This paper has made an improvement on the recently pub-
lished bearing diagnostic method based on the Stochastic
Resonance (SR) with multi noise tuning for multi-fault diag-
nosis of rolling element bearings subjected to low rotational
speed and low load. Features that can be used to quantita-
tively assess the presence of different bearing faults, e.g. in-
ner race, rolling element and outer race fault, have been math-
ematically formulated. This way, bearing fault diagnosis can
be realized in an automatic way given a certain (predefined)
threshold.

The proposed method has been experimentally verified on
the vibration data collected on a gearbox dynamics simula-
tor with healthy and faulty (i.e. combined seeded faults) bear-
ings. Here, the drive shaft of the bearing seeded with com-
bined faults (inner race, rolling element and outer race faults)
was run at 348 rpm and under torsional load of 1.2 Nm. More-
over, the results obtained with the proposed method have also
been compared with the ones obtained with the well known
high frequency demodulation (envelope) technique. It has
been shown in this study that the proposed method can suc-
cessfully detect the two seeded faults (inner race and outer
race faults). In contrast, the envelope method is not able to

detect the seeded faults.
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NOMENCLATURE

Abbreviations
DWT discrete wavelet transform
BPFI ball pass frequency inner
BPFO ball pass frequency outer
BDF ball damage frequency
BSF ball spin frequency
FTF fundamental train frequency
GDS gearbox dynamics simulator
HFD high frequency demodulation
MED minimum entropy deconvolution
SNR signal-to-noise ratio
SR stochastic resonance

Latin symbols

a, b barrier parameters of a bistable system
aj , dj approximation and detail coefficients
D noise intensity
Dr noise intensity at the resonance
f0 driving frequency in Hz
fi theoretical bearing fault frequency in Hz
fr frequency of drive shaft
J level of wavelet decomposition
j, k indices
t time
U potential
X spectrum magnitude of the output signal x

Greek symbols

α tuning parameter
αopt optimal tuning parameter
∆U barrier potential
ε signal amplitude
η objective value
λ feature value
ω0 driving frequency in rad/s
φ phase response
ρK Kramer’s rate
ξ white noise
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