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ABSTRACT

This study presents the methods employed by a team from the
department of Mechatronics and Dynamics at the University
of Paderborn, Germany for the 2013 PHM data challenge.
The focus of the challenge was on maintenance action rec-
ommendation for an industrial equipment based on remote
monitoring and diagnosis. Since an ensemble of data driven
methods has been considered as the state of the art approach
in diagnosis and prognosis, the first approach was to evaluate
the performance of an ensemble of data driven methods us-
ing the parametric data as input and problems (recommended
maintenance action) as the output. Due to close correlation of
parametric data of different problems, this approach produced
high misclassification rate. Event-based decision trees were
then constructed to identify problems associated with partic-
ular events. To distinguish between problems associated with
events that appeared in multiple problems, support vector ma-
chine (SVM) with parameters optimally tuned using particle
swarm optimization (PSO) was employed. Parametric data
was used as the input to the SVM algorithm and majority vot-
ing was employed to determine the final decision for cases
with multiple events. A total of 165 SVM models were con-
structed. This approach improved the overall score from 21
to 48. The method was further enhanced by employing an
ensemble of three data driven methods, that is, SVM, random
forests (RF) and bagged trees (BT), to build the event based
models. With this approach, a score of 51 was obtained . The
results demonstrate that the proposed event based method can
be effective in maintenance action recommendation based on
events codes and parametric data acquired remotely from an
industrial equipment.
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permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

The focus of the 2013 Prognostic and Health Management
data challenge was on maintenance action recommendation
in industrial remote monitoring and diagnostics. The chal-
lenge was to identify faults with confirmed maintenance ac-
tions masked within a huge amount of data with unconfirmed
problems, given event codes and associated snapshot of the
operational data acquired when a trigger condition is met on
board. One of the challenges in using such data is that most
industrial machines are designed to operate at varying con-
ditions and a change in the operation conditions triggers a
change in sensory measurements which leads to false alarm.
This poses a huge challenge in isolating abnormal behavior
from false alarm since it tends to be masked by the huge
number of the false alarm instances recorded. In addition,
most industrial equipment consist of an integration of com-
plex systems which require different maintenance actions,
further complicating the diagnostic process. A maintenance
action recommender that is able to distinguish between faults
with confirmed maintenance action and false alarms is there-
fore necessary.

Remote monitoring and diagnosis is currently gaining mo-
mentum in condition based maintenance due to the ad-
vancement in information technology and telecommunication
industry(Xue & Yan, 2007). In this approach, condition mon-
itoring data is remotely acquired and whenever an anomaly
is detected, the data is recorded and transmitted to a cen-
tral monitoring and diagnosis center (Xue, Yan, Roddy, &
Varma, 2006). Here further analysis on the data is conducted
to isolate and diagnose the faults and based on the outcome of
the diagnosis, a maintenance scheme is recommended. This
has led to a reduction in maintenance costs since an engi-
neer is not required on-site to perform the trouble shooting.
A number of literature based on remote monitoring and di-
agnosis have been published. Xue et al. (2006) combined
non-parametric statistical test and decision fusion using gen-
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eralized regression neural network to predict the condition of
a locomotive engine. The condition was classified as normal
or abnormal. Xue and Yan (2007) presented a model-based
anomaly detection strategy for locomotive subsystems based
on parametric data. The method involved the use of residuals
between measured and model outputs to define a health indi-
cator based on normal condition. Statistical testing, Gaussian
mixture model and support vector machines were then used
to evaluate the health index of the test data. Similarly the
study focused on ability to detect normal and abnormal be-
haviors from operational data. It is evident that the use of
operational data obtained remotely poses a huge challenge in
fault identification and classification and there is need to de-
velop algorithms that are capable of exploiting the operational
data to not only detect abnormalities in industrial equipment,
but also to classify faults and recommend maintenance ac-
tion. The 2012 PHM challenge was based on the need for
recommenders with this capability.

The following sections describe the data used in the challenge
and data preprocessing.

1.1. Data Description

In order to develop an effective maintenance recommender, it
was important to understand the structure of the data. Due to
proprietary reasons, there was very little information about
the sensory measurements. The data which was obtained
from an industrial equipment was presented in comma sep-
arated values (csv) and consisted of the following:

1. Train - Case to Problem: a list of cases with confirmed
problems, where the problem represent a maintenance
action to correct the identified anomaly. This list con-
sisted of 164 cases with a total of 13 problems.

2. Train - Nuisance Cases - a list of cases whose symptoms
do not represent a confirmed problem. These are cases
created by automated systems and presented to an engi-
neer who established that the symptom was not sufficient
to notify the customer of the problem. These cases con-
stituted the bulk of the training data.

3. Training cases to events and parameters - a list of all
the cases in (1) and (2) with the events that triggered
the recording of the cases and a snapshot of the oper-
ating conditions or parameters. A total of 30 parameters
were acquired at every data logging session. A collec-
tion of events and corresponding operational data at the
point when the anomaly detection module is triggered
refers to the case. The event code indicates the system
or subsystem that the measurements came from and the
reason why the code was generated. Some cases contain
multiple data instances while some contain single data
instances.

4. Test cases to events and parameters - a list of cases with
the corresponding events and parameters for evaluating

the recommender. The recommender should propose a
maintenance action for a confirmed problem and output
’none’ for unconfirmed problems.

Table 1 shows a summary of the training and testing data.

Data set Number Number Number
of of of

Cases instances unique
events

Train - Case to problem 164 27,205 358
Train - Nuisance cases 10295 1,269,243 1239
Test cases 9358 1,893,882 1246

Table 1. Summary of training and testing data.

Due to the large sizes of the training and testing data files,
each of the files was broken down into smaller files of 5000
instances and loaded into MATLAB environment from where
the data was converted into ’*.mat’ files. All the processing
was handled within the MATLAB environment.

1.2. Data Preprocessing

The first step in preparing the data was to separate events
and parameters associated with the train case to problem from
those associated with nuisance cases. Figure 1 shows the dis-
tribution of the problems within the train-case to problems
data. As seen from Figure 1, problem P2584 is more preva-
lent with problem P7940 having the least recorded cases.
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Figure 1. Distribution of problems in the train-case to prob-
lem training data

The data was unstructured in that it contained both numerical
values and in some instances characters (’null’). The string
’null’ was interpreted as zero (0). The data also contained
some data instances with missing parameters. It was not pos-
sible to remove this data since some cases had all data in-
stances with missing parameters. Therefore these cases were
treated separately. There were also some parameters with
constant values, for instance parameter P05. These param-
eters were removed from the data leaving a total of 26 param-
eters out of 30.
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1.3. Data Evaluation Challenges

Since data was acquired whenever a specific condition is met
onboard, rather than a fixed sampling rate, feature extraction
and preprocessing of the data was quite difficult. In addi-
tion, due to proprietary reasons, the nature of the parameters
recorded was not revealed. This made it difficult to define the
thresholds for diagnostic purposes. Another challenge iden-
tified was the few samples or data instances in some cases,
with some having only one event recorded. In such cases the
data was masked by the nuisance data and made it very diffi-
cult to identify the actual problems. The small percentage of
confirmed problems, 164 cases against 10295 nuisance cases
would require batch training since in normal circumstances,
the nuisance data would suppress the confirmed problems.

The following sections describe the methodologies employed
by our team. Since ensemble of machine learning (ML) algo-
rithms has been considered as the state of the art approach in
both diagnosis and prognosis of machinery failures (Q. Yang,
Liu, Zhang, & Wu, 2012), the first attempt was to use the
parametric data together with an ensemble of the state of the
art machine learning algorithms to classify the problems and
also identify nuisance data. However, due to the close cor-
relation between the parametric data of different problems, it
was discovered that the use of parametric data together with
ensemble of ML algorithms was not sufficient. The method
was therefore extended to incorporate the event codes to im-
prove classification performance.

2. PARAMETRIC BASED ENSEMBLE OF DATA DRIVEN
METHODS

The first attempt was to employ an ensemble of data driven
methods with the given parameters as the input and the con-
firmed problems as the target for training. Once the algo-
rithms were trained, parameters from the test data were used
as the input to the trained models whose output was the pre-
dicted problems. The following six data driven methods were
employed:

1. k-Nearest Neighbors (kNN): In this method, the dis-
tance between each test datum and the training data
is calculated and the test datum is assigned the
same class as most of the k closest data (Bobrowski
& Topczewska, 2004). Various distance functions
can be employed but Mahalanobis distance function
(Bobrowski & Topczewska, 2004) was found to perform
best on the given data. The distance between data points
x and y can be calculated by.

d(x, y) =
√
(x− y)TS−1(x− y), (1)

where S is the covariance matrix of data x.

2. Artificial Neural Networks (ANN): ANN maps input
data into output through one or more layers of neurons

where each neuron is connected to the output of all the
neurons of the preceding layer. Each neuron computes
the weighted sum of its inputs through an activation
function (Rajakarunakaran, Venkumar, Devaraj, & Rao,
2008). Training ANN consists of adapting the weights
until the training error reaches a set minimum. A feed-
forward neural network consisting of three hidden lay-
ers with [110 110 80] neurons in the three layers respec-
tively was employed. Scaled conjugate gradient (SCG)
was employed as the training algorithm due to its ability
to converge faster and accommodate large data.

3. Classification and Regression Trees (CART): CART pre-
dicts response to data through binary decision trees. A
decision tree contains leaf nodes that represent the class
name and decision nodes that specify a test to be car-
ried out on a single attribute value, with one branch and
sub-tree for each possible outcome of the test (Sutton,
2008). To predict a response, the decisions in the tree are
followed from the root node to the leaf node. Pruning
is normally carried out with the goal of identifying the
tree with the lowest error rate based on previously unob-
served data instances. Figure 2 shows a section of the
classification tree with the decision nodes, where xNN
represents the parameter number. The decision rules
were derived from the parametric data.

P7547

P2584

P2651

P3600 P0159

x9 < 0.414739   

x26 < 32   

x16 < -0.00216384   

x25 < -0.361443   

  x9 >= 0.414739

  x26 >= 32

  x16 >= -0.00216384

  x25 >= -0.361443

Figure 2. A section of a classification tree with decision nodes
and leaves

4. Bagged trees (BT): Bagged trees involve training a num-
ber of classification trees where for each tree, a data set
(Si) is randomly sampled from the training data with re-
placement (Sutton, 2008). During testing, each classifier
returns its class prediction and the class with the most
votes is assigned to the data instance. In this study, 100
trees were found to yield the best results during training.

5. Random forests (RF): Random forests is derived from
CART and it involves iteratively training a number of
classification trees with each tree trained with a data set
that is randomly selected with replacement from the orig-
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inal data set (B.-S. Yang, Di, & Han, 2008). At each deci-
sion node, the algorithm determines the best split based
on a set of features (variables) randomly selected from
the original feature space. The final output of the algo-
rithm is based on majority voting from all the trees. Fig-
ure 3 shows the construction of a random forest, where
S is the original data set and Si is the randomly sampled
data set, Ci is a classification tree trained with data set
Si and N is the total number of trees. A combination of
500 trees with 50 iterations was found to yield the best
results with the given data.

Original data

S1 S2
SN

C1 C2 CN

Majority voting

Decision

Figure 3. Construction of a random forest

6. Support vector machines (SVM): SVM is a maximum
margin classifier for binary data. SVM seeks to find a
hyperplane that separates data into two classes within
the feature space, with the largest margin possible. For
non-linear SVM, a kernel function may be employed to
transform the input data into a higher dimensional fea-
ture space where classification is carried out (Hsu &
Lin, 2002). Multi-classification is achieved by construct-
ing and combining several binary classifiers. Pairwise
method where n(n−1)

2 binary SVMs are constructed was
employed since it is more suitable for practical applica-
tions (Hsu & Lin, 2002). A three-fold cross-validation
technique was employed during training.

2.1. Training

In order to evaluate the performance of the selected algo-
rithms, training data consisting of the 164 cases with con-
firmed problems and a random sample of 40 nuisance cases
was used. This translated to approximately 40,000 data in-
stances. The data was randomly permuted and split into two:
75% of the data was used for training and 25% for testing.
The process was repeated with 39 other sampling instances
of the nuisance data to build 40 models. The average classifi-
cation accuracy of each model was computed. An ensemble

of the six algorithms was then built based on weighted ma-
jority voting, where the results from algorithms with higher
accuracy were given more weight. Table 2 shows the average
training accuracy of the selected algorithms.

Algorithm Average accuracy

kNN 89%
ANN 88%
CART 83%
BT 93%
RF 94%
SVM 90%
Ensemble 95%

Table 2. Classification accuracy based on training data

A look at the classification errors revealed that the majority
of the errors occurred for the cases with single events. In
particular, cases with event E35590 recorded the most errors.
Event E35590 appears in majority of the cases, both in the
cases with confirmed problems and nuisance cases.

2.2. Testing

To evaluate the performance of the algorithms on the test data,
the data was supplied each case at a time to the 40 models de-
scribed in the previous section and majority voting employed
to select the most likely problem for each algorithm. An en-
semble of the algorithms based on weighted voting was then
built.

The performance of the method was evaluated using Equation
2.

Score = NO −NIO −NNO, (2)

where NO is the number of outputs, NIO is the number of
incorrect outputs and NNO is the number of nuisance out-
puts. If the method provided an output for cases with uncon-
firmed output, this was considered as nuisance output. The
number of outputs was based on a sample of 348 cases with
an equal number of nuisance cases and cases with confirmed
problems. A score of 21, with NO = 303, NIO = 133
and NNO = 149 was obtained based on this method. From
the results obtained, it was clear that using parameters exclu-
sively to predict the problem would not yield good results.
The next attempt was to incorporate the event codes in the
classification process.

3. EVENT BASED DECISION TREE AND SUPPORT VEC-
TOR MACHINES

Since the event code indicates the system or subsystem that
the measurements came from and the reason why the code
was generated, a method combining event based decision tree
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and SVM was developed. The input to the SVM was the para-
metric data corresponding to events. This section describes
construction of this method.

3.1. Cases with Single Events

It was observed that some cases with confirmed problems
consisted of single events. A decision tree to identify these
events and problems was developed. Some of the single
events appeared in multiple problems. In such cases, the
parametric data was used to derive the rules to differentiate
between the different problems. One such event was E35590.
Figure 4 shows a section of the decision tree constructed for
this event. L is the number of unique events per case.

As seen in Figure 4, the decision tree was extended to include
other single events appearing in the training data. Paramet-
ric data was used to derive decisions at the nodes for single
events appearing in more than one case. Due to time con-
straints, the decision tree was not trained to identify nuisance
data.

L=1 L>1

x16<0.6783

Ev=E35590 Multiple Event 
Model

Other single 
event models

Ev ≠ E35590

x16>=0.6783

x24<31.5 x24>=31.5

x5>=0.5487x5<0.5487

P2584

P7547

P0159 P7695

Figure 4. Construction of a decision tree for event E35590

For events appearing in multiple cases, SVM method with
parameters optimally tuned using particle swarm optimiza-
tion was used to train models corresponding to each event. A
total of 165 models were trained to identify the possible prob-
lem given the event code and corresponding parameters. For
events not appearing in the training data, the parametric data
was tested with each of the models and the problem with the
highest number of vote was selected.

3.2. Training

To train the method, the training data was again split into two,
75% of the data for training and 25% for testing. A 3-fold
cross validation (CV) technique was employed during tun-
ing of the parameters. PSO algorithm was employed to opti-
mally tune the parameters of the SVM algorithm (Kimotho,
Sondermann-Woelke, Meyer, & Sextro, 2013). Figure 5

shows the work flow of the SVM-based part of the method
(Kimotho et al., 2013). 165 SVM models based on events
that are triggered by multiple faults were trained. The predic-
tion accuracy based on the training data was 90%.

Training 
data

Target

Initialize
PSO

Evaluate
CV error

Update 
PSO

Train SVM
3-fold CV

Threshold 
reached?

Test data ProblemSVM
model

YES

NO

TESTING

TRAINING

Figure 5. Work flow of the SVM based classifier with opti-
mally tuned parameters

3.3. Testing

Testing was carried out by considering each case at a time.
Based on the event code, the matching prediction model was
retrieved and used to test parametric data of corresponding
event. Since most cases had multiple events, the classification
decision was arrived at based on majority voting.

From this method, a score of 48 was attained, with NO =
332, NIO = 122 and NNO = 162.

4. EVENT BASED DECISION TREE AND ENSEMBLE OF
DATA DRIVEN METHODS

In this method, event based decision tree and an ensemble
of data driven methods that utilize the parametric data corre-
sponding to the events were combined to classify the prob-
lems.

For events appearing in multiple cases, three data driven
methods (RF, BT and SVM) were used to train models cor-
responding to each event. A total of 165 models for each
method were trained to identify the possible problem given
the event code and corresponding parameters. The classifica-
tion decision was made by majority vote of the results from
the three algorithms. For events not appearing in the training
data, the parametric data was tested with each of the mod-
els and the problem with the highest number of vote was se-
lected.

4.1. Training

To train the method, the training data was again split into two,
75% of the data for training and 25% for testing. The predic-
tion accuracy based on the training data was 92%.
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Figure 6. Distribution of classification results of the test data based on the three methods presented

4.2. Testing

Similar to the previous method, testing was carried out by
considering each case at a time. Based on the event codes,
the matching prediction model for each method was retrieved
and used to classify the test data using parametric data as
the input. The predictions from all the algorithms were com-
bined and the classification decision made based on majority
vote. With this approach, a score of 51 with NO = 331,
NIO = 121 and NNO = 159 was obtained. This was a
slight improvement compared to using event-based decision
tree and SVM.

Figure 6 shows the distribution of the predictions from the
three methods presented, where method 1 is the ensemble
of data driven methods with only parametric data as input,
method 2 is the event based method with SVM and method 3
is the event based method and ensemble of data driven meth-
ods.

5. CONCLUSION

Methodologies for recommending maintenance action, based
on event codes and machinery parametric data obtained re-
motely have been presented. The large amount of data with
unconfirmed problems (nuisance data) compared to the con-
firmed problems introduced a high rate of misclassification,
especially when using the parametric data. However, incor-
porating event codes in classifying problems was found to
yield better results. This led to our team being ranked po-
sition three in the 2013 PHM data challenge. The method
could be further improved to reduce the number of incorrect
and nuisance outputs.
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